УДК 621.315.592

МИКРОТВЕРДОСТЬ СТРУКТУР ПОЛИМЕР – КРЕМНИЙ

Н.В. ВАБИЩЕВИЧ, канд. физ.-мат. наук, доц. С.А. ВАБИЩЕВИЧ (Полоцкий государственный университет); канд. физ.-мат. наук Д.И. БРИНКЕВИЧ, С.Д. БРИНКЕВИЧ (Белорусский государственный университет, Минск)

Методом индентирования исследованы прочностные характеристики пленок статистического сополимера метакриламид – метилметакрилат на пластинах монокристаллического кремния. Установлено, что при нагрузках примерно 20 г имеет место переход от упругой к пластической деформации композиций полимер – кремний. С увеличением толщины полимерной пленки микротвердость композиции пленка – подложка снижалась. Это обусловлено тем, что на прочностные свойства пленок оказывает существенное влияние наличие сильной адгезионной связи между кремнием и сополимером. Прочностные характеристики существенно зависели от состава и толщины полимерной пленки. Для пленок толщиной 80 мкм зависимости микротвердости от нагрузки схожи с аналогичными зависимостями, характерными для пленок твердых материалов – с увеличением нагрузки на индентор микротвердость снижается и выходит на постоянное значение. Для тонких пленок (толщиной менее 15 мкм) наблюдался эффект ориентационного упрочнения (увеличение микротвердости при возрастании нагрузки).

Введение. В производстве изделий радиоэлектронной аппаратуры полимерные пленки используются в основном в качестве диэлектрических слоев в малогабаритных конденсаторах, а также в качестве защитных слоев тонкопленочных структур. Такое их применение обусловлено, прежде всего, хорошими термостойкостью и электрической прочностью, химической стойкостью к растворам кислот и щелочей, высокой адгезией пленок к полупроводникам при высокой эластичности и устойчивости к пластическим деформациям [1, 2]. Полимерные пленки особенно привлекательны из-за относительно недорогостоящей технологии их получения. В последнее время внимание исследователей сконцентрировано на создании различных электронных устройств с использованием полимерных пленок, таких как сенсорные и электрохимические датчики, электролюминесцентные приборы, диоды Шоттки и органические транзисторы [3, 4]. Отметим, что микроволноводные структуры типа полимер – SiO₂ – Si широко используются в технологии интегральной оптоэлектроники для обеспечения функционирования различных устройств. В качестве волноводного слоя в этих структурах перспективно применение таких полимеров, как полиметилметакрилат и его сополимеров [5]. Кроме того, сополимеры метилметакрилата (MMA) используются в качестве чувствительных к ультрафиолетовому излучению фоторезистов, обеспечивающих повышенную разрешающую способность [6], а также находят другое применение [7].

Одной из основных причин деградации электрических параметров полупроводниковых приборов являются механические и термические воздействия в процессе разделения пластин на кристаллы, монтажа кристаллов, микросварки проволочных и пайки ленточных выводов, герметизации. Структурные и остаточные термомеханические напряжения на операциях сборки полупроводниковых приборов могут достигать разрушающего полупроводниковый материал уровня [8]. В связи с вышесказанным задача исследования прочностных свойств структур полимер – кремний является весьма актуальной.

Методика эксперимента. Статистические сополимеры метакриламид (MAA) – метилметакрилат (MMA) с различным соотношением MAA : MMA синтезировались методом радикальной полимеризации из соответствующих мономеров. Пленки (толщиной 15...80 мкм) наносились на пластины монокристаллического кремния марки КЭФ-4,5 в виде концентрированного раствора, после чего проводилось удаление растворителя в изотермических условиях (при 25 °C). Параметры пленок представлены в таблице 1.

Таблица 1

Номер образца	Состав пленки сополимера, MMA : MAA	Глубина проникновения индентора для разных нагрузок, мкм			Толщина
		10 г	20 г	50 г	пленки, мкм
1	6:4	2,1	2,6	3,7	15
2	6:4	2,6	4,3	8,2	80
3	4:6	2,7	4,2	7,6	80
4	1:1	2,5	2,8	3,7	80

Параметры исследовавшихся полимерных пленок

№ 9

Измерения микротвердости проводились по стандартной методике на приборе ПМТ-3 в результате 40...50 испытаний с применением статистического метода обработки данных [9]. Погрешность измерения микротвердости не превышала 4 %. Известно, что подложка оказывает существенное влияние на величину микротвердости твердотельных композиций пленка – подложка [10 – 13]. Это влияние наиболее сильно проявляется в случае «твердой» пленки на «мягкой» подложке, когда не только упругая, но и пластическая деформация подложки начинается уже на начальной стадии индентирования. В этом случае влияние подложки ощущается уже при глубине проникновения индентора около 6...10 % от толщины пленки [12, 13]. В случае «мягкой» пленки на «твердой» подложке пластическая деформация локализуется в пленки [12, 13]. В случае «мягкой» пленки на «твердой» подложке пластическая деформация локализуется в пленки [12, 13]. В случае «мягкой» пленки на «твердой» подложке пластическая деформация локализуется в пленки [12, 13]. В случае «мягкой» пленки на «твердой» подложке пластическая деформация локализуется в пленки [12, 13]. В случае «мягкой» пленки на «твердой» подложке пластическая деформация локализуется в пленки [12, 13]. В случае «мягкой» пленки на «твердой» подложке пластическая деформация локализуется в пленки [12, 13]. В случае обществ композиции пленка – подложка существенно возрастает лишь при глубине проникновения индентора, равной толщине пленки [11]. Указанные обстоятельства и определили выбор максимальной нагрузки на индентор. Минимальная нагрузка на индентор определялась из следующего условия: глубина проникновения индентора должна превышать высоту неровностей поверхности пленки, поскольку в противном случае будут иметь место искажения реальной площади контакта пленка – индентор.

При микро- и наноиндентировании наблюдается изменение формы отпечатка за счет упругого последействия при разгрузке. В достаточно пластичных материалах вершины отпечатка своего положения не меняют, т.е. расстояние между вершинами при возврате сохраняется [14]. Поэтому измерялись обе диагонали отпечатка, а микротвердость рассчитывалась по их среднему значению. В данной работе измерялась «восстановленная» микротвердость [16].

Экспериментальные результаты и их обсуждение. При малых нагрузках (*P*) в пленках статистического сополимера метакриламид – метилметакрилат наблюдается упругая деформация. То есть при снятии нагрузки происходит упругая релаксация приповерхностной области пленки. Так, для образцов $\mathbb{N} \ 1$ и 4 из таблицы 1 при *P* = 5 г наблюдалось не более 5...10 % отпечатков; подавляющее большинство отпечатков восстанавливалось полностью. Увеличение нагрузки (свыше 10 г) приводит к возрастанию вклада пластической деформации. Однако величина указанного эффекта существенно зависит от состава и толщины пленки. Так, для образцов $\mathbb{N} \ 2$ и 3 (см. табл. 1) при нагрузках 30...50 г деформация была преимущественно пластической, т.е. отношение диагонали невосстановленного и восстановленного отпечатков *d_{невост}* : *d_{вост} был близок* к 1. Искажений отпечатков и трещин в углах не наблюдалось. По форме отпечатки были близки к форме индентора. Существенных различий в размерах диагоналей не отмечалось. Это свидетельствует о том, что пленки являются изотропными, а характер деформации в них – гомогенный.

Таким образом, полученные экспериментальные результаты позволяют утверждать, что при нагрузках примерно 20 г в указанных образцах имеет место переход от упругой к пластической деформации.

С другой стороны, в образце № 4 (и в меньшей степени № 1) даже при максимальной нагрузке, 50 г, сохранялась достаточно высокая доля упругопластичной деформации. В этих образцах наблюдались искажения формы отпечатка, обусловленные упругим последействием при снятии нагрузки (рис. 1). Вокруг отпечатков в образцах № 1 и 4 (особенно при малых нагрузках) наблюдались навалы (эффект выдавливания материала), высота которых достигала 0,5...1,5 мкм.

Рис. 1. Поверхность пленки после нанесения отпечатков с нагрузками 50, 20 и 10 г (вертикальные ряды)

98

Отметим, что размеры навалов и области деформации (ее диаметр в 4...5 раза превышал размеры отпечатка) достигали максимума при нагрузке 20 г. При дальнейшем возрастании нагрузки до 50 г диаметр области деформации и высота навалов не увеличивались, а вокруг большей части (~ 60 %) отпечатков их вообще не наблюдалось.

Проблема выдавливания (pile-up) либо вдавливания (sink-in) материала пленки вдоль граней пирамиды индентора известна давно и широко обсуждается исследователями [11, 13, 14]. Авторами [11] для тонких металлических пленок с применением атомно-силовой микроскопии отпечатков было показано, что эффект вдавливания материала (навалы) наблюдается в случае «мягкой» пленки на «твердой» подложке. Когда же микротвердости пленки и подложки близки, не наблюдается ни вдавливания, ни выдавливания материала вокруг отпечатков индентора. Однако в нашем случае сказанное не совсем справедливо. Так, «навалы» отсутствовали в пленках № 2 и 3 с меньшей микротвердостью, чем у пленок № 1 и 4. Это свидетельствует о том, что механизм возникновения «навалов» в металлических и в исследовавшихся в настоящей работе полимерных пленках различен.

Измеренные значения восстановленной микротвердости исследовавшихся полимерных пленок варьировались в широких пределах (от 0,2 до 1,5 ГПа) и существенно зависели от нагрузки, состава и толщины пленки (рис. 2).

Рис. 2. Зависимость восстановленной микротвердости от нагрузки. Номера кривых соответствуют номерам образцов в таблице

В отличие от монокристаллических полупроводников для полимерных пленок характерны достаточно большие разбросы измеряемых значений диагоналей отпечатков и, следовательно, рассчитанных значений микротвердости. Так, полуширина случайного распределения измеренных величин микротвердости зависела от нагрузки и составляла 3...20 % от величины микротвердости (табл. 2). При больших нагрузках гистограмма случайного распределения величин микротвердости представляла собой гауссово распределение, наиболее четко выраженное для образцов № 2 и 3. В указанных образцах полуширина распределения микротвердости составляла 3...5 % при нагрузке 50 г и была близка к аналогичным величинам, характерным для монокристаллических полупроводников (2...3 % для кремния) [16]. В образцах № 1 и особенно 4 полуширина распределения микротвердости была существенно (в 2...3 раза) выше.

Таблица 2

Полуширина случайного распределения микротвердости исследовавшихся полимерных пленок при различных нагрузках

Номер образца	Состав пленки сополимера, MMA : MAA	Полуширина случайного распределения микротвердости, %			
		10 г	20 г	50 г	
1	6:4	15	10	8	
2	6:4	8	6	5	
3	4:6	5	4	3	
4	1:1	17	17	19	

Приведенные выше экспериментальные данные свидетельствуют о высокой неоднородности исследовавшихся пленок. Так, в полупроводниковых материалах [18] увеличение полуширины случайного распределения величины микротвердости обычно связывается с образованием крупных неоднородностей (включений второй фазы) с размерами, близкими к размерам отпечатка индентора (в исследовавшемся случае ~ 20...40 мкм). С другой стороны, согласно [18] разброс значений прочностных характеристик полимерных пленок обусловлен неоднородностью (вероятнее всего, негомогенностью, хотя нельзя исключить и формирование мезофаз) материала, а количественная оценка этого разброса (величина полуширины распределения) может служить количественной оценкой неоднородности. Таким образом, полученные экспериментальные результаты указывают на существенно более высокую (в 2...3 раза) неоднородность образцов № 1 и особенно № 4 по сравнению с образцами № 2 и 3.

С увеличением толщины полимерной пленки микротвердость композиции пленка – подложка снижалась. Об этом свидетельствует сравнение кривых 1 и 2 на рисунке 2, а также экспериментальные данные, приведенные на рисунке 3. Отметим, что зависимость, приведенная на рисунке 3, измерялась на пленке состава метилметакрилат : метакриламид = 4 : 6, толщина которой плавно изменялась от 50 до 80 мкм.

Рис. 3. Зависимость восстановленной микротвердости пленки от ее толщины (нагрузка 50 г)

Зависимость восстановленной микротвердости (*H*) от нагрузки на индентор (*P*) иллюстрируемая рисунком 2, приведена для нагрузок, превышающих 5 г, когда наблюдаются все 100 % отпечатков и имеет место пластическая деформация. Характер указанных зависимостей существенно зависел от состава и толщины полимерной пленки. Для толстых пленок (см. рис. 2, кривые 2 и 3) зависимости микротвердости от нагрузки схожи с аналогичными зависимостями, характерными для кристаллов и пленок твердых материалов – с увеличением нагрузки на индентор микротвердость снижается и выходит на постоянное значение [12, 14, 17]. Для тонких пленок и толстой пленки состава MMA : MAA = 1 : 1 (образцы № 1 и 4, см. табл. 1) данные зависимости кардинально отличаются (см. рис. 2, кривые 1 и 4) – с ростом нагрузки микротвердость существенно (в 2...3 раза) возрастает.

Таким образом, комплекс экспериментальных данных указывает на различный характер деформаций при индентировании образцов № 2 и 3, с одной стороны, и образцов № 1 и 4 – с другой. Процессы деформации в образцах № 2 и 3 схожи с процессами деформации, протекающими в твердых телах (монокристаллах и поликристаллах). Характер изменений при индентировании образцов № 1 и 4 более сложен. В них при увеличении нагрузки наблюдается рост значений микротвердости при одновременном увеличении пластичности.

Полученные экспериментальные результаты могут быть объяснены с учетом следующих обстоятельств. Сополимеры метакриламид – метилметакрилат относят к аморфно-кристаллическим полимерам. Они состоят из кристаллических областей, разделенных аморфными зонами, причем одна и та же полимерная цепь в силу большой длины может входить как в первые, так и во вторые области. Объемная степень кристалличности – доля объема, занятая кристаллитами – зависит от условий кристаллизации, состава и природы полимера, присутствия примесей и т.д. При внешних механических воздействиях возможно разрушение слабых межмолекулярных связей и смещение цепей полимера с образованием областей с молекулярным упорядочением, так называемая «кристаллизация» в аморфных областях. Такое молекулярное упорядочение наблюдалось авторами [19] при облучении полиметилметакрилата миллисекундными лазерными импульсами. При приложении внешней нагрузки (индентировании) ориентация молекул полимера приводит к известному эффекту ориентационного упрочнения полимеров [18]. В наших экспериментах указанный эффект проявлялся в образце № 4 с одинаковым содержанием метилметакрилата и метакриламида. При изменении состава сополимера в ту или иную сторону (образцы № 3 и 2) эффект ориентационного упрочнения (увеличение микротвердости при возрастании нагрузки) не наблюдался.

Следует отметить также существенное влияние на результаты экспериментов кремниевой подложки. Это проявлялось в увеличении микротвердости при снижении толщины пленки (см. рис. 3), а также в зависимости значений микротвердости от нагрузки для тонких пленок (см. рис. 2 кривая 1). Это обусловлено тем, что на прочностные свойства пленок оказывает существенное влияние наличие сильной адгезионной связи между кремнием и сополимером. Так, на поверхности кремния всегда имеется естественный окисел толщиной до 30 Å, который в нормальных условиях формируется в течение нескольких минут и дальше практически не растет. С другой стороны, как показано в [21], между полиметилметакрилатом и кварцем SiO₂ наблюдается сильное адсорбционное взаимодействие. По данным некоторых исследователей [21], глубина, на которую простирается указанное взаимодействие, может достигать 100 мкм. Наличие такого адсорбционного взаимодействия должно приводить к увеличению механической прочности структур полимер – кремний, что и наблюдалось нами при проведении эксперимента.

Наличие высокой пластичности (навалов) в образце 4 может быть объяснено в рамках подхода примененного авторами [22] при описании деформации пленок халькогенидных стеклообразных полупроводников. Согласно [23] упрочнение стеклообразных материалов под давлением обусловлено ориентацией «жестких» кристаллических областей. В то же время в ответственных за пластичность аморфных областях ориентация не сказывается и имеет место даже некоторое «разрыхление» структуры, что приводит к увеличению ползучести, которое проявляется в нашем эксперименте как появление «навалов».

Заключение. Установлено, что при нагрузках примерно 20 г имеет место переход от упругой к пластической деформации исследовавшихся композиций полимер – кремний. С увеличением толщины полимерной пленки микротвердость композиции пленка – подложка снижалась. Это обусловлено тем, что на прочностные свойства пленок оказывает существенное влияние наличие сильной адгезионной связи между кремнием и сополимером. Прочностные характеристики существенно зависели от состава и толщины полимерной пленки. Для пленок толщиной 80 мкм зависимости микротвердости от нагрузки схожи с аналогичными зависимостями, характерными для пленок твердых материалов, – с увеличением нагрузки на индентор микротвердость снижается и выходит на постоянное значение. Для тонких пленок (толщиной менее 15 мкм) наблюдался эффект ориентационного упрочнения (увеличение микротвердости при возрастании нагрузки).

ЛИТЕРАТУРА

- Пасынков, В.В. Материалы электронной техники / В.В. Пасынков, В.С. Сорокин. СПб.: Лань, 2003. 367 с.
- 2. Романова, М.П. Проектирование и технология микросхем / М.П. Романова. Ульяновск: УлГТУ, 2005. 83 с.
- 3. Салихов, Р.Б. О механизмах проводимости в гетероструктурах кремний полимер металл / Р.Б. Салихов, А.Н. Лачинов, Р.Г. Рахмеев // Физика и техника полупроводников. 2007. Т. 41, № 10. С. 1182 1186.
- Александрова, Е.Л. Структурные закономерности фотоэффекта в полиамидных структурах, содержащих гетероциклические фрагменты / Е.Л. Александрова // Физика и техника полупроводников. – 2006. – Т. 40, № 11. – С. 1388 – 1396.
- 5. Формирование диэлектрических микроволноводов в системе полимер/SiO₂/Si с использованием ионного облучения / А.В. Леонтьев [и др.] // Физика и химия обработки материалов. 2005. № 3. С. 79 84.
- Тригуб, В.И. Изменение молекулярной структуры резиста на основе метилметакрилата и метакриловой кислоты при модификации ультразвуком / В.И. Тригуб, А.В. Плотнов // Письма в ЖТФ. 2002. Т. 28, № 11. – С. 8 – 10.
- 7. Диэлектрическая релаксация в полимерах и сополимерах метакрилатов и метакриламидов с хромофорными группами в боковых цепях / Н.В. Афанасьева [и др.] // Физика твердого тела. – 2003. – Т. 45, № 5. – С. 936 – 942.
- 8. Мужиченко, О. Термомеханические напряжения в сборочных микроузлах / О. Мужиченко, Н. Плис // Электроника: Наука. Технология. Бизнес. 2000. № 6. С. 63 64.
- Калоша, В.К. Математическая обработка результатов эксперимента / В.К. Калоша, С.И. Лобко, Т.С. Чикова. – Минск: Выш. шк., 1982. – 103 с.

- 10. Зависимость микротвердости эпитаксиальных слоев четверных твердых растворов соединений А^ШВ^V от их состава/М.В. Меженный [и др.] // Неорганические материалы. 1990. Т. 26, № 8. С. 1601 1604.
- Шугуров, А.Р. Особенности определения механических характеристик тонких пленок методом наноиндентирования / А.Р. Шугуров, А.В. Панин, К.В. Осколков // Физика твердого тела. – 2008. – Т. 50, № 6. – С. 1007 – 1012.
- 12. Наноиндентирование и деформационные характеристики наноструктурных боридонитридных пленок / Р.А. Андриевский [и др.] // Физика твердого тела. 2000. Т. 42, № 9. С. 1624 1627.
- Панин, А.В. Исследование механических свойств тонких пленок Ag на кремниевой подложке методом наноиндентирования / А.В. Панин, А.Р. Шугуров, К.В. Оскомов // Физика твердого тела. – 2005. – Т. 47, № 11. – С. 1973 – 1977.
- Сойфер, Я.М. Исследование локальных механических свойств монокристаллов хлористого калия методом атомно-силовой микроскопии / Я.М. Сойфер, А. Вердян // Физика твердого тела. – 2003. – Т. 45, № 9. – С. 1621 – 1625.
- Булычев, С.И. Соотношение между восстановленной и невосстановленной твердостью при испытании наномикроиндентированием / С.И. Булычев // Журнал технической физики. – 1999. – Т. 69, № 7. – С. 42 – 48.
- 16. Влияние фоновых примесей на формирование дефектов упаковки в пластинах кремния / Д.И. Бринкевич [и др.] // Микроэлектроника. – 2006. – Т. 35, № 2. – С. 112 – 116.
- 17. Физическая природа изменения микротвердости по глубине образца / А.Б. Герасимов [и др.] // Физика и химия обработки материалов. 2004. № 3. С. 71.
- Гуль, В.Е. Структура и механические свойства полимеров / В.Е. Гуль, В.Н. Кулешов. М.: Лабиринт, 1994. – 344 с.
- 19. Изменение структуры полиметилметакрилата при облучении миллисекундными лазерными импульсами / С.В. Васильев [и др.] // Квантовая электроника. – 1998. – Т. 25, № 11. – С. 1023 – 1027.
- Топильский, Г.В. О взаимодействии метилметакрилата с силикатами минералов / Г.В. Топильский // Изв. вузов. Сер. Строительство и архитектура. – 1975. – № 12. – С. 78 – 81.
- Исследование структуры граничных слоев полиметилметакрилата методом нарушенного полного отражения / Г.М. Семенович [и др.] // Высокомолекулярные соединения. Сер. А. 1978. Т. 20, № 9. С. 2000 2005.
- Трунов, М.Л. Исследование фотопластического эффекта в стеклообразных полупроводниках методом циклического наноиндентирования / М.Л. Трунов, В.С. Биланич, С.Н. Дуб // Физика твердого тела. – 2008. – Т. 50, № 11. – С. 1978 – 1983.
- 23. Песчанская, Н.Н. О влиянии магнитного поля на кинетику сжатия полимеров / Н.Н. Песчанская, В.Ю. Суровова, П.Н. Якушев // Физика твердого тела. 1992. Т. 34, № 7. С. 2111 2117.

Поступила 14.09.2009