О ЛЯПУНОВСКОЙ ЭКВИВАЛЕНТНОСТИ СИСТЕМ С ВОЗМУЩЕНИЯМИ

В.И. Залыгина

Московский государственный университет им. М. В. Ломоносова, Москва, Россия wizkaz@mail.ru

Для заданного $n \in \mathbb{N}$ обозначим через \mathfrak{M}^n линейное пространство вещественных $(n \times n)$ -матриц с нормой

$$||A|| = \max_{1 \le i, j \le n} |a_{ij}|,$$

а через \mathcal{M}^n — множество линейных систем вида

$$\dot{x} = A(t)x, \quad x \in \mathbb{R}^n, \quad t \in \mathbb{R}^+ \equiv [0, \infty),$$

с кусочно непрерывной (не обязательно ограниченной) матричной функцией $A:\mathbb{R}^+ \to \mathfrak{M}^n$, которую будем отождествлять с соответствующей системой.

Определение (ср. [1]). Скажем, что система $A \in \mathbb{M}^n$ ляпуновски эквивалентна системе $B \in \mathbb{M}^n$, если существует непрерывная и кусочно дифференцируемая матричная функция $L \colon \mathbb{R}^+ \to \mathfrak{M}^n$, удовлетворяющая условиям:

$$\det L(t) \neq 0, \quad B(t) = L^{-1}(t)A(t)L(t) - L^{-1}(t)\dot{L}(t), \quad t \in \mathbb{R}^+,$$

$$\sup_{t \in \mathbb{R}^+} (\|L(t)\| + \|L^{-1}(t)\|) < \infty.$$

Для заданной непрерывной функции $f: \mathbb{R}^+ \to (0, \infty)$ обозначим через \mathcal{M}_f^n множество систем $A \in \mathcal{M}^n$, удовлетворяющих при всяком $t \in \mathbb{R}^+$ условию

$$||A(t)|| \leqslant f(t).$$

Если функция f есть константа K>0, то условимся писать \mathfrak{M}_K^n вместо \mathfrak{M}_f^n .

Обозначим через \mathcal{T} множество неограниченных строго возрастающих последовательностей положительных вещественных чисел. Для всякой последовательности $\tau \in \mathcal{T}$ обозначим через $\mathcal{C}^n(\tau)$ множество кусочно постоянных матричных функций из \mathcal{M}^n с разрывами разве что в точках последовательности τ .

Формулируемые ниже теоремы представляют собой некие аналоги теоремы Богданова [1] для случая системы с неограниченными коэффициентами.

Теорема 1. Для всякой непрерывной функции $f: \mathbb{R}^+ \to (0, \infty)$ найдется такая последовательность $\tau \in \mathcal{T}$, что для любой системы $A \in \mathcal{M}_f^n$ существует ляпуновски эквивалентная ей система $B \in \mathcal{M}_f^n \cap \mathcal{C}^n(\tau)$.

Теорема 2. Для всякой непрерывной функции $f: \mathbb{R}^+ \to (0, \infty)$ найдется такая последовательность $\tau \in \mathcal{T}$, что для всяких числа K > 0 и системы $B \in \mathcal{M}_K^n$ существует система $\widetilde{B} \in \mathcal{C}^n(\tau)$, обладающая следующими свойствами:

- 1) элементы матрицы \tilde{B} принимают лишь значения $\pm K$;
- 2) для всякой системы $A \in \mathcal{M}_f^n$ системы A + B и $A + \widetilde{B}$ ляпуновски эквивалентны.

Замечание. В доказательствах этих теорем использована теорема 1 из [2].

Литература

- 1. Мазаник С. А. Преобразования Ляпунова линейных дифференциальных систем. Мн.: БГУ, 2008.
- 2. Изобов Н. А., Мазаник С. А. Об асимптотически эквивалентных линейных системах при экспоненциально убывающих возмущениях // Дифференц. уравнения. 2006. Т. 42, № 2. С. 168–173.