Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет»

СВЕТОТЕХНИЧЕСКИЙ РАСЧЕТ

Методические указания к курсовому и дипломному проектам для студентов специальности 1-70 02 01 «Промышленное и гражданское строительство»

Новополоцк ПГУ 2015

УДК 72(075.8)

Одобрено и рекомендовано к изданию методической комиссией инженерно-строительного факультета в качестве методических указаний (протокол № 1 от 26.02.2015)

Кафедра архитектуры

АВТОРЫ:

Р. М. ПЛАТОНОВА; Г. В. ИВАНОВА; Ю. Р. ПАЦУКЕВИЧ; Е. В. БОРОДАВКО

РЕЦЕНЗЕНТЫ:

канд. техн. наук, доц. каф. строительного производства УО «ПГУ» О. В. ПАРФЁНОВА; канд. техн. наук, доц. каф. строительного производства УО «ПГУ»

О. В. ЛАЗАРЕНКО

Введение

Задачей архитектурной светотехники является исследование условий, определяющих создание оптимального светового режима в помещениях, отвечающего протекающим в них функциональным процессам, и разработка соответствующих архитектурных и конструктивных решений зданий. Освещение помещений может быть естественным, создаваемым солнцем и рассеянным (диффузным) светом небосвода, и искусственным.

Оптимальный световой режим в помещении создает наилучшие условия освещения рабочего места в проектируемом здании, правильного выбора размеров, формы и цветовой отделки помещения, расположения и размеров светопроемов (окон или фонарей верхнего света), правильного размещения и выбора мощностей искусственных источников света.

Естественное и искусственное освещение зданий имеет не только функциональное значение, но и является фактором, определяющим архитектурно-художественные качества зданий и сооружений, их архитектурную выразительность.

Световые проемы – один из основных элементов, определяющих архитектурное решение зданий и интерьеров помещений. От размеров и формы проемов зависит обеспечение оптимального светового режима в здании.

1 ЦЕЛЬ РАБОТЫ

Методические указания разработаны для выполнения естественного освещения производственного помещения студентами специальностей 1-07 02 01 «Промышленное и гражданское строительство». Они также могут быть использованы студентами других специальностей, в курсовых работах которых есть расчет естественного освещения промышленных помещений.

Расчет выполняется в соответствии с ТКП 45-2.04-153-2009 (02250) «Естественное и искусственное освещение». При этом используются материалы из других источников (по ходу изложения материала будут даны ссылки).

Цель расчета — закрепление знаний студентов по разделу архитектурной физики «Естественное освещение зданий», полученных на лекциях, лабораторных и практических занятиях и при проработке литературных источников.

2 ИСХОДНЫЕ ДАННЫЕ

Прежде, чем приступить к расчету естественного освещения, необходимо подобрать исходные данные:

- 1. Разряд зрительных работ (подбирается по виду производства).
- 2. Нормируемое значение КЕО для бокового освещения (подбирается по разряду зрительной работы [1, табл. 1 и 2]).
- 3. Группа административных районов по ресурсам светового климата [1, табл. 4].
- 4. Откорректировать значение КЕО в зависимости от своей группы административных районов (в дальнейшем именно с этим КЕО необходимо будет работать) [1, 13].
 - 5. Коэффициент запаса [1, табл. 3].
- 6. Габариты помещения. Обычно показываются в виде схемы плана и разреза (рис. 1).

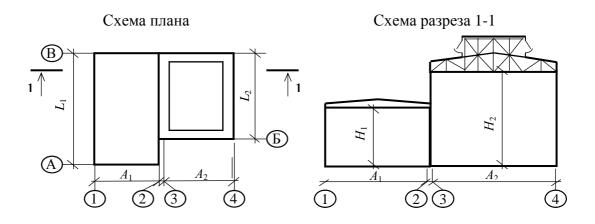


Рисунок 1 – Схема к общим исходным данным

3 РАСЧЕТ ЕСТЕСТВЕННОГО ОСВЕЩЕНИЯ

3.1 Нормирование естественного освещения

- **3.1.1** Для нормирования и расчета естественного освещения (е.о.) небосвод должен быть полностью закрыт облаками (небо МКО). Расчет е.о. при ясном небе, т.е. когда видно солнце, выходит за рамки нашего курса.
- **3.1.2** Помещения с постоянным пребыванием людей должны иметь, как правило, естественное освещение. Без естественного освещения допускается проектировать помещения, которые определены в действующих ТНПА, в т.ч. помещения, размещение которых разрешено в подвальных этажах зданий и сооружений.

Нормированные значения КЕО e_N следует определять по формуле

$$e_{N} = e_{\mu} m, \qquad (1)$$

где e_{μ} – значение КЕО, приведенное в табл. 1 и 2;

m – коэффициент светового климата, определяемый по табл. 1.

Полученные по формуле (1) значения e_N следует округлять до десятых долей.

таблица т эна иние коэффициента светового климата							
Световые проемы	Ориентация	Коэффициент светового климата m					
	световых проемов по сторонам горизонта	Брестская область,	Остальная				
	по сторонам горизонта	Гомельская область	территория				
В наружных стенах зданий	С	0,9	1				
	CB, C3	0,9	1				
	3, B	0,9	1				
	ЮВ, ЮЗ	0,85	1				
	Ю	0.85	0.95				

Таблица 1 – Значение коэффициента светового климата

Источник: ТКП 45-2.04-153-2009, табл. 4

- **3.1.3** Естественное освещение нормируется в зависимости от функции здания (отдельно для промышленных, жилых и общественных зданий). Настоящие методические указания ориентированы на расчет естественного освещения производственного помещения, поэтому в дальнейшем нормирование естественного освещения для жилых и общественных зданий рассматриваться не будет.
- **3.1.4** В соответствии с действующими нормами величина КЕО в производственных помещениях нормируется на уровне условной рабочей поверхности (УРП). УРП горизонтальная поверхность, размещенная на высоте 0,8 м над уровнем чистого пола.
- **3.1.5** Величина КЕО нормируется в зависимости от разряда зрительных работ. В соответствии с [1] все работы разделены на VIII разрядов.
- **3.1.6** В крупногабаритных производственных помещениях глубиной более 6,0 м при боковом освещении нормируется минимальное значение КЕО в точке на условной рабочей поверхности, удаленной от световых проемов:
- $-\,$ на 1,5 высоты от пола до верха световых проемов $-\,$ для зрительных работ I-IV разрядов;
- $-\,$ на 2,0 высоты от пола до верха световых проемов $-\,$ для зрительных работ V-VII разрядов;
- на 3,0 высоты от пола до верха световых проемов для зрительных работ VIII разряда.

3.2 Общие положения

- **3.2.1** Прямым источником естественного освещения является солнце, а диффузным (рассеянным) светом свет небосвода.
- **3.2.2** В ТКП 45-2.04-153-2009 (02250) приведены нормированные значения коэффициента естественной освещенности. Расчетные значения КЕО определяются:
 - а) при боковом освещении по формуле

$$e_p^{\delta} = \left(\sum_{i=1}^L \varepsilon_{\delta i} \beta_i + \sum_{j=1}^M \varepsilon_{3\delta j} b_{\phi j} k_{3\delta j}\right) \times r_o \tau_o / K_s; \qquad (2)$$

б) при верхнем освещении – по формуле

$$e_p^{\theta} = \left[\sum_{i=1}^{T} \varepsilon_{\theta i} + \varepsilon_{cp} \cdot \left(r_1 k_{\phi} - 1\right)\right] \cdot \tau_o / K_s; \tag{3}$$

в) при комбинированном (верхнем и боковом) освещении — по формуле

$$e_p^{\kappa} = e_p^{\delta} + e_p^{\epsilon}, \tag{4}$$

где L – количество участков небосвода, видимых через световые проемы из расчетной точки;

 ε_{6i} – геометрический КЕО в расчетной точке при боковом освещении, учитывающий прямой свет от i-го участка неба;

 β_i — коэффициент, учитывающий неравномерную яркость *i*-го участ- ка облачного неба МКО:

$$\beta_i = (1 + 2\sin\theta)/3; \tag{5}$$

M – количество участков фасадов зданий противостоящей застройки, видимых через световые проемы из расчетной точки;

 $\varepsilon_{_{3\partial j}}$ — геометрический КЕО в расчетной точке при боковом освещении, учитывающий свет, отраженный от j-го участка фасадов зданий противостоящей застройки;

 $b_{\phi j}$ — средняя относительная яркость j-го участка фасадов зданий противостоящей застройки;

 $k_{\scriptscriptstyle 3oj}$ — коэффициент, учитывающий изменения внутренней отраженной составляющей КЕО в помещении при наличии противостоящих зданий, определяемый по формуле

$$k_{3\partial j} = 1 + (k_{3\partial o} - 1) \cdot \frac{\sum_{j=1}^{M} \varepsilon_{3\partial j}}{\sum_{i=1}^{N} \varepsilon_{\delta i} + \sum_{j=1}^{M} \varepsilon_{3\partial j}},$$
(6)

где r_o – коэффициент, учитывающий повышение КЕО при боковом освещении благодаря свету, отраженному от поверхностей помещения и подстилающего слоя, прилегающего к зданию;

 $\tau_{_{\scriptscriptstyle O}}$ – общий коэффициент светопропускания, определяемый как

$$\tau_o = \tau_1 \tau_2 \tau_3 \tau_4 \tau_5; \tag{7}$$

 K_3 –коэффициент запаса [1, табл. 3];

T – количество световых проемов в покрытии;

 $\varepsilon_{\scriptscriptstyle ei}$ – геометрический КЕО в расчетной точке при верхнем освещении от i-го проема;

 ϵ_{cp} — среднее значение геометрического КЕО при верхнем освещении на линии пересечения условной рабочей поверхности и плоскости характерного вертикального разреза помещения, определяемое из соотношения

$$\varepsilon_{cp} = \frac{1}{N} \cdot \sum_{i=1}^{N} \varepsilon_{ei}.$$
 (8)

Среднее значение КЕО e_{cp} при верхнем или комбинированном освещении определяется по формуле (7);

 r_1 – коэффициент, учитывающий повышение КЕО при верхнем или комбинированном освещении;

 k_ϕ – коэффициент, учитывающий тип фонаря;

N – количество расчетных точек;

 $k_{_{3\partial o}}$ — коэффициент, учитывающий изменения внутренней отраженной составляющей КЕО в помещении при полном закрытии небосвода зданиями, видимыми из расчетной точки;

 $\tau_{_{\! 1}}$ – коэффициент светопропускания материала оконного заполнения;

 τ_1 – коэффициент светопропускания остекления;

 au_2 — коэффициент, учитывающий потери света в переплетах светопроема. Размеры светопроема принимаются равными размерам коробки переплета по наружному обмеру;

 au_3 — коэффициент, учитывающий потери света в несущих конструкциях (при боковом освещении au_3 = 1);

 au_4 — коэффициент, учитывающий потери света в солнцезащитных устройствах (при отсутствии солнцезащитных устройств au_4 = 1);

 au_5 — коэффициент, учитывающий потери света в защитной сетке, устанавливаемой под фонарями, принимаемый равным 0,9 (при боковом освещении $au_5 = 1$).

3.2.3 Требования к освещению помещений промышленных предприятий (КЕО, нормируемая освещенность, допустимые сочетания показателей ослепленности и коэффициента пульсации освещенности) следует принимать по табл. 1 с учетом требований 7.2.2 и 7.2.3 [1].

3.3 Расчет геометрического КЕО по методу Данилюка

Геометрический коэффициент естественной освещенности, учитывающий прямой свет неба в какой-либо точке помещения при боковом освещении, определяется по формуле

$$\varepsilon_{\delta} = 0.01 \cdot (n_1 \cdot n_2), \tag{9}$$

где n_1 – количество лучей по графику I, проходящих от неба через световые проемы в расчетную точку на поперечном разрезе помещения (рис. 2, a);

 n_2 – количество лучей по графику II, проходящих от неба через световые проемы в расчетную точку на плане помещения (рис. 2, δ).

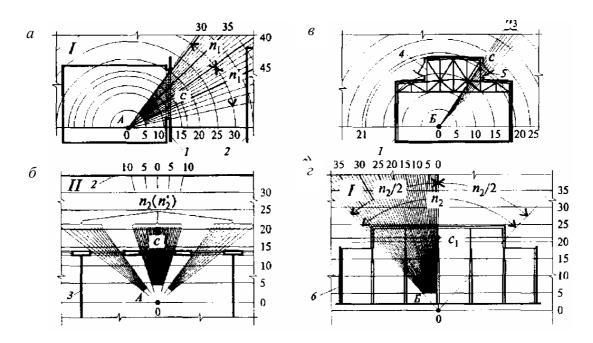


Рисунок 2 – К расчету естественной освещенности помещений:

a — пример подсчета при боковом освещении количества лучей n_1 по графику I; δ — то же, n_2 по графику II; ϵ — пример подсчета при верхнем освещении количества лучей n_3 по графику III; ϵ — то же, n_2 по графику II

Подсчет количества лучей по графикам I и II (прил. Д) производится в следующем порядке:

- а) график I накладывается на чертеж поперечного разреза помещения, центр графика О совмещается с расчетной точкой A, а нижняя линия графика со следом рабочей поверхности (рис. 2, *a*);
- б) подсчитывается количество лучей n_1 , проходящих через световые проемы;
- в) отмечается номер полуокружности на графике I, которая проходит через точку C_1 середину светового проема;
- г) график II накладывается на план помещения таким образом, чтобы его вертикальная ось и горизонталь, номер которой соответствует номеру полуокружности по графику I, проходили через точку C (рис. 2, δ);
- д) подсчитываем количество лучей n_2 по графику II, проходящих через световые проемы;
- е) определяется геометрический коэффициент естественной освещенности по формуле (9).

Геометрический коэффициент естественной освещенности в какойлибо точке помещения при верхнем освещении ε^{δ}_{B} определяется как

$$\varepsilon_{\delta} = 0.01 \cdot (n_3 \cdot n_2), \tag{10}$$

где n_3 – количество лучей по графику III, проходящих от неба через световые проемы в расчетную точку на поперечном разрезе помещения;

 n_2 — количество лучей по графику II, проходящих от неба через световые проемы в расчетную точку в продольном разрезе помещения (в случае нескольких световых проемов n_3 и n_2 определяются отдельно для каждого проема, а затем произведения (n_2n_3) суммируются).

Подсчет количества лучей по графикам III и II производится в следующем порядке:

- а) график III накладывается на чертеж поперечного разреза помещения, центр графика О совмещается с расчетной точкой Б, а нижняя линия графика III со следом рабочей поверхности;
- б) подсчитывается количество лучей n_3 , проходящих от неба в расчетную точку Б через световые проемы (рис. 2, ϵ);
- в) отмечается номер полуокружности графика III, которая проходит через точку C_2 середину светового проема;
- г) график II накладывается на чертеж продольного разреза помещения таким образом, чтобы его вертикальная ось и горизонталь, номер которой соответствует номеру полуокружности по графику III, проходили через точку C_2 (рис. 2, ε);

- д) подсчитывается количество лучей n_2 по графику II, проходящих от неба через световые проемы;
- е) определяется геометрический коэффициент естественной освещенности по формуле (10).

3.4 Расчет бокового освещения

Сутью расчета бокового освещения является расчет общей площади F_{ϕ} боковых светопроемов с заданными, конструктивными и светотехническими параметрами, обеспечивающих нормируемую освещенность в помещении и имеющих при этом высокие архитектурно-художественные и экономические показатели.

3.4.1 Исходные данные

- 1) нормируемое значение КЕО [п. 3.1];
- 2) коэффициент запаса [1, табл. 3];
- 3) средневзвешенный коэффициент отражения потолка, стен и пола [1, п. 5.10];
- 4) начертить схему плана и разреза (рис. 3) расчетного помещения с показом нормативной точки [п. 3.1.6] и габаритов здания;
- 5) подобрать тип окон и рассчитать их общий коэффициент светопропускания τ_o по формуле (7). С учетом п. 3.2.2 формула (7) для бокового освещения примет вид

$$\tau_o = \tau_1 \tau_2. \tag{11}$$

Значения коэффициентов τ_1 и τ_2 приведены в прил. Γ .

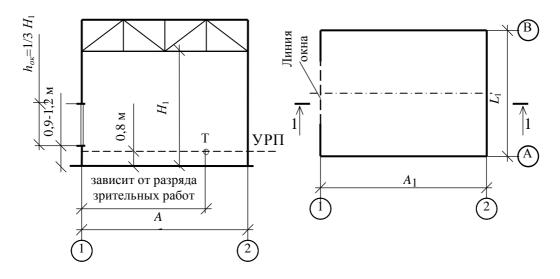


Рисунок 3 – Схема к расчету бокового освещения

3.4.2 Расчет КЕО в нормируемой точке

КЕО можно определить инструментальным путем, т.е. люксметром. На световой поток, попадающий на светочувствительный элемент люксметра, воздействует ряд факторов. В результате многочисленных исследований КЕО при боковом освещении $(e_p{}^{\delta})$ предложено рассчитывать из зависимости

$$e_p^{\delta} = \left(\varepsilon_{\delta} \beta + \varepsilon_{3\delta} b_{\phi} k_{3\delta}\right) \cdot \frac{r_o \tau_o}{K_3}$$
 (12)

где ε_{δ} – геометрический КЕО [п. 3.3];

 β – коэффициент, учитывающий неравномерную яркость облачного неба МКО, определяемый по формуле (5);

 $\epsilon_{_{3\partial}}$ – геометрический КЕО в расчетной точке при боковом освещении, учитывающий свет, отраженный от фасадов зданий противостоящей застройки;

 b_{ϕ} — средняя относительная яркость фасадов зданий противостоящей застройки;

 $k_{_{3\partial}}$ — коэффициент, учитывающий изменения внутренней отраженной составляющей КЕО в помещении при наличии противостоящих зданий, определяемый по формуле (6);

 r_o — коэффициент, учитывающий повышение КЕО при боковом освещении благодаря свету, отраженному от поверхностей помещения и подстилающего слоя, прилегающего к зданию (прил. В];

 $\tau_{_{o}}$ – общий коэффициент светопропускания, определяемый по формуле (11);

 K_{3} – коэффициент запаса [1, табл. 3].

В формулу (12) входит ряд параметров, характеризующих влияние на КЕО противостоящих зданий. В расчете не будет учитываться это влияние, поэтому зависимость (12) примет следующий вид:

$$e_p^{\delta} = \varepsilon_{\delta} \beta \cdot \frac{r_o \tau_o}{K_s}. \tag{13}$$

Необходимо рассчитать каждый из множителей зависимости (13). Метод расчета геометрического КЕО приведен в п. 3.3.

Полученное значение e_p^{δ} сравниваем с e_N для бокового освещения [п. 3.1]. В результате можем получить:

1)
$$e_N \approx e_p^{\delta}$$
;

2)
$$e_N > e_p^{\delta}, e_N < e_p^{\delta}.$$

В позиции 1 площадь окна принята верно. Точность сравнения составляет до $1/10e_{\scriptscriptstyle N}$.

В позиции 2 площадь окна необходимо корректировать. Для этого будем использовать следующую зависимость:

$$\frac{F_{\phi}}{F_{o}} = \frac{e_{N}}{e_{P}^{\delta}},\tag{14}$$

где F_{ϕ} – фактическая площадь окна;

 F_{o} – площадь окна, принятая условно.

Отсюда

$$F_{\Phi} = \frac{F_o \cdot e_N}{e_p^{\delta}}.$$
 (15)

Все дальнейшие расчеты следует осуществлять с окнами в виде сплошной ленты площадью F_o .

3.5 Построение кривой освещенности

Для построения графика необходимо:

- 1. Начертить схему разреза и плана помещения, как показано на рис. 4.
- 2. Окно представить в виде сплошной ленты, но его высоту откорректировать в соответствии с изменением площади F_{ϕ} . В любом случае высота окна не должна превышать $1/2H_2$.
 - 3. Нанести на УРП не менее 5 точек и пронумеровать их (рис. 4).

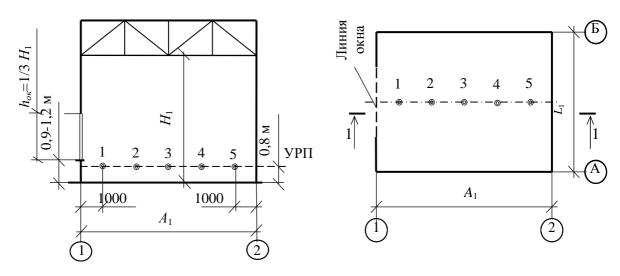


Рисунок 4 – Схема к построению графика изменения КЕО

Точка Т, в которой мы уже рассчитывали КЕО, может быть одной из показанных на рис. 3.

4. Рассчитать КЕО в каждой из расчетных точек по изложенной выше методике и результаты записать в табл. 3.

Таблица 3 – Ведомость расчетных характеристик при боковом освещении

Номер расчетной точки	n_1	n_2	$\mathbf{\epsilon}_p{}^{\delta}$	β	r_o	τ_o	K_3	$e_p{}^{\acute{o}}$
1								
2								
3								
4								·
5								·

5. Построить график по расчетным значениям $e_p^{\ \delta}$. На графике должны быть нанесены оси абсцисс и ординат. Удобно (но не обязательно) ось абсцисс совмещать с УРП, а ось ординат разместить вне здания.

На оси абсцисс наносятся расстояния от окон в метрах, а на оси ординат – значения KEO в процентах.

Пример графика приведен на рис. 5.

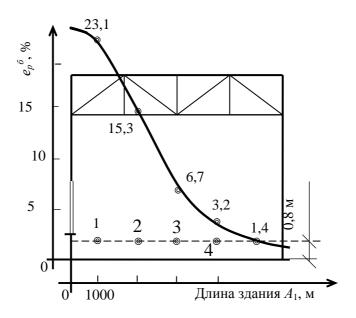


Рисунок 5 – Пример графика изменения КЕО при боковом освещении

4 ПРИМЕР РАСЧЕТА БОКОВОГО ОСВЕЩЕНИЯ

4.1 Исходные данные

Район строительства – г. Минск.

Цех – механосборочный.

Разряд зрительной работы – II.

Окна — неотрывающиеся двойные с деревянными переплетами с возможным наклоном к горизонту до 45° .

Средневзвешенный коэффициент отражения потолка, стен и пола -0.4.

Противостоящие здания отсутствуют.

Габариты помещения приведены на рис. 6.

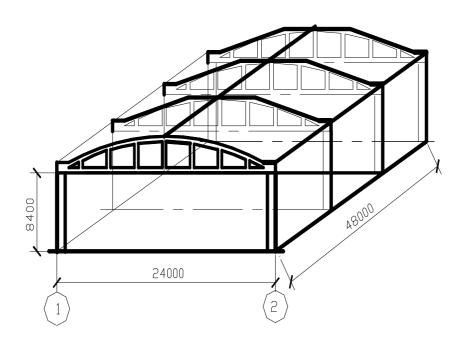


Рисунок 6 – Габариты промышленного здания

4.2 Расчет нормируемого значения

Расчет нормируемого значения КЕО e_N осуществляют по формуле (1); для г. Минска $e_H = 1,5\%$ [табл. 1 и 3]:

$$e_N^6 = 1, 5 \cdot 1 = 1, 5 \%$$
.

4.3 Расчет КЕО в нормируемой точке Т

Точка Т, в которой нормируется освещенность, в соответствии с [1] размещена на линии пересечения условной рабочей поверхности (УРП) и ха-

рактерного разреза помещения на удалении от линии окна $l_T = 1,5h$ [п. 3.1.6]. В данном примере

$$l_T = 8.4 \cdot 1.5 = 12.6 \text{ M}.$$

Принимаем высоту окна условно 1/3Н. В данном примере

$$h_v = 1/3 \cdot 8,4 = 2,8 \text{ M}.$$

Принимаем $h_v = 3$ м.

Форму окна принимаем в виде сплошной ленты высотой h_y и длиной, равной длине расчетного участка помещения. В примере длина расчетного участка равна длине всего здания l_1 .

Тогда площадь окна F_o будет равна

$$F_o = h_v \cdot l_1 = 2.8 \cdot 48 = 144 \text{ m}^2.$$

Формула (2) для случая, когда отсутствует противостоящее здание, примет вид

$$e_p^{\delta} = \varepsilon_{\delta} \beta \cdot \frac{r_o \tau_o}{K_s},$$

где ε_{δ} – геометрический КЕО;

 β — коэффициент неравномерной яркости неба, рассчитываемый по формуле (5), где θ — угловая высота над УРП середины светопроема. Приняв высоту подоконника равной 1,2 м, получим габариты, приведенные на рис. 7.

Синус θ можно определить по формуле

$$\sin \theta = \frac{1.6}{\sqrt{(1.6)^2 + (12.6)^2}}$$
.

В результате получим $\beta = 0,77;$

 r_o – коэффициент, учитывающий повышение КЕО благодаря свету, отраженному от внутренних поверхностей помещения (прил. В, табл. 4);

 au_o — общий коэффициент светопропускания, определяемый по формуле (11). В нашем случае два слоя стекла $au_1=0.8$; переплеты деревянные спаренные $au_2=0.7$.

Тогда $\tau_o = 0.8 \cdot 0.7 = 0.56$.

В примере $K_3 = 1,5$.

В исходных данных указаны вид производства и возможный наклон окон.

Геометрический КЕО бокового освещения (ε_p^{δ}) определяют по методике, изложенной в прил. п. 3.3. Для этого на кальку нанесем схемы разреза помещения и схему плана в масштабе 1:200 (рис. 8).

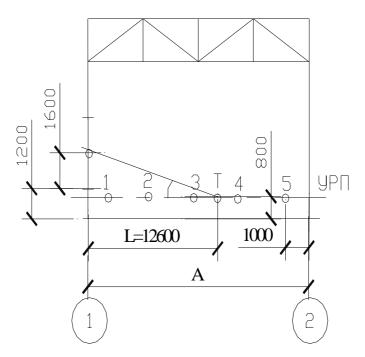


Рисунок 7 — Схема к определению угла θ

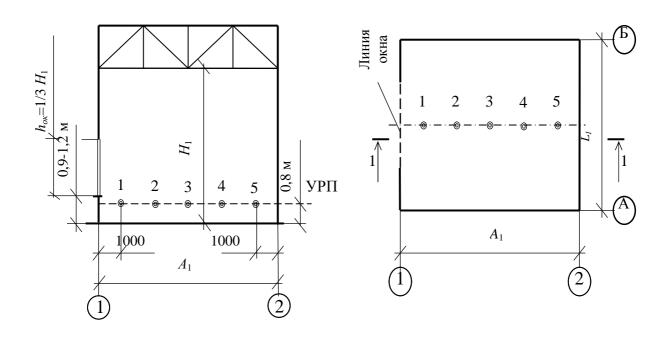


Рисунок 8 – Схема плана и разреза

Рассчитаем ε_{δ} по формуле

$$\varepsilon_{\sigma} = 0.01 n_1 n_2$$

где n_1 – количество лучей, определенное по графику I Данилюка на схеме разреза помещения, n_1 = 1,7;

 n_2 – количество лучей, определенное по графику II Данилюка на схеме плана помещения, $n_2 = 96$.

Тогда
$$\varepsilon_p^{\delta} = 0.01 \cdot 1.7 \cdot 96 = 1.6.$$

В результате коэффициент естественной освещенности в точке Т составит:

$$e_p^6 = 1.6 \cdot 0.77 \cdot 2.5 \cdot 0.56 / 1.3 = 1.2\%$$
.

Полученное значение КЕО меньше нормируемого в той же точке. Корректируем площадь окна пропорционально значениям КЕО из зависимости (15).

Подставим значение условной площади окна $S_y=144~{\rm m}^2$, рассчитанный КЕО $e_p{}^6=1,2~\%$ и нормируемую величину КЕО $e_N{}^6=1,5~\%$ в зависимость (15):

$$F_{\phi} = \frac{144 \cdot 1,5}{1,2} = 185 \text{ m}^2.$$

С учетом того, что длина здания (l_1) составляет 48 м, определим высоту окна $h_0=3.9$ м.

4.4 Построение кривой освещенности

Определим КЕО в каждой из точек и результаты занесем в табл. 7. График изменения КЕО строим по данным последней колонки табл. 7.

Таблица 7 – Ведомость расчетных характеристик

Номер расчетной точки	n_1	n_2	${f \epsilon}_{ar{o}}$	β	r_o	$ au_o$	K_3	e_p^{δ}
1	35	99	34,6	1,2	1,1	0,56	1,5	21,20
2	8,9	99	8,8	0,75	1,3	0,56	1,5	3,98
3	2,45	96	2,4	0,63	2,5	0,56	1,5	1,71
4	1	90	0,9	0,57	3,7	0,56	1,5	0,88
5	0,75	84	0,6	0,53	5,65	0,56	1,5	0,87

Для построения графика изменения KEO на разрезе нанесем 5 точек, как показано на рис. 9.

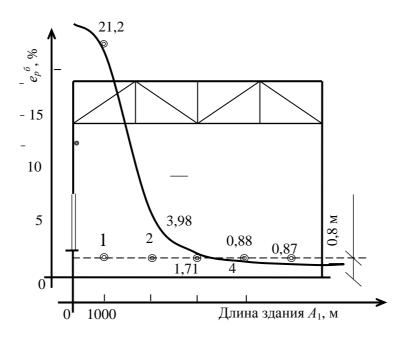


Рисунок 9 – График изменения КЕО

Литература

- 1. Естественное и искусственное освещение : ТКП 45-2.04-153-2009 (02250). , Минск : Мин-во архитектуры и стр-ва Респ. Беларусь, 2010.
- 2. Естественное и искусственное освещение : СНиП II-4-79 / Госстрой СССР. М. : Стройиздат, 1980. 48 с.
- 3. Дятков, С.В. Архитектура промышленных зданий / С.В. Дятков, А.П. Михеев. 3-е изд., перераб. и доп. М. : Изд-во АСВ, 1998. 480 с.
- 4. Оболонский, Н.В. Архитектурная физика / Н.В. Оболонский. М. : Стройиздат, 2001.-442 с.
- 5. Предтеченский, В.М. Архитектура гражданских и промышленных зданий. Основы проектирования / В.М. Предтеченский. М., 1966.

приложения

Приложение А

Таблица А1 – Определение разряда зрительной работы

Наименование цеха	Характеристика зрительной работы	Наименьший размер объекта различения, мм	Разряд зрительной работы
Цех железобетонных из- делий	Высокой точности	0,3 ÷ 0,5	III
Механосборочный цех	Очень высокой точности	$0,15 \div 0,3$	II
Кузнечно- штамповочный цех	Очень высокой точности	$0,15 \div 0,3$	II
Литейный цех	Высокой точности	$0,3 \div 0,5$	III
Цех металлоконструкций	Высокой точности	$0,3 \div 0,5$	III

Приложение Б

Таблица Б1 – Наименьшее нормированное значение KEO $e_{_{\rm H}}$ (%)

Разряд	при верхнем или комбинированном	при боковом
зрительной работы	освещении	освещении
I	6,0	2,0
II	4,2	1,5
III	3,0	1,2
IV	4,0	1,3

Приложение В

Таблица В1 – Значения коэффициента r_o

	ия коэффициента го	Отношени	е лпины по	омещения l_n
Отношение глубины помещения В		к его глубине		
к высоте от уровня	расчетной точки		1 01 0 101 9 012	
условной рабочей поверхности	от наружной стены	0,5	1	2 и более
до h_1 верха окна	к глубине помещения В	0,5	1	2 if conce
	0,1	1,05	1,05	1
От 1 до 1,5	0,5	1,2	1,15	1,1
	1	1,8	1,6	1,3
	0	1,05	1,05	1,05
	0,3	1,2	1,15	1,1
Более 1,5 до 2,5	0,5	1,5	1,35	1,2
	0,7	1,7	1,6	1,3
	1	2,8	2,4	1,8
	0,1	1,05	1	1
	0,2	1,1	1,1	1,05
	0.3	1,15	1,1	1,1
	0,4	1,2	1,15	1,1
Более 2,5 до 3,5	0,5	1,35	1,25	1,2
	0,6	1,6	1,45	1,3
	0,7	1,9	1,7	1,4
	0,8	2,4	2,2	1,55
	0.9	2,9	2,45	1,9
	1	3,6	3,1	2,4
	0,1	1,1	1,1	1,05
	0,2	1,2	1,15	1,1
	0,3	1,4	1,3	1,2
	0,4	1,6	1,4	1,3
Г 2.5	0,5	2	1,8	1,5
Более 3,5	0,6	2,4	2,1	1,8
	0,7	2,9	2,6	2,1
	0,8	3,4	2,9	2,4
	0,9	4,3	3,6	3
	1	5	4,1	3,5

Приложение Г

Таблица $\Gamma 1$ – Значения коэффициентов au_1 , au_2 и au_3

Вид светопропускающего материала	Значения т _і	Вид переплета	Значения т2	Несущие конструкции покрытий	Значення т3
Стекло оконное листовое:		Переплеты для окон и фонарей		Стальные фермы	0,9
одинарное	0,9	промышленных зданий:		Железобетонные и деревянные	
двойное	0,8	а) деревянные:		фермы и арки	0,8
тройное	0,75	одинарные	0,75	Балки и рамы сплошные при высоте	
Стекло витринное толщиной		спаренные	0,7	сечения:	
6-8 MM	0,8	двойные раздельные	0,6	50 см и более	0,8
Стекло листовое армированное	0,6	б) стальные:		менее 50 см	0,9
		одинарные открывающиеся	0,75		
		одинарные глухие	0,9		
		двойные открывающиеся	0,6		
		двойные глухие	0,6		

Таблица $\Gamma 2 - 3$ начения коэффициента au_4

Солнцезащитные устройства, изделия и материалы	Коэффициент, учитывающий потери света в солнцезащитных устройствах, $ au_4$
1. Убирающиеся регулируемые жалюзи и шторы (межстекольные, внутренние, наружные)	1
2. Стационарные жалюзи и экраны с защитным углом не более 45° при расположении пластин жалюзи или экранов под углом 90° к плоскости	
окна: горизонтальные вертикальные	0,65 0,75
3. Горизонтальные козырьки: с защитным углом не более 30° с защитным углом от 15 до 45° (многоступенчатые)	0,8 0.9 – 0.6

Приложение Д

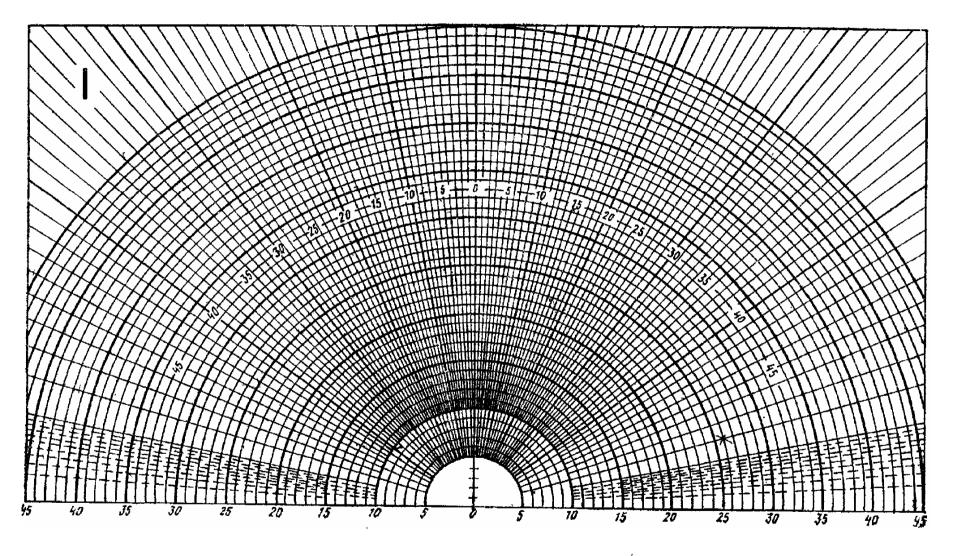


График 1 А.М. Данилюка для подсчета n_2 и n_1

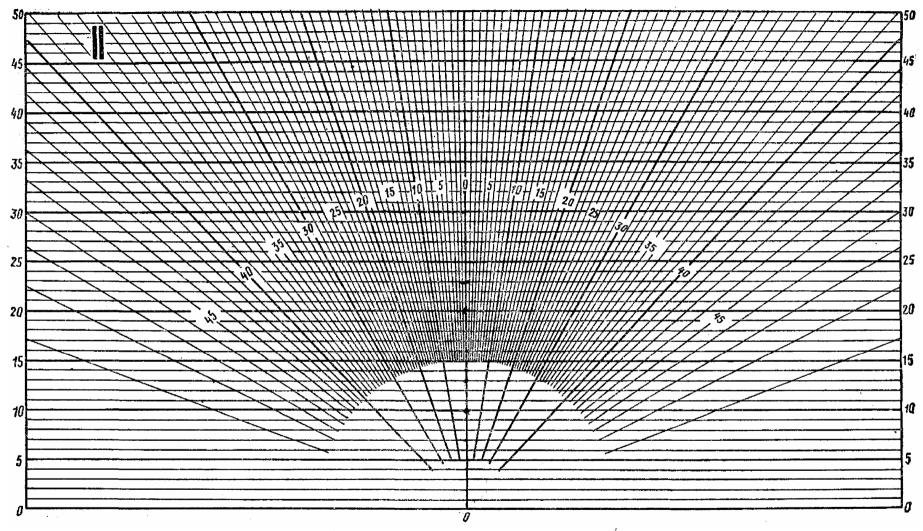


График 2 А.М. Данилюка для подсчета n_2 и $n_2^{'}$

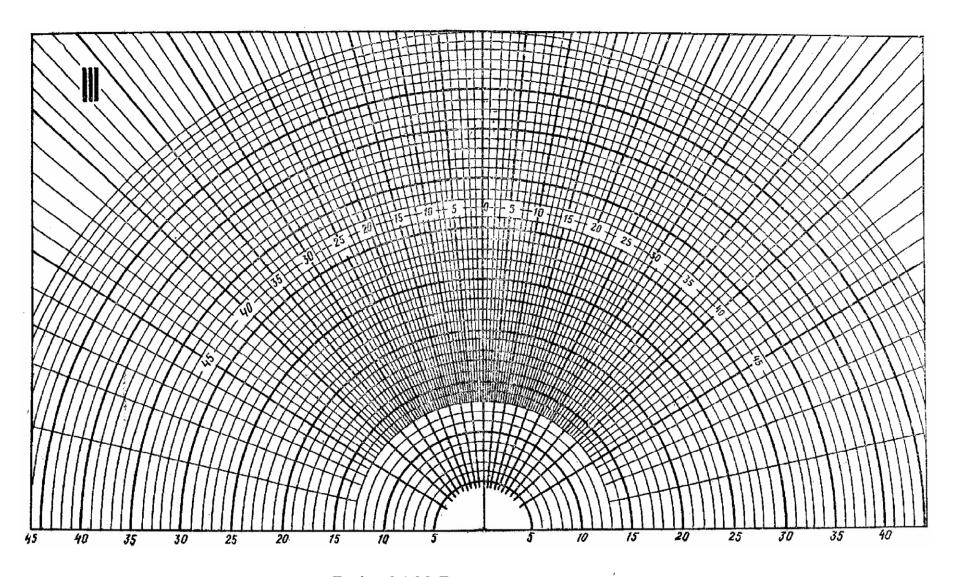


График 3 А.М. Данилюка для подсчета $n_{3}^{'}$

Содержание

Введение	1
1 Цель работы	1
2 Исходные данные	
3 Расчет естественного освещения	
3.1 Нормирование естественного освещения	
3.2 Общие положения	
3.3 Расчет геометрического КЕО по методу Данилюка	6
3.4 Расчет бокового освещения	8
3.5 Построение кривой освещенности	10
4 Пример расчета бокового освещения	
4.1 Исходные данные	12
4.2 Расчет нормируемого значения	12
4.3 расчет КЕО в нормируемой точке	12
4.4 Построение кривой освещенности	
Литература	17
Приложения	18
++p+10/10/10/41111/1	10

Учебное издание

ПЛАТОНОВА Раиса Михайловна ИВАНОВА Галина Васильевна ПАЦУКЕВИЧ Юрий Романович БОРОДАВКО Екатерина Валерьевна

СВЕТОТЕХНИЧЕСКИЙ РАСЧЕТ

Методические указания к курсовому и дипломному проектам для студентов специальности 1-70 02 01 «Промышленное и гражданское строительство»

Редактор Т. А. Дарьянова

Подписано в печать 08.05.15. Формат 60х84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 1,39. Уч.-изд. л. 1,27. Тираж 30 экз. Заказ 686.

Издатель и полиграфическое исполнение – учреждение образования «Полоцкий государственный университет».

Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий $N \simeq 1/305$ от 22.04.2014.

ЛП № 02330/278 от 08.05.14.

Ул. Блохина, 29, 211440, г. Новополоцк.