2) $p_2 - pesyntomanm u_9x^3 + (3u_{10} + 2u_{13})x^2y + (3u_{11} + u_{14})xy^2 + u_{12}y^3$.

Аналогичное утверждение имеет место и в случае $r=6\,$ для системы из 3 уравнений

Таким образом, основным направлением продолжения исследования является проверка гипотезы о том, что при любом r все сингулярные точки описывается системой уравнений, каждое из которых является инвариантом некоторой бисистемы.

Литература

- 1. Аграчев А. А., Сачков Ю. Л. Геометрическая теория управления. М.: Физматлит, 2005.
- 2. Grayson M., Grossman. R. Models for Free Nilponent Lie Algerbras // J. Algebra. 1988. Vol. 35. P. 177–191.
- 3. Doubrov B., Zelenko I. On local geometry of nonholonomic rank 2 distributions // Journal of London Mathematical Society. 2009. Vol. 80. Iss. 3. P. 545-566
 - 4. Olver P. Classical Invariant Theory. London: Cambridge University Press, 1999.

ОБ УСТОЙЧИВОСТИ ПЕРИОДИЧЕСКИХ РЕШЕНИЙ СИСТЕМ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, СОДЕРЖАЩИХ ДВА МАЛЫХ ПАРАМЕТРА

Н.А.Письменный

Воронежский государственный университет, Воронеж, Россия n.pismennyy@gmail.com

Рассматривается следущая система дифференциальных уравнений:

$$\frac{dx_1}{dt} = f_1(x_1) + \mu_1 \gamma_1(t, x_2), \quad \frac{dx_2}{dt} = f_2(x_2) + \mu_2 \gamma_2(t, x_1). \tag{1}$$

Предполагается, что $f_1, f_2: R^n \to R^n, \ \gamma_1, \gamma_2: R^1 \times R^n \to R^n, \ \gamma_1, \gamma_2$ являются T-периодическими функциями по первой переменной, μ_1, μ_2 — малые положительные параметры. Функции $f_1, f_2, \gamma_1, \gamma_2$ имеют непрерывные производные по соответствующим пространственным переменным x_1, x_2 .

При нулевых значениях параметров μ_1 и μ_2 система (1) распадается на два автономных уравнения:

$$\frac{dx_i}{dt} = f_i(x_i), \quad i = 1, 2 \tag{2}$$

каждое из которых имеет T— периодические решение $\varphi_i(t)$. Также предполагается, что 1 является простым собственным значением у операторов сдвига по траектории линеаризованных на φ_i уравнений (2).

Найдены условия устойчивости периодических решений системы (1).

СТАТИСТИЧЕСКИ СЛАБО ИНВАРИАНТНЫЕ МНОЖЕСТВА УПРАВЛЯЕМЫХ СИСТЕМ

Л.И. Родина

Удмуртский государственный университет, Ижевск, Россия box0589@udmnet.ru

Предлагается новый подход к расширению понятия инвариантности, который исследовался в работах [1, 2]. Этот подход состоит в изучении статистически инвари-