Система (6) дополняет список систем Спротта [2], обладающих (при определенных значениях параметров) хаотическим поведением.

Литература

1. Eichhorn R., Linz S. J., Hänggi P. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows // Phys. Rev. E. 1998. Vol. 58, no. 6. P. 7151-7164.
2. Sprott J. C. Some simple chaotic flows // Phys. Rev. E. 1994. Vol. 50, no. 2. P. R647-R650.
3. Rö ssler O. E. // Ann. New York Acad. Sciences. 1979. Vol. 316. P. 376-392.
4. Конт Р., Мюзетт М. Метод Пенлеве и его приложения. М. - Ижевск, 2011. 340 с.
5. Kuramoto Y., Tsuzuki T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium // Prog. Theor. Phys. 1976. Vol. 55, no. 2. P. 356-369.

DIFFERENTIAL EQUATIONS VS POWER SERIES

V.A. Dobrushkin

Brown University, USA
A typical approach for solving ordinary differential equations with variable coefficients is to seek their solutions in the form of a generalized power series. However, we may wish to know more about the properties of coefficients in the series, such as their partial sums or weighted sums. We work with a general second-order linear differential equation

$$
\begin{equation*}
y^{\prime \prime}+a(z) y^{\prime}+b(z) y=0, \tag{1}
\end{equation*}
$$

where $a(z)$ and $b(z)$ are continuous functions on some interval. Suppose $y(z)$ is a series solution of this equation. If $y(z)$ has a Maclaurin representation $y(z)=\sum_{n \geqslant 0} c_{n} z^{n}$, then the series is a generating function for its sequence of coefficients $\left\{c_{n}\right\}_{n \geqslant 0}$. The sequence of finite sums $\sigma_{n}=\sum_{k=0}^{n} c_{k}$ has generating function [1] given by:

$$
S(z)=\frac{y(z)}{1-z}=\sum_{n \geqslant 0}\left(\sum_{k=0}^{n} c_{k}\right) z^{n}=\sum_{n \geqslant 0} \sigma_{n} z^{n} .
$$

Actually, the function $S(z)$ satisfies a differential equation

$$
S^{\prime \prime}(z)+\left(a(z)-\frac{2}{1-z}\right) S^{\prime}(z)+\left(b(z)-\frac{a(z)}{1-z}\right) S(z)=0 .
$$

As illustration, consider Chebyshev's equation (in the variable x) $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$, where n is a positive integer. This equation has the form of (1) with $a(x)=-x /(1-$ $-x^{2}$) and $b(x)=n^{2} /\left(1-x^{2}\right)$. It has two linearly independent solutions $T_{n}(x)$, known as the Chebyshev polynomial of the first kind, and $\sqrt{1-x^{2}} U_{n-1}(x)$, where $U_{n-1}(x)$ is the Chebyshev polynomial of the second kind (of degree $n-1$). The polynomial $T_{n}(x)$ can be considered as a generating function for its coefficients, which are zero starting with index $n+1$. Let $\sigma_{k, n}$ be the sum of all coefficients up to index k of $T_{n}(x) \quad(n=0,1,2, \ldots$, $k=0,1, \ldots n)$. Obviously, this sequence stabilizes when k exceeds n : $\sigma_{n, n}=\sigma_{n+1, n}=$ $=\sigma_{n+2, n}=\ldots$. Moreover, the sum of all coefficients in any Chebyshev polynomial $T_{n}(x)$ is 1 , which follows from the relation $(1-x)^{-1} T_{n}(x)=P_{n-1}(x)+(1-x)^{-1}$, where $P_{n-1}(x)$ is a polynomial of degree $n-1$. Similarly, from the relation $U_{n-1}(x)=Q_{n-2}(x)(1-x)+n$, for some polynomial $Q_{n-2}(x)$ of degree $n-2$, it follows that the sum of all coefficients in Chebyshev polynomial of the second kind $U_{n-1}(x)$ is n.

References

1. Dobrushkin V. A. Methods in Algorithmic Analysis. CRC Press, Boca Raton, 2010.
