МАТЕМАТИКА

UDC 519.711.2

ON THE DYNAMICS OF THE DISCRETE DELAY MODELS OF GLUCOSE-INSULIN SYSTEMS*

DINH CONG HUONG

(Deptment of Mathematics, Quy Nhon University, Vietnam); NGUYEN VAN MAU
(Department of Mathematical Analysis, Hanoi University of Science, Vietnam)
In this paper, we study the dynamics of the discrete delay models of Glucose-Insulin systems:

$$
\left\{\begin{array}{l}
G_{n+1}=\alpha G_{n}-\beta G_{n} I_{n-m_{i}}+\Gamma, \\
I_{n+1}=\lambda I_{n}+\Delta f\left(G_{n-m_{g}}\right) .
\end{array}\right.
$$

We are interested in providing sufficient conditions guaranteeing the fact that all positive solutions of this systems converge to the positive equilibrium.

1. Introduction

Our main motivation in studying the dynamics of the systems:

$$
\left\{\begin{array}{l}
G_{n+1}=\alpha G_{n}-\beta G_{n} I_{n-m_{i}}+\Gamma, \tag{1}\\
I_{n+1}=\lambda I_{n}+\Delta f\left(G_{n-m_{g}}\right)
\end{array}\right.
$$

is the dynamics of the differential version systems

$$
\left\{\begin{array}{l}
\dot{G}(t)=-K_{x g} G t-K_{x g i} G(t) I\left(t-\tau_{i}\right)+\frac{T_{g h}}{V_{G}}, \tag{2}\\
\dot{I}(t)=-K_{x i} I(t)+\frac{T_{i G \max }}{V_{I}} f G\left(t-\tau_{g}\right),
\end{array}\right.
$$

where $\gamma, G_{*}, K_{x g i}, K_{x i}, T_{g h}, T_{i G \max }, V_{G}, V_{I}, \tau_{g}, \tau_{i} \in(0, \infty)$ invertigated in [3]. In [3], the author proved that (2) admits positive bounded solutions for any positive initial condition, that there is a unique positive equilibrium $\left(G_{b}, I_{b}\right)$, which consists of the basal levels of glucose and insulin concentration, and this equilibrium point is lacally asymptotically stable according to a very broad set of parameter values. That paper provides also a sufficient condition ensuring the global asymptotic stability.

However, it is very interesting to see the connection of (2) to (1). In practice, when formulating (2), we actually replace the first derivative $\dot{G}(t)$ and $\dot{I}(t)$ of G and I at t by their first right approximation

$$
\frac{G(t+h)-G(t)}{h}, \frac{\tilde{I}(t+h)-\tilde{I}(t)}{h}
$$

for $h>0$ sufficient small. Thus, formally, system (2) comes from

$$
\left\{\begin{array}{l}
\frac{G(t+h)-G(t)}{h}=-K_{x g} G(t)-K_{x g i} G(t) \tilde{I}\left(t-\tau_{i}\right)+\frac{T_{g h}}{V_{G}} \\
I_{n+1}=\frac{\tilde{I}(t+h)-\tilde{I}(t)}{h}=-K_{x i} \tilde{I}(t)+\frac{T_{i G \max }}{V_{I}} f G\left(t-\tau_{g}\right),
\end{array}\right.
$$

[^0]for small h. If we set
$$
G_{h}(t):=G(h t), \quad I_{h}(t):=\tilde{I}(h t), \quad t=n h, \frac{\tau_{i}}{h}=m_{i}, \frac{\tau_{g}}{h}=m_{g}
$$
then preceding system becomes
\[

\left\{$$
\begin{array}{l}
G_{h}(n+1)=\alpha G_{h}(n)-\beta G_{h}(n) I_{h}\left(n-m_{i}\right)+\Gamma \\
I_{h}(n+1)=\lambda I_{h}(n)+\Delta f\left(G_{h}\left(n-m_{g}\right)\right),
\end{array}
$$\right.
\]

or

$$
\left\{\begin{array}{l}
G_{n+1}=\alpha G_{n}-\beta G_{n} I_{n-m_{i}}+\Gamma \\
I_{n+1}=\lambda I_{n}+\Delta f\left(G_{n-m_{g}}\right),
\end{array}\right.
$$

where

$$
\alpha=1-h K_{x g}, \beta=h K_{x g}, \quad \Gamma=h \frac{T_{g h}}{V_{G}}, \quad \lambda=1-h K_{x i}, \quad \Delta=h \frac{T_{i G \max }}{V_{I}} .
$$

2. The results

We consider the discrete system of Glucose and Insulin (1), where

$$
f(G)=\frac{G^{\gamma}}{G^{\gamma}+C_{*}^{\gamma}}
$$

defined on positive reals, m_{i}, m_{g} are two fixed positive integer, $\alpha, \lambda \in(0,1)$ and $\gamma, \beta, \Gamma, \Delta$ are positive parameters. The positive initial values $G_{-m_{g}}, G_{-m_{g}+1}, \cdots, G_{0} ; I_{-m_{i}}, I_{-m_{i}+1}, \cdots, I_{0}$ are given. The derivative of f is

$$
f^{\prime}(G)=\frac{\gamma G_{*}^{\gamma} G^{\gamma-1}}{\left(G^{\gamma}+G_{*}^{\gamma}\right)^{2}}>0
$$

so f is increasing. After some computations, it can be seen that the system (1) admits positive bounded solutions for any positive initial conditions. We have

$$
\sup _{G \geq 0} f(G)=1
$$

and

$$
f^{\prime \prime}(G)=2 G_{*}^{\gamma} G^{\gamma-2} \frac{(\gamma-1) G_{*}^{\gamma}-(\gamma+1) G^{\gamma}}{\left(G^{\gamma}+G_{*}^{\gamma}\right)^{2}}
$$

so, if $\gamma \leq 1, f^{\prime}$ is decreasing, and if $\gamma>1, f^{\prime}$ is unimodal. Thus,

$$
\begin{array}{ll}
\sup _{G \geq 0} f^{\prime}(G)=f^{\prime}\left(G_{0}\right)=\frac{(\gamma+1)^{2}(\gamma-1)}{4 \gamma G_{0}}, & \text { if } \gamma>1, \\
\text { where } G_{0}=\sqrt[\gamma]{\frac{\gamma-1}{\gamma+1}} G_{*}, & \text { if } \gamma=1, \\
\sup _{G \geq 0} f^{\prime}(G)=f^{\prime}(0)=\frac{1}{G_{*}}, & \text { if } \gamma<1, \\
\sup _{G \in[0, \bar{G}]} f^{\prime}(G)=\infty, & \text { if } \gamma<1 .
\end{array}
$$

Proposition 1. System (1) has a unique positive equilibrium (\bar{G}, \bar{I}), which consists of the basal levels of glucose and insulin concentrations.

Proof. Each equilibrium point (\bar{G}, \bar{I}) has to satisfy the following equations:

$$
\left\{\begin{array}{l}
\bar{G}(1-\alpha+\beta \bar{I})=\Gamma \tag{3}\\
\bar{I}=\frac{\Delta}{1-\lambda} f(\bar{G}),
\end{array}\right.
$$

that is

$$
\varphi(\bar{G})=\Gamma+(\alpha-1) \bar{G}-\beta \bar{G} \cdot \bar{I}=0, \varphi(0)=\Gamma>0 .
$$

We have

$$
\varphi^{\prime}(G)=-(1-\alpha)-\beta \frac{\Delta}{1-\lambda} f(G)-\frac{f^{\prime}(G) \beta G \Delta}{1-\lambda}<0
$$

and $\lim _{G \rightarrow+\infty} \varphi(G)=-\infty$. This implies that, φ is a decreasing function for positive argument, starting from a positive value at zero, and it may hence have at most one positive root.

Remark. Recall that for any scalar difference inequality of the type:

$$
\begin{equation*}
x_{n+1} \leq \lambda x_{n}+\beta, \quad \lambda, \beta \in \square \tag{4}
\end{equation*}
$$

it is

$$
\left\{\begin{array}{l}
x_{n} \leq \lambda^{n-n_{0}} x_{0}+\beta \Sigma_{l=n_{0}+1}^{n} \lambda^{n-l}, \text { if } n_{0} \leq n \\
x_{n} \leq \lambda^{-\left(n_{0}-n\right)} x_{0}-\beta \Sigma_{l=n+1}^{n_{0}} \lambda^{n-l}, \text { if } n_{0} \geq n
\end{array}\right.
$$

Similarly, by changing the inequality in (4):

$$
x_{n+1} \geq \lambda x_{n}+\beta, \quad \lambda, \beta \in \square
$$

we have

$$
\left\{\begin{array}{l}
x_{n} \geq \lambda^{n-n_{0}} x_{0}+\beta \sum_{l=n_{0}+1}^{n} \lambda^{n-l}, \text { if } n_{0} \leq n \\
x_{n} \geq \lambda^{-\left(n_{0}-n\right)} x_{0}-\beta \sum_{l=n+1}^{n_{0}} \lambda^{n-l}, \text { if } n_{0} \geq n
\end{array}\right.
$$

First, we consider the system (1) in the case $m_{i}=0$:

$$
\left\{\begin{array}{l}
G_{n+1}=\alpha G_{n}-\beta G_{n} I_{n}+\Gamma \tag{5}\\
I_{n+1}=\lambda I_{n}+\Delta f\left(G_{n-m_{g}}\right)
\end{array}\right.
$$

Proposition 2. Let $\left(G_{n}, I_{n}\right)$ be a positive bounded solution of the system (5). Then, G_{n} is bounded by the following sequences of upper and lower bounds:

$$
m_{k} \leq G_{n} \leq M_{k}
$$

with $M_{0}=\frac{\Gamma}{1-\alpha}, \beta \Delta<\alpha(1-\lambda), m_{k}=l\left(M_{k}\right), M_{k+1}=l\left(m_{k}\right)$, and

$$
l(x)=\frac{\Gamma(1-\lambda)}{(1-\alpha)(1-\lambda)+\beta \Delta f(x)}
$$

Proof. Proposition 2 is proved by induction. From the system (5) we have

$$
G_{n+1} \leq \alpha G_{n}+\Gamma
$$

Therefore, for any arbitary $n_{0} \leq n$, we have

$$
G_{n} \leq \alpha^{n-n_{0}} G_{0}+\Gamma \cdot \frac{1-\alpha^{n-n_{0}}}{1-\alpha}
$$

Taking $n_{0} \rightarrow-\infty$, it follows that

$$
G_{n} \leq \frac{\Gamma}{1-\alpha}=M_{0} .
$$

Assume that there exists M_{k} such that $G_{n} \leq M_{k}$. Then, from (5) we obtain

$$
I_{n+1}=\lambda I_{n}+\Delta f\left(G_{n-m_{g}}\right) \leq \lambda I_{n}+\Delta f\left(M_{k}\right)
$$

Therefore, for any arbitary $n_{0} \leq n$,

$$
I_{n} \leq \lambda^{n-n_{0}} I_{0}+\Delta f\left(M_{k}\right) \cdot \frac{1-\lambda^{n-n_{0}}}{1-\lambda}
$$

Taking $n_{0} \rightarrow-\infty$, it follows that

$$
I_{n} \leq \frac{\Delta f\left(M_{k}\right)}{1-\lambda}
$$

and from (5) we have

$$
G_{n+1}=\alpha G_{n}-\beta G_{n} I_{n}+\Gamma \geq\left(\alpha-\frac{\beta \Delta f\left(M_{k}\right)}{1-\lambda}\right) G_{n}+\Gamma
$$

and

$$
G_{n} \geq\left(\alpha-\frac{\beta \Delta f\left(M_{k}\right)}{1-\lambda}\right) G_{0}+\Gamma \cdot \frac{1-\left(\alpha-\frac{\beta \Delta f\left(M_{k}\right)}{1-\lambda}\right)^{n-n_{0}}}{1-\left(\alpha-\frac{\beta \Delta f\left(M_{k}\right)}{1-\lambda}\right)}
$$

Taking $n_{0} \rightarrow-\infty$, it follows that

$$
G_{n} \geq \frac{\Gamma}{1-\alpha+\frac{\beta \Delta f\left(M_{k}\right)}{1-\lambda}}=m_{k}=l\left(M_{k}\right)
$$

On the orther hand, since

$$
I_{n+1}=\lambda I_{n}+\Delta f\left(G_{n-m_{g}}\right) \geq \lambda I_{n}+\Delta f\left(m_{k}\right)
$$

so

$$
I_{n} \geq \lambda^{n-n_{0}} I_{0}+\Delta f\left(m_{k}\right) \cdot \frac{1-\lambda^{n-n_{0}}}{1-\lambda} .
$$

Taking $n_{0} \rightarrow-\infty$, it follows that

$$
I_{n} \geq \frac{\Delta f\left(m_{k}\right)}{1-\lambda}
$$

which implies

$$
G_{n+1} \leq\left(\alpha-\frac{\beta \Delta f\left(m_{k}\right)}{1-\lambda}\right) G_{n}+\Gamma
$$

and

$$
G_{n} \leq\left(\alpha-\frac{\beta \Delta f\left(m_{k}\right)}{1-\lambda}\right)^{n-n_{0}} G_{0}+\Gamma \cdot \frac{1-\left(\alpha-\frac{\beta \Delta f\left(m_{k}\right)}{1-\lambda}\right)^{n-n_{0}}}{1-\left(\alpha-\frac{\beta \Delta f\left(m_{k}\right)}{1-\lambda}\right)}
$$

Taking $n_{0} \rightarrow-\infty$, it follows that

$$
G_{n} \leq \frac{\Gamma}{1-\alpha+\frac{\beta \Delta f\left(m_{k}\right)}{1-\lambda}}=l\left(m_{k}\right)=M_{k+1} .
$$

The proof is complete.
Proposition 3. Consider the sequences of bounds $\left(M_{k}\right),\left(m_{k}\right)$ in Proposition 2.
Then:

- $\left(M_{k}\right)$ is a bounded monotone decreasing sequence;
- $\left(m_{k}\right)$ is a bounded monotone increasing sequence.

Proof. We have

$$
M_{1}=l\left(m_{0}\right)=\frac{\Gamma(1-\lambda)}{(1-\alpha)(1-\lambda)+\beta \Delta f\left(m_{0}\right)}<\frac{\Gamma(1-\lambda)}{(1-\alpha)(1-\lambda)}=\frac{\Gamma}{1-\alpha}=M_{0} .
$$

It is easy to see that

$$
M_{k+1}=l l\left(M_{k}\right), m_{k+1}=l l\left(m_{k}\right) .
$$

Since

$$
l^{\prime}(x)=\frac{-\beta \Delta f^{\prime}(x)}{(1-\alpha)(1-\lambda)+\beta \Delta f(x)^{2}}<0,
$$

it follows that $l(x)$ is monotonically decreasing in x, so that $l l(x)$ is monotonically increasing in x. Hence, if $M_{k}<M_{k-1}$, then

$$
M_{k+1}=l l\left(M_{k}\right) \leq l l\left(M_{k-1}\right)=M_{k}
$$

and

$$
m_{k}=l\left(M_{k}\right) \geq l\left(M_{k-1}\right)=m_{k-1} .
$$

The proof is complete.
By Proposition 2 and Proposition 3, we obtain the following theorem:
THEOREM 1. If \bar{x} is the only positive root of the equation $x=l l(x)$, then every positive solution of the system (5) converge to the positive equilibrium (\bar{G}, \bar{I}), where $\bar{G}=\bar{x}$ and $\bar{I}=\frac{\Delta f(\bar{x})}{1-\lambda}$.

Next, we will use ω-limit set of a persistent ([1], [2]) to study the global attraction of the basal levels of the system (1). For a persistent solution $\left(G_{n}, I_{n}\right)$ of (1), we let $\omega(G, I) \subset \square_{+}^{m_{g}+m_{i}+2}$ be the set of all limit-points of the sequence of vectors

$$
\left(\underline{u}_{n}, \underline{\vartheta}_{n}\right)=\left(G_{n-m_{g}}, G_{n-m_{g}+1}, \cdots, G_{n} ; I_{n-m_{i}}, I_{n-m_{i}+1}, \cdots, I_{n}\right)_{n}
$$

This set is compact and invariant under the map $T: \square_{+}^{m_{8}+m_{i}+2} \rightarrow \square_{+}^{m_{8}+m_{i}+2}$ defining by $T\left(\underline{u}_{0}, \underline{\vartheta}_{0}\right)=\left(\underline{u}_{1}, \underline{\vartheta}_{1}\right)$. Here, $\left(\underline{u}_{0}, \underline{\vartheta}_{0}\right)$ is vector of initial data, which is running in the positive quarter of $\square_{+}^{m_{s}+m_{+}+2}$. The map T takes the initial data to the next data. This map is well-defined. Moreover, the map T maps $\omega(G, I)$ onto (surjectively) itself.

THEOREM 2. Let $\left(G_{n}, I_{n}\right)$ be a positive bounded solution of the system (1), and denote

$$
G_{m}=\liminf _{n \rightarrow \infty} G_{n}, \quad G_{M}=\underset{n \rightarrow \infty}{\limsup } G_{n}, \quad I_{m}=\liminf _{n \rightarrow \infty} I_{n}, \quad I_{M}=\limsup _{x \rightarrow \infty} I_{n} .
$$

Then

$$
\begin{gathered}
I_{m} \leq \bar{I} \leq I_{M} \leq \frac{\Delta}{1-\lambda} \sup _{G \geq 0} f(G), \\
G_{m} \leq \bar{G} \leq G_{M} \leq \frac{\Gamma}{1-\alpha+\beta I_{m}}
\end{gathered}
$$

Proof. First, we construct four full time solutions $\left(\tilde{G}_{n}, \tilde{I}_{n}\right),\left(\tilde{\tilde{G}}_{n}, \tilde{I}_{n}\right),\left(\tilde{\tilde{G}}_{n}, \tilde{\tilde{I}}_{n}\right),\left(\tilde{\tilde{G}}_{n}, \tilde{\tilde{I}}_{n}\right)$ such that:

$$
\begin{aligned}
& \tilde{I}_{0}=I_{M}, \tilde{I}_{n} \geq I_{m}, G_{m} \leq \tilde{G}_{n} \leq G_{M}, \forall n \in \square ; \\
& \tilde{\tilde{G}}_{0}=G_{m}, \tilde{\tilde{G}}_{n} \leq G_{M}, I_{m} \leq \tilde{\tilde{I}}_{n} \leq I_{M}, \forall n \in \square ; \\
& \tilde{\tilde{\tilde{I}}}_{0}=I_{m}, \tilde{\tilde{I}}_{n} \leq I_{M}, G_{m} \leq \tilde{\tilde{G}}_{n} \leq G_{M}, \forall n \in \square ; \\
& \tilde{\tilde{\tilde{G}}}_{0}=G_{M}, \underline{\tilde{\tilde{G}}} ⿱ n \\
& \geq G_{m}, I_{m} \leq \tilde{\tilde{\tilde{I}}}_{n} \leq I_{M}, \forall n \in \square .
\end{aligned}
$$

We have the following inequality

$$
I_{M}=\tilde{I}_{0}=\lambda \tilde{I}_{-1}+\Delta f\left(\tilde{G}_{-1-m_{g}}\right) \leq \lambda \tilde{I}_{0}+\Delta f\left(\tilde{G}_{-1-m_{g}}\right),
$$

or

$$
\tilde{I}_{0} \leq \frac{\Delta}{1-\lambda} f\left(\tilde{G}_{-1-m_{g}}\right) .
$$

If $\tilde{G}_{-1-m_{g}}<\bar{G}$, then $G_{m}<\bar{G}$ and

$$
I_{M} \leq \frac{\Delta}{1-\lambda} f\left(\tilde{G}_{-1-m_{g}}\right)<\frac{\Delta}{1-\lambda} f(\bar{G})=\bar{I} .
$$

On the other hand, we have

$$
G_{m}=\tilde{\tilde{G}}_{0}=\alpha \tilde{\tilde{G}}_{-1}-\beta \tilde{\tilde{G}}_{-1} \tilde{\tilde{I}}_{-1-m_{i}}+\Gamma \geq \alpha \tilde{\tilde{G}}_{0}-\beta \tilde{\tilde{G}}_{0} \tilde{\tilde{I}}_{-1-m_{i}}+\Gamma,
$$

or

$$
\tilde{\tilde{G}}_{0}\left(1-\alpha+\beta \tilde{\tilde{I}}_{-1-m_{m}}\right) \geq \Gamma,
$$

or

$$
G_{m}\left(1-\alpha+\beta \tilde{\tilde{I}}_{-1-m_{m}}\right) \geq \Gamma .
$$

But in this case $G_{m}<\bar{G}$ and $I_{M}<\bar{I}$, so

$$
\Gamma \leq G_{m}\left(1-\alpha+\beta \tilde{\tilde{I}}_{-1-m_{i}}\right)<\bar{G}(1-\alpha+\beta \bar{I})=\Gamma,
$$

which is a contradiction. Therefore, the hypothesis that $\tilde{G}_{-1-m_{g}}<\bar{G}$ is false. So we have $\tilde{G}_{-1-m_{g}} \geq \bar{G}$, and consequently, $I_{M} \geq \bar{I}$ and $G_{M} \geq \bar{G}$. By using two full time solutions $\left(\tilde{\tilde{\tilde{G}}}_{n}, \tilde{\tilde{\tilde{I}}}_{n}\right)$, $\left(\tilde{\tilde{\tilde{F}}}_{n}, \tilde{\tilde{\tilde{I}}}_{n}\right)$ we will get $I_{m} \leq \bar{I}$ and $G_{m} \leq \bar{G}$. The proof is complete.

THEOREM 3. Assume that $\left(G_{n}, I_{n}\right)$ is a persistent solution of the system (1). If one of $\left(G_{n}\right)$ and $\left(I_{n}\right)$ does not oscillte around its basal level, then both of them converge to their basal levels.

Proof. From the proof of Theorem 2 we have

$$
\begin{gathered}
\frac{\Delta}{1-\lambda} f\left(G_{m}\right) \leq I_{m} \leq \bar{I} \leq I_{M} \leq \frac{\Delta}{1-\lambda} f\left(G_{M}\right), \\
G_{M}\left(1-\alpha+\beta I_{m}\right) \leq \Gamma \leq G_{m}\left(1-\alpha+\beta I_{M}\right) .
\end{gathered}
$$

From the inequality $\Gamma \leq G_{m}\left(1-\alpha+\beta I_{M}\right)$, it follows that if $I_{M}=\bar{I}$, then $\Gamma=\bar{G}(1-\alpha+\beta \bar{I}) \leq G_{m}(1-\alpha+\beta \bar{I})$, which implies $\bar{G} \leq G_{m}$. Therefore $G_{m}=\bar{G}$. Now, the inequality $\frac{\Delta}{1-\lambda} f\left(G_{m}\right) \leq I_{m}$ will give $\bar{I} \leq I_{m}$ so that $I_{m}=\bar{I}$. Hence, $\lim _{n \rightarrow \infty} I_{n}=\bar{I}$. Again by $G_{M}\left(1-\alpha+\beta I_{m}\right) \leq \Gamma$ we have $G_{M}=\bar{G}$, or equivalently, $\lim _{n \rightarrow \infty} G_{n}=\bar{G}$.

Similarly, if $I_{m}=\bar{I}$, then $G_{M}=\bar{G}$. We can conclude that both $\left(I_{n}\right)$ and $\left(G_{n}\right)$ converge to their basal levels. The proof is complete.

THEOREM 4. Put

$$
\begin{gathered}
L_{1}=\frac{\Delta}{1-\lambda} \sup _{G \in \bar{G}, \infty} f^{\prime}(G), L_{2}=\frac{\Delta}{1-\lambda} \sup _{G \in[0, \bar{G}} f^{\prime}(G), \\
L_{3}=\frac{\Gamma \beta}{(1-\alpha+\beta \bar{I})\left(1-\alpha+\beta I_{M}\right)}, L_{4}=\frac{\Gamma \beta}{(1-\alpha+\beta \bar{I})\left(1-\alpha+\beta I_{m}\right)} .
\end{gathered}
$$

If $L_{1} L_{2} L_{3} L_{4}<1$, then every positive solution of the system (1) converge to the positive equilibrium, or equivalently, their basal levels are globally attractive.

Proof. We construct two full time solutions $\left(\tilde{G}_{n}, \tilde{l}_{n}\right),\left(\tilde{\tilde{G}}_{n}, \tilde{\tilde{I}}_{n}\right)$ such that

$$
\begin{aligned}
& \tilde{I}_{0}=I_{M}, \tilde{I}_{n} \geq I_{m}, G_{m} \leq \tilde{G}_{n} \leq G_{M}, \forall n \in \square, \\
& \tilde{\tilde{G}}_{0}=G_{m}, \quad \tilde{\tilde{G}}_{n} \leq G_{M}, I_{m} \leq \tilde{\tilde{I}}_{n} \leq I_{M}, \forall n \in \square .
\end{aligned}
$$

As before, we have

$$
I_{M}=\tilde{I}_{0} \leq \frac{\Delta}{1-\lambda} f\left(\tilde{G}_{-1-m_{g}}\right)
$$

It follows that

$$
\begin{equation*}
I_{M}-\bar{I} \leq \frac{\Delta}{1-\lambda} f\left(\tilde{G}_{-1-m_{g}}\right)-f(\bar{G}) \leq L_{1}\left(G_{M}-\bar{G}\right), \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{I}-I_{m} \leq \frac{\Delta}{1-\lambda} f(\bar{G})-f\left(G_{m}\right) \leq L_{2}\left(\bar{G}-G_{m}\right) \tag{7}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\bar{G}-G_{m} \leq \frac{\Gamma}{1-\alpha+\beta \bar{I}}-\frac{\Gamma}{1-\alpha+\beta I_{M}} \leq L_{3}\left(I_{M}-\bar{I}\right), \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{M}-\bar{G} \leq \frac{\Gamma}{1-\alpha+\beta I_{m}}-\frac{\Gamma}{1-\alpha+\beta \bar{I}} \leq L_{4}\left(\bar{I}-I_{m}\right) . \tag{9}
\end{equation*}
$$

From (6), (7), (8) and (9), we obtain

$$
\begin{gathered}
I_{M}-\bar{I} \leq L_{1} L_{2} L_{3} L_{4}\left(I_{M}-\bar{I}\right), \\
G_{M}-\bar{G} \leq L_{1} L_{2} L_{3} L_{4}\left(G_{M}-\bar{G}\right),
\end{gathered}
$$

which implies $I_{M}=\bar{I}=I_{m}, G_{M}=\bar{G}=G_{m}$. The proof is complete.

REFERENCES

1. Dang Vu Giang and Dinh Cong Huong, Extinction, Persistence and Global stability in models of population growth // J. Math. Anal. Appl. 308 (2005), P. 195 - 207.
2. Dang Vu Giang and Dinh Cong Huong, Nontrivial periodicity in discrete delay models of population growth // J. Math. Anal. Appl. 305 (2005), P. 291 - 295.
3. Palumbo, P. Gaetano, Qualitative behavior of a family of delay-diffential models of glucose-insulin system / P. Palumbo, S. Panuzi and A. Gaetano // Discrete Contin. Dyn. Syst. Ser. B 7 (2007), P. 722 - 735.

[^0]: * This works is supported partially by Central Project-VNU, Grant QGTD-08.09.

