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The evolution of states of many-particle systems is determined by an infinite system of
integral and differential equations known as the BBGKY hierarchy of equations [1].

States of many-particle systems are described by an infinite sequence of particle distri-
bution functions that satisfy the Cauchy problem for the BBGKY hierarchy of equations.
A solution of the Cauchy problem for the BBGKY hierarchy of equations can be repre-
sented in the form of the iteration or the functional series, or the non-equilibrium cluster
expansion [2, 3.

We consider an one-dimensional many-kind system of particles of lengthes 20; > 0 and
masses m; > 0 interacting as hard rods via a pair short range potential P.

In the paper, we present the probability approach to describe the state of the particle
system in the Boltzmann — Grad limit. We take Maxwell velocity distribution function
as the initial one. A solution of the problem on description of the state is a solution of the
Cauchy problem for the diffusion equation.
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Let p be a prime number. Consider a ring of p-adic integers Z, as a set of series

U:ZUkpk, UkE{O,l,,p_l}
k=0

with summation and multiplication in p-adic number system. It is a locally compact group
and hence it has a Haar measure dyu. The factor group R x Z,/{(n,n) : n € Z} is called
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a p-adic solenoid and denoted by X, (see [1]). As a set with a measure 3, = [0,1) x Z,.
It is a compact group and has a natural measure dx - d,u. Pontryagin’s dual group of the

p-adic solenoid is ¥, = QP = U,—op "Z. That means any f € Ly(X,) can be expanded

into a Fourier series R
f(:v,u) = Z f(Oé)Xa(l’au)’

where X, (2, u) = exp(2mia x) exp(—2mi{a u},) are characters of ¥,, {-}, is a fractional
part of a p-adic number {-}, and

Fla) = / [ fa et dedo

are Fourier coefficients. Hence Dirichlet kernels for ¥, are
Dyyn(z,u) = Z Xa(x,u);  m,n € Ny.
aE(—m, m)Np~"Z

We proved in 2] that the Lebesgue constants have the asymptotics

1

2
Ly = Dl 21 (s,) = // | Dy (@, w)|dzd,u ~ Fln(me”),

0 Z

when m — +00, n — +o00. Consequently the Fourier series is divergent in L;(¥,) and
it is reasonable to consider Fejer kernels

o}
Fon(x,u) = Z ( - %) Xa(z,u), m,n €N
ac(—m, m)Np~"7Z

that will be discussed in our talk and I will prove
Theorem 1. For all nonnegative integers n,m || F,,,

s, = 1
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Let K§**™ be an algebra of matrix sequences with multiplication in the form of Laplace

. : A > !
convolution. For matrix X = [2%]]"_ denote m,(X)= max |z/|.
= 1<i,j<m

Definition 1. The sequence m(X) = {mo(X),m(X),...,m,(X),...} is called a
majorizing sequence for matrix X € K{j"*™.



