МЕХАНИКА

УДК 621.01

КИНЕМАТИЧЕСКИЙ СИНТЕЗ КОРОМЫСЛОВО-ПОЛЗУННОГО ЧЕТЫРЕХЗВЕННИКА

канд. техн. наук, доц. В.Ф. КОРЕНСКИЙ (Полоцкий государственный университет)

Исследуется кинематический синтез присоединяемого коромыслово-ползунного механизма по размаху коромысла и ходу ползуна в общем случае его схемы. Рассмотрен пример синтеза присоединённого коромыслово-ползунного механизма в частном случае перпендикулярности направляющей для ползуна и биссектрисы угла размаха коромысла. Поставлено дополнительное условие приближения функции угла давления к оптимальному значению, равному нулю, и с равномерным отклонением от него на допустимую величину. Получены уравнения синтеза, рассмотрены ограничения. В целом рассматривается общий случай синтеза, объединяющий все известные частные случаи коромыслово-ползунного механизма с задаваемым углом размаха коромысла и, соответственно, задаваемым ходом ползуна.

Введение. Механизмы – структурные составляющие машин. Их изучение и совершенствование является важным элементом в развитии производства [1, 2].

В коромыслово-ползунном рычажном четырехзвеннике входное звено не может совершать полный оборот, поэтому такие механизмы, как правило, применяют в комбинированных схемах, где качательное движение коромысла они преобразуют в возвратно-поступательное движение ползуна [3, 4].

Алгебраический синтез коромыслово-ползунного механизма достаточно строго рассмотрен для случая, когда ползун осуществляет ход в направлении перпендикуляра к биссектрисе угла размаха коромысла. Однако это частный случай указанного механизма, примеры же его использования в машинах более разнообразны [5 – 7].

Основная часть. Принимая во внимание широкое распространение схемы коромыслово-ползунного механизма в передаточных механизмах машин и отсутствие по нему достаточных исследований, рассматриваем его геометрический синтез исходя из общего вида кинематической схемы.

Обозначим длину коромысла OA, шатуна AB и эксцентриситет OC (рис. 1) соответственно через l_{OA} , l_{AB} и e.

Рис. 1. Коромыслово-ползунный рычажный механизм и его кинематические параметры

Введем систему координат *XOY*, ось *OX* направим влево параллельно направляющей ползуна *B*; угол коромысла *OA* с положительным направлением оси *OX* в некотором (*i*-м) положении механизма обозначим через ψ_i ; интервал изменения этого угла пусть будет

$$\psi_1 \le \psi_i \le \psi_2,\tag{1}$$

где ψ_1 и ψ_2 – предельные значения угла ψ_i , а

$$\psi_{12} = \psi_2 - \psi_1 \tag{2}$$

есть размах коромысла, устанавливаемый при синтезе (либо анализе) присоединяющего механизма (ψ_{12} – входной параметр синтеза).

Построим крайнее возможное положение механизма (OA_0B_0C), в котором коромысло OA и шатун AB расположены на одной прямой, угол коромысла OA с осью OX при этом положении пусть будет ψ_0 . Расстояния $B_0B_i = H_{0i}$ рассматриваем как положительные перемещения ползуна B от положения B_0 . Интервал изменения перемещений

$$H_{01} \leq H_{0i} \leq H_{02}$$

соответствует интервалу углов ψ_i по (1).

От того, достигает ли ползун B в интервале (1) положения B_0 либо не достигает, зависит вид графика (рис. 2) функции перемещений:

$$H_{0i} = H(\Psi_i) . \tag{3}$$

$$\Psi_1 \le \Psi_0 < \Psi_2$$

При

график выражается двумя ветвями (ab и bc).

При $\psi_1 = \psi_0$

точки *a* и *b* размещаются в точке *b*. При этом $H_{01} = 0$ и график функции перемещений определяется лишь одной ветвью – *bc*. Причем в точке *b* сохраняется минимум. Если ползун *B* не достигает положения B_0 , перемещение H_{01} является условным, а график функции (3) располагается на ветви *bc* и заключен между точками a^* и *c* с координатами (H_{01} ; ψ_1) и (H_{02} ; ψ_2).

Рис. 2. Схема образования кинематических графиков положения коромыслово-ползунного механизма

Проведенный анализ форм получаемых графиков позволит в дальнейшем более легко представлять границы выбора независимых параметров синтеза коромыслово-ползунного механизма.

Для получения кинематических уравнений синтеза переместим механизм *OABC* из рассматриваемого положения OA_iB_iC в соседнее, близкое положение OA_jB_jC , сообщив углу ψ_i малое приращение $\Delta \psi_{ij}$, в пределах которого функция (3) изменяется монотонно (рис. 3).

При этом перемещение ползуна *B* будет $H_j = B_0 B_j$, а приращение его составит $\Delta H_{ij} = B_i B_j = H_j - H_i$. Угол давления γ шатуна *AB* на ползун *B* при этом получит приращение $\Delta \gamma_{ij} = \gamma_j - \gamma_i$, где γ_i и γ_j соответственно значения угла γ в положениях механизма *i* и *j*. Обозначим функцию изменения угла γ

$$\gamma_i = \gamma_i(\psi_i). \tag{4}$$

Перемещение шатуна *AB* из положения A_iB_i в соседнее A_jB_j представим как результат двух перемещений: вначале поворот из положения A_iB_i вокруг центра B_i на угол $\Delta \gamma_{ij}$ в промежуточное положение $A_j^*B_i(A_j^*B_i//A_2B_2)$, затем – поступательное перемещение с ползуном *B* из промежуточного положения $A_i^*B_i$ в конечное A_jB_j на величину ΔH_{ij} .

Указанное преобразование можно описать с помощью следующих трех простейших фигур:

- 1) параллелограмма $B_i A_j^* A_j B_j$, у которого $l_{A_i A_j^*} = l_{B_i B_j} = \Delta H_{ij}$;
- 2) двух равнобедренных треугольников A_iOA_i и $B_iA_iA_i^*$ с углами при вершинах $\Delta \psi_{ij}$ и $\Delta \gamma_{ij}$;

3) косоугольного треугольника $A_i A_j A_j^*$, у которого две стороны – основания указанных равнобедренных треугольников.

Рис. 3. Коромыслово-ползунный механизм в соседних (близких) положениях і и ј

Углы высот OK_i и B_iL_i треугольников A_iOA_j и $B_iA_iA_j^*$ с направляющей ползуна B (т.е. с осью OX) обозначим ψ_{cp_i} и γ_{cp_i} . Через границы интервалов углов $\Delta \psi_{ij}$ и $\Delta \gamma_{ij}$ ($\psi_i, \psi_j, \gamma_i, \gamma_j$) эти величины выразим так:

$$\Psi_{cpij} = rac{\Psi_i + \Psi_j}{2};$$

 $\gamma_{cp_{ij}} = rac{\gamma_i + \gamma_j}{2}.$

В треугольнике $A_1 A_2 A_2^*$ стороны

$$\begin{split} l_{AA_{j}} &= 2l_{OA}\sin(\Delta\psi_{ij}/2);\\ l_{AA^{*}} &= 2l_{AB}\sin(\Delta\gamma_{ij}/2), \end{split}$$

а третья сторона

$$l_{A_j^*A_i} = l_{B_iB_j} = \Delta H_{ij}.$$

Углы при вершинах A_j и A_j^* найдем непосредственно из рисунка 3, опираясь на факт, что $A_i A_i^* //OX$, $A_i A_i \perp OK$, а $A_i A_i^* \perp B_i L$:

$$\angle A_i = 90^\circ - \psi_{cpij};$$
$$\angle A_i^* = 90^\circ - \gamma_{cpij}.$$

При этом

 $\angle A_i = 180^\circ - \angle A_j - \angle A_i^* = \psi_{cp_{ij}} + \gamma_{cp_{ij}}.$

Опираясь на полученные результаты, по теореме синусов из треугольника $A_i A_j A_j^*$ устанавливаем связь кинематических параметров коромыслово-ползунного механизма для воспроизведения перемещения ΔH_{ij} :

$$\frac{\Delta H_{ij}}{\sin(\psi_{cp_{ij}} + \gamma_{cp_{ij}})} = \frac{2l_{oA}\sin\frac{\Delta\psi_{ij}}{2}}{\cos\gamma_{cp_{ij}}} = \frac{2l_{AB}\sin\frac{\Delta\gamma_{ij}}{2}}{\cos\psi_{cp_{ij}}}.$$
(5)

Уравнения (5) дают общее представление о кинематике коромыслово- (кривошипно) ползунного механизма для воспроизведения задаваемых функций (3) и (4) и могут быть использованы как для анализа, так и для синтеза. Устремляя в них $\Delta \psi_{ii} \rightarrow 0$ и переходя к пределам

$$\begin{split} \lim \psi_{cp_{ij}} &= \psi_{i}; \quad \lim \gamma_{cpij} = \gamma_{i}; \quad \lim \sin \left(\frac{\Delta \psi_{ij}}{2}\right) = \frac{\Delta \psi_{ij}}{2}; \\ \lim \sin \left(\frac{\Delta \gamma_{ij}}{2}\right) &= \frac{\Delta \gamma_{ij}}{2}; \quad \lim \left(\frac{\Delta H_{ij}}{\Delta \psi_{ij}}\right) = \left(\frac{dH}{d\psi}\right)_{i}; \\ \lim \left(\frac{\Delta H_{ij}}{\Delta \gamma_{ij}}\right) &= \lim \left(\frac{\Delta H_{ij}}{\Delta \psi_{ij}} \cdot \frac{\Delta \psi_{ij}}{\Delta \gamma_{ij}}\right) = \lim \left(\frac{\Delta H_{ij}}{\Delta \psi_{ij}}\right) \cdot \lim \frac{\Delta \psi_{ij}}{\Delta \gamma_{ij}} = \left(\frac{dH}{d\psi} \cdot \frac{d\psi}{d\gamma}\right)_{i}, \end{split}$$

получаем для синтеза механизма

$$l_{OA} = \frac{\cos \gamma_i}{\sin(\gamma_i + \psi_i)} \cdot \left(\frac{dH}{d\psi}\right)_i,$$

$$l_{AB} = \frac{\cos \psi_i}{\sin(\psi_i + \gamma_i)} \cdot \left(\frac{dH}{d\gamma}\right)_i$$
(6)

по кинематическим характеристикам ψ_i , γ_i , $\left(\frac{dH}{d\psi}\right)_i$, $\left(\frac{dH}{d\gamma}\right)_i$ в одном (*i*-м) его положении.

Определив l_{OA} и l_{AB} , дополнительно можем найти эксцентриситет *e*, составляя уравнение проекций контура $OA_{A}B_{i}C$ на направление оси *OY* (направление эксцентриситета):

$$e = l_{OA} \sin \psi_i - l_{AB} \sin \gamma_i. \tag{7}$$

Чтобы спроектировать коромыслово-ползунный механизм по двум конечным его положениям – ходу ползуна B и углу размаха коромысла OA, необходимо рассмотреть интегральные формы уравнений (5), положив в них

$$\sum \Delta \Psi_{ij} = \Psi_{12} = \Psi_2 - \Psi_1,$$

$$\sum \Delta \gamma_{ij} = \gamma_{12} = \gamma_2 - \gamma_1,$$

$$\sum \Delta H_{ij} = H_{12} = H_{02} \pm H_{01}$$
(8)

в зависимости от графика функции (3) на рисунке 2; границы интервалов углов ψ и γ замерены от оси *OX* соответственно по и против хода часовой стрелки, а перемещение H_{12} равно суммарному ходу ползуна *B* от возможного крайнего положения B_0 (в отрицательном направлении оси *OX*).

Представив средние значения интервалов углов как

$$\psi_{cp} = \frac{\psi_1 + \psi_2}{2}; \ \gamma_{cp} = \frac{\gamma_1 + \gamma_2}{2}, \tag{9}$$

с помощью уравнений (5) получаем

$$l_{OA} = \frac{H_{12}}{\sin(\psi_{cp} + \gamma_{cp})} \cdot \frac{\cos \gamma_{cp}}{2\sin \frac{\psi_{12}}{2}};$$
(10)

$$I_{AB} = \frac{H_{12}}{\sin(\psi_{cp} + \gamma_{cp})} \cdot \frac{\cos\psi_{cp}}{2\sin\frac{\gamma_{12}}{2}}.$$
 (11)

При синтезе задаем перемещения звеньев механизма ψ_{12} , γ_{12} и H_{12} с помощью углов ψ_{cp} и γ_{cp} – положения интервалов углов ψ и γ с осью *OX*. Вычислив по этим данным l_{OA} и l_{AB} , эксцентриситет *e* и угол луча *OB*₀ с осью *OX* найдем из уравнений:

$$e = l_{OA} \sin\left(\psi_{cp} - \frac{\psi_{12}}{2}\right) - l_{AB} \sin\left(\gamma_{cp} - \frac{\gamma_{12}}{2}\right); \tag{12}$$

$$\Psi_{_{0}} = \arcsin\left(\frac{e}{l_{OA} + l_{AB}}\right). \tag{13}$$

Заметим, что в уравнениях (5) функции (3) и (4) изменяются монотонно, поэтому уравнения (9) – (13) должны выбираться на тех участках графиков (см. рис. 2), где они также изменяются монотонно (равномерно убывают или равномерно возрастают).

В качестве примера рассмотрим упомянутый ранее случай синтеза коромыслово-ползунного механизма по известному углу ψ_{12} размаха коромысла и задаваемому ходу H_{12} ползуна *B*, когда направляющая x - x ползуна *B* и биссектриса *OK* угла ψ_{12} взаимно перпендикулярны (рис. 4).

Рис. 4. Коромыслово-ползунный механизм с наилучшим приближением угла давления к оптимальному

Потребуем, чтобы на участке H_{12} угол давления γ имел наилучшее приближение [8] к оптимальному своему значению $\gamma_{onm} = 0$, равномерно уклоняясь от него на допустимую величину [γ] (рис. 5), которая в поступательной кинематической паре может достигать [γ] = ±30° [6].

Предполагая, что в пределах заданного угла ψ_{12} функция (3) изменяется монотонно, замечаем, однако, что функция (4) является монотонной лишь в пределах половины этого угла; в этих пределах она изменяется от –[γ] до +[γ] и один раз пересекает ось ψ . Поэтому минимальный участок движения механизма, на котором функции (3) и (4) изменяются монотонно, составляет половину кинематического цикла механизма (рис. 6), а в формулы (10) – (13) необходимо вместо величин ψ_{12} , H_{12} подставить величины:

$$\frac{\psi_{12}}{2}; \frac{H_{12}}{2}; \gamma_{12} = 2[\gamma]; \gamma_{cp} = 0;$$

$$\psi_1 = 90^\circ - \frac{\psi_{12}}{2}; \ \psi_2 = 90^\circ; \ \psi_{cp} = 90^\circ - \frac{\psi}{4}$$

При таких подстановках указанные формулы дают:

Рис. 5. График наилучшего приближения угла давления к оптимальному значению

Рис. 6. Цикл монотонного изменения функций в рассматриваемом механизме

Зная *l*_{OA} и *l*_{AB}, можем найти

$$e = l_{OA} \sin\left(90^{\circ} - \frac{\Delta \Psi_{12}}{2}\right) - l_{AB} \sin[-\gamma] = \frac{H_{12}}{4 \operatorname{tg} \frac{\Psi_{12}}{2}}.$$

При необходимости найдем

$$\psi_0 = \arcsin\left(\frac{e}{l_{OA} + l_{AB}}\right).$$

Рассмотренный пример относится к случаю, когда функция (3) симметрична относительно величины $\psi_{cp} = 90^{\circ}$.

Уравнения (10), (11) в этом случае достаточно было составить лишь для одного участка ее монотонности.

Уравнения для второго участка обеспечили бы тот же результат. В общем случае функции (3), когда $\psi_1 < \psi_0 < \psi_2$ (две ветви графика на рисунке 2) указанные уравнения придется составить дважды:

- при
$$H_{12} = H_{01}$$
, $\psi_{cpl} = \frac{\psi_1 + \psi_0}{2}$, $\gamma_{cpl} = \frac{\gamma_1 + \gamma_0}{2}$,

где $\gamma_0 = -\psi_0$;

- при

$$H_{12} = H_{02}$$
, $\Psi_{cp2} = \frac{\Psi_0 + \Psi_2}{2}$, $\gamma_{cp2} = \frac{\gamma_2 + \gamma_0}{2}$

где ψ_2 и γ_2 со своими знаками.

В результате будем иметь:

$$l_{OA} = \frac{H_{01}}{\sin(\psi_1 + \gamma_1)} \cdot \frac{\cos\frac{\gamma_1 + \psi_0}{2}}{2\sin\frac{\psi_1 + \psi_0}{2}} = \frac{H_{02}}{\sin(\psi_2 + \gamma_2)} \cdot \frac{\cos\frac{\gamma_2 - \psi_0}{2}}{2\sin\frac{\psi_2 - \psi_0}{2}};$$
(14)

$$l_{AB} = \frac{H_{01}}{\sin(\psi_1 + \gamma_1)} \cdot \frac{\cos\frac{\psi_0 - \psi_1}{2}}{2\sin\frac{\psi_0 - \gamma_1}{2}} = \frac{H_{02}}{\sin(\psi_2 + \gamma_2)} \cdot \frac{\cos\frac{\psi_2 + \psi_0}{2}}{2\sin\frac{\gamma_2 + \psi_0}{2}}$$

а поделив второе уравнение на первое, будем иметь:

$$\frac{l_{OA}}{l_{AB}} = \frac{\sin\psi_0 - \sin\gamma_1}{\sin\psi_0 - \sin\psi_1} = \frac{\sin\gamma_2 - \sin\psi_0}{\sin\psi_2 - \sin\psi_0}.$$
(15)

Задавшись $\gamma_2 = [\gamma]$, если $H_2 > H$, $\gamma_1 < [\gamma]$, ($\psi_0 + \gamma_1 < [\gamma]$), и памятуя то, что $\psi_1 = \psi_2 - \psi$ (ψ задано), находим из (14) величину угла ψ_2 , затем из формул (15) – l_{OA} и l_{AB} .

В заключение из формулы

$$e = l_{OA} + l_{AB} \sin \psi_0 \tag{16}$$

находим эксцентриситет е.

Синтез механизма с одной ветвью графика функции (3) – ветвью a^*c (см. рис. 2) – можно выполнить аналогично, если эту ветвь дополнить двумя ветвями условных перемещений: a^*b и ba^* .

Мы рассмотрели порядок синтеза коромыслово-ползунного механизма при $\psi_0 \neq 0$. В практике проектирования машин чаще встречаются случаи, когда $\psi_0 = 0$. При этом e = 0, а $\psi_2 = \psi_{12}$. Синтез проводится аналогично и проще.

При одной ветви графика функции (3) и e = 0 уравнения синтеза механизма имеют вид:

$$l_{OA} = \frac{H}{\sin(\psi + \gamma_2)} \cdot \frac{\cos\frac{\gamma_2}{2}}{2\sin\frac{\psi}{2}};$$
$$l_{AB} = \frac{H}{\sin(\psi + \gamma_2)} \cdot \frac{\cos\frac{\psi}{2}}{2\sin\frac{\gamma_2}{2}}.$$

При двух ветвях и e = 0 уравнения (14), (15) записывают в виде:

$$l_{OA} = \frac{H_{01}}{\sin(\psi_1 + \gamma_1)} \cdot \frac{\cos\frac{\gamma_1}{2}}{2\sin\frac{\psi_1}{2}} = \frac{H_{02}}{\sin(\psi_2 + \gamma_2)} \cdot \frac{\cos\frac{\gamma_2}{2}}{2\sin\frac{\psi}{2}};$$

$$l_{AB} = \frac{H_{01}}{\sin(\psi_2 + \gamma_2)} \cdot \frac{\cos\frac{\gamma_2}{2}}{2\sin\frac{\psi_1}{2}} = \frac{H_{02}}{\sin(\psi_2 + \gamma_2)} \cdot \frac{\cos\frac{\gamma_2}{2}}{2\sin\frac{\psi}{2}};$$

$$\frac{l_{OA}}{l_{AB}} = \frac{\sin\gamma_1}{\sin\psi_1} = \frac{\sin\gamma_2}{\sin\psi_2}.$$

Заключение. В результате исследования установлены общие принципы синтеза коромысловоползунных механизмов исходя из их назначения – преобразовать известный угол размаха коромысла в требуемую функцию перемещения ведомого ползуна *В*. Получены уравнения синтеза, установлены области существования.

Работа может быть полезной в конструкторских бюро и в практике курсового проектирования по ТММ на машиностроительных факультетах вузов.

ЛИТЕРАТУРА

- Kiper, G. Getriebetechnik eine Grunwiesenschaft des konstruirens / G. Kiper // Konstruktion. 1955. № 7. – C. 247 – 250.
- 2. Hellmich, H. Bedeutung der Getriebetechnik / H. Hellmich, Ind. Anz., 1957. S. 16.
- 3. Черкудинов, С.А. Шарнирно-рычажные механизмы мощных вытяжных прессов / С.А. Черкудинов // Автоматизация машиностроительных процессов; АН СССР. М., 1959.
- 4. Артоболевский, И.И. Механизмы в современной технике: в 7-ми т. / И.И. Артоболевский М.: Наука, 1979. Т. 1 3.
- 5. Кожевников, С.Н. Механизмы / С.Н. Кожевников, Я.И. Есипенко, Я.М. Раскин; под ред. С.Н. Кожевникова. М.: Машиностроение, 1976.
- 6. Артоболевский, И.И. Теория механизмов и машин / И.И. Артоболевский. М.: Наука, 1975.
- 7. Курсовое проектирование по теории механизмов и машин / под ред. Г.Н. Девойно. Минск: Выш. шк., 1986.
- Чебышев, П.Л. О простейшей суставчатой системе, доставляющей движения, симметрические около оси / П.Л. Чебышев // Полн. собр. соч. П.Л. Чебышева; под ред. И.И. Артоболевского, И.Г. Бруевича. – М.–Л.: АН СССР, 1948. – Т. IV: Теория механизмов.

Поступила 30.09.2008