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The evolution of states of many-particle systems is determined by an infinite system of
integral and differential equations known as the BBGKY hierarchy of equations [1].

States of many-particle systems are described by an infinite sequence of particle distri-
bution functions that satisfy the Cauchy problem for the BBGKY hierarchy of equations.
A solution of the Cauchy problem for the BBGKY hierarchy of equations can be repre-
sented in the form of the iteration or the functional series, or the non-equilibrium cluster
expansion [2, 3].

We consider an one-dimensional many-kind system of particles of lengthes 2σi > 0 and
masses mi > 0 interacting as hard rods via a pair short range potential Φ.

In the paper, we present the probability approach to describe the state of the particle
system in the Boltzmann — Grad limit. We take Maxwell velocity distribution function
as the initial one. A solution of the problem on description of the state is a solution of the
Cauchy problem for the diffusion equation.
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Let p be a prime number. Consider a ring of p -adic integers Zp as a set of series

u =
∞∑

k=0

ukp
k, uk ∈ {0, 1, . . . , p − 1}

with summation and multiplication in p -adic number system. It is a locally compact group
and hence it has a Haar measure dpu. The factor group R×Zp/{(n, n) : n ∈ Z} is called
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a p -adic solenoid and denoted by Σp (see [1]). As a set with a measure Σp
∼= [0, 1) × Zp.

It is a compact group and has a natural measure dx · dpu. Pontryagin’s dual group of the

p -adic solenoid is Σ̂p = Q(p) =
⋃

∞

n=0 p−nZ. That means any f ∈ L2(Σp) can be expanded
into a Fourier series

f(x, u) =
∑

α∈Q(p)

f̂(α)χα(x, u),

where χα(x, u) = exp(2πiα x) exp(−2πi{α u}p) are characters of Σp, {·}p is a fractional
part of a p -adic number {·}p and

f̂(α) =

1∫

0

∫

Zp

f(x, u)χα(x, u) dxdpu

are Fourier coefficients. Hence Dirichlet kernels for Σp are

Dm,n(x, u) =
∑

α∈(−m, m)∩p−nZ

χα(x, u), m, n ∈ N0.

We proved in [2] that the Lebesgue constants have the asymptotics

Lm,n := ‖Dm,n‖L1(Σp) =

1∫

0

∫

Zp

|Dm,n(x, u)|dxdpu ∼
2

π2
ln(m2pn),

when m → +∞, n → +∞. Consequently the Fourier series is divergent in L1(Σp) and
it is reasonable to consider Fejer kernels

Fm,n(x, u) =
∑

α∈(−m, m)∩p−nZ

(
1 −

|α|

m

)
χα(x, u), m, n ∈ N0

that will be discussed in our talk and I will prove
Theorem 1. For all nonnegative integers n,m ‖Fm,n‖L1(Σp) = 1.
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Let Km×m
0 be an algebra of matrix sequences with multiplication in the form of Laplace

convolution. For matrix X = [xij]
m

i,j=1 denote m̃n(X) = max
16i,j6m

∣∣xij
n

∣∣ .

Definition 1. The sequence m̃(X) = {m̃0(X), m̃1(X), . . . , m̃n(X), . . . } is called a
majorizing sequence for matrix X ∈ Km×m

0 .


