a p-adic solenoid and denoted by Σ_{p} (see [1]). As a set with a measure $\Sigma_{p} \cong[0,1) \times \mathbb{Z}_{p}$. It is a compact group and has a natural measure $d x \cdot d_{p} u$. Pontryagin's dual group of the p-adic solenoid is $\widehat{\Sigma_{p}}=\mathbb{Q}^{(p)}=\bigcup_{n=0}^{\infty} p^{-n} \mathbb{Z}$. That means any $f \in L_{2}\left(\Sigma_{p}\right)$ can be expanded into a Fourier series

$$
f(x, u)=\sum_{\alpha \in \mathbb{Q}^{(p)}} \widehat{f}(\alpha) \chi_{\alpha}(x, u),
$$

where $\chi_{\alpha}(x, u)=\exp (2 \pi i \alpha x) \exp \left(-2 \pi i\{\alpha u\}_{p}\right)$ are characters of $\Sigma_{p}, \quad\{\cdot\}_{p}$ is a fractional part of a p-adic number $\{\cdot\}_{p}$ and

$$
\widehat{f}(\alpha)=\int_{0}^{1} \int_{\mathbb{Z}_{p}} f(x, u) \overline{\chi_{\alpha}(x, u)} d x d_{p} u
$$

are Fourier coefficients. Hence Dirichlet kernels for Σ_{p} are

$$
D_{m, n}(x, u)=\sum_{\alpha \in(-m, m) \cap p^{-n} \mathbb{Z}} \chi_{\alpha}(x, u), \quad m, n \in \mathbb{N}_{0} .
$$

We proved in [2] that the Lebesgue constants have the asymptotics

$$
L_{m, n}:=\left\|D_{m, n}\right\|_{L_{1}\left(\Sigma_{p}\right)}=\int_{0}^{1} \int_{\mathbb{Z}_{p}}\left|D_{m, n}(x, u)\right| d x d_{p} u \sim \frac{2}{\pi^{2}} \ln \left(m^{2} p^{n}\right),
$$

when $m \rightarrow+\infty, n \rightarrow+\infty$. Consequently the Fourier series is divergent in $L_{1}\left(\Sigma_{p}\right)$ and it is reasonable to consider Fejer kernels

$$
F_{m, n}(x, u)=\sum_{\alpha \in(-m, m) \cap p^{-n} \mathbb{Z}}\left(1-\frac{|\alpha|}{m}\right) \chi_{\alpha}(x, u), \quad m, n \in \mathbb{N}_{0}
$$

that will be discussed in our talk and I will prove
Theorem 1. For all nonnegative integers $n, m\left\|F_{m, n}\right\|_{L_{1}\left(\Sigma_{p}\right)}=1$.

Refrences

1. Hewitt E., Ross K. A. Abstract harmonic analysis. Vol. 2. Berlin, Springer, 1970.
2. Radyna A. Ya., Karpovich N.I. The Lebesgue constants of p-adic solenoid // Vesnik Bielaruskaha Dziaržaŭnaha Universiteta. Ser. 1. Math. 2012. No. 3. P. 87-90 (in Russian).

SOLVING MATRIX DISCRETE THE FIRST ORDER EQUATIONS BY MEANS OF ALGEBRAIC MATRICIANT

I.L. Vasiliev, D.A. Navichkova
Belarusian State University, Minsk, Belarus
navdasha@tut.by

Let $K_{0}^{m \times m}$ be an algebra of matrix sequences with multiplication in the form of Laplace convolution. For matrix $X=\left[x^{i j}\right]_{i, j=1}^{m}$ denote $\widetilde{m}_{n}(X)=\max _{1 \leqslant i, j \leqslant m}\left|x_{n}^{i j}\right|$.

Definition 1. The sequence $\widetilde{m}(X)=\left\{\widetilde{m}_{0}(X), \widetilde{m}_{1}(X), \ldots, \widetilde{m}_{n}(X), \ldots\right\}$ is called a majorizing sequence for matrix $X \in K_{0}^{m \times m}$.

Definition 2. $X \in \ell_{p}^{m \times m}$, when $\forall i, j=\overline{1, m} x^{i j} \in \ell_{p}$.
We define a norm of a matrix from $\ell_{p}^{m \times m}$ by the following way $\|X\|_{\ell_{p}^{m \times m}}=\|\widetilde{m}(X)\|_{\ell_{p}}$. $\ell_{p}^{m \times m}$ is the Banach module under the Banach algebra $\ell_{1}^{m \times m}$.

Consider matrix algebraic homogeneous differential equation

$$
\begin{equation*}
D X=G X, \tag{1}
\end{equation*}
$$

where D is the algebraic derivative operator (see [1]), $G \in \ell_{1}^{m \times m}$. A solution of the equation (1) is found in $\ell_{1}^{m \times m}$ with initial condition $X_{0}=E$. We use the method of successive approximations for building a solution of (1). The successive approximations are found from recursion relations

$$
\begin{equation*}
D X^{(n+1)}=G X^{(n)} \tag{2}
\end{equation*}
$$

with initial approximation $X^{(0)}=X_{0}=E$. Integrating (2) obtain successively

$$
X^{(0)}=E, \quad X^{(1)}=E+\int G, \quad \ldots, \quad X^{(k)}=E+\int G+\int G \int G+\cdots+\underbrace{\int G \int G \cdots \int G}_{k}, \quad \cdots
$$

Definition 3. The limit

$$
\Omega^{G}=\lim _{k \rightarrow \infty} X^{(k)}=E+\int G+\int G \int G+\cdots+\int G \int G \cdots \int G+\ldots,
$$

when it exists, is called an algebraic matriciant of the equation (1).
Consider difference matrix homogeneous the first order equation

$$
\begin{equation*}
(n+1) X_{n+1}+(n \gamma+\delta) X_{n}=0 \tag{3}
\end{equation*}
$$

where $\gamma, \delta \in \mathbb{C}^{m \times m}$. A solution of the equation (3) is found in $\ell_{1}^{m \times m}$ with arbitrary initial condition X_{0}. The equation (3) is transformed to algebraic differential equation (1), where $G=(E-\gamma h)^{-1}(-\delta), h=\{0,1,0, \ldots, 0, \ldots\}$. We obtain conditions for matrix γ under which $\forall X_{0}$ there is a unique solution $X=\Omega^{G} X_{0}$ of the equation (3), where Ω^{G} is an algebraic matriciant of the equation (1). Corresponding to (3) inhomogeneous equation with arbitrary initial condition is investigated in a similar manner in the Banach module $\ell_{p}^{m \times m}$. Evaluations for solutions norms are obtained.

Refrences

1. Васільеў І. Л., Навічкова Д. А. Матрычнае аднароднае рознаснае раўнанне першага парадку са зменнымі каэфіцыентамі ў камутатыўным выпадку // Вестн. БГУ. Сер. 1. 2014. № 1. С. 83-87.
