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Система (6) дополняет список систем Спротта [2], обладающих (при определенных
значениях параметров) хаотическим поведением.
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DIFFERENTIAL EQUATIONS VS POWER SERIES
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A typical approach for solving ordinary differential equations with variable coefficients
is to seek their solutions in the form of a generalized power series. However, we may wish
to know more about the properties of coefficients in the series, such as their partial sums
or weighted sums. We work with a general second-order linear differential equation

y′′ + a(z) y′ + b(z) y = 0, (1)

where a(z) and b(z) are continuous functions on some interval. Suppose y(z) is a series
solution of this equation. If y(z) has a Maclaurin representation y(z) =

∑

n>0
cnzn, then

the series is a generating function for its sequence of coefficients {cn}n>0. The sequence of
finite sums σn =

∑n

k=0
ck has generating function [1] given by:

S(z) =
y(z)

1 − z
=

∑

n>0

( n
∑

k=0

ck

)

zn =
∑

n>0

σn zn.

Actually, the function S(z) satisfies a differential equation

S ′′(z) +

(

a(z) − 2

1 − z

)

S ′(z) +

(

b(z) − a(z)

1 − z

)

S(z) = 0.

As illustration, consider Chebyshev’s equation (in the variable x) (1−x2)y′′−xy′+n2y=0,
where n is a positive integer. This equation has the form of (1) with a(x) = −x/(1−
−x2) and b(x) = n2/(1 − x2). It has two linearly independent solutions Tn(x), known as
the Chebyshev polynomial of the first kind, and

√
1 − x2Un−1(x), where Un−1(x) is the

Chebyshev polynomial of the second kind (of degree n−1). The polynomial Tn(x) can be
considered as a generating function for its coefficients, which are zero starting with index
n + 1. Let σk,n be the sum of all coefficients up to index k of Tn(x) (n = 0, 1, 2, . . . ,
k = 0, 1, . . . n). Obviously, this sequence stabilizes when k exceeds n : σn,n = σn+1,n =
= σn+2,n = . . . . Moreover, the sum of all coefficients in any Chebyshev polynomial Tn(x)
is 1, which follows from the relation (1−x)−1Tn(x) = Pn−1(x) +(1−x)−1, where Pn−1(x)
is a polynomial of degree n−1. Similarly, from the relation Un−1(x) = Qn−2(x)(1−x)+n,
for some polynomial Qn−2(x) of degree n− 2, it follows that the sum of all coefficients in
Chebyshev polynomial of the second kind Un−1(x) is n.

References

1. Dobrushkin V.A. Methods in Algorithmic Analysis. CRC Press, Boca Raton, 2010.


