Литература

1. Лазакович Н. В. Стохастические дифференииалы в алгебре обобщенных случайных процессов // Докл. АН Беларуси. 1994. Т. 38, № 5. С. 17-22.
2. Yablonski A.L. The calculus of variations for processes with independent increments // Rocky Mountain J. of Mathematics. 2008. Vol. 38, № 2. P. 669-701.

A MANY-KIND PARTICLE SYSTEMS IN THE BOLTZMANN - GRAD LIMIT

H.M. Hubal
Lutsk national technical university, Lutsk, Ukraine
galinagbl@yandex.ru

The evolution of states of many-particle systems is determined by an infinite system of integral and differential equations known as the BBGKY hierarchy of equations [1].

States of many-particle systems are described by an infinite sequence of particle distribution functions that satisfy the Cauchy problem for the BBGKY hierarchy of equations. A solution of the Cauchy problem for the BBGKY hierarchy of equations can be represented in the form of the iteration or the functional series, or the non-equilibrium cluster expansion [2, 3].

We consider an one-dimensional many-kind system of particles of lengthes $2 \sigma_{i}>0$ and masses $m_{i}>0$ interacting as hard rods via a pair short range potential Φ.

In the paper, we present the probability approach to describe the state of the particle system in the Boltzmann - Grad limit. We take Maxwell velocity distribution function as the initial one. A solution of the problem on description of the state is a solution of the Cauchy problem for the diffusion equation.

Refrences

1. Bogolyubov N. N. Problems of a dynamical theory in statistical physics // Gosudarstv. Izdat. Tehn.Teor. Lit. 1946 (Russian).
2. Hubal H. M. The generalized kinetic equation for symmetric particle systems // Mathematica Scandinavica. 2012. Vol. 110. Fasc. 1. P. 140-160.
3. Gubal' G. N., Stashenko M. A. Improvement of an estimate of the global existence theorem for solutions of the Bogolyubov equations // Theoretical and Mathematical Physics. 2005. Vol. 145, no. 3. P. 1736-1740.

FEJER KERNELS OF \boldsymbol{p}-ADIC SOLENOID

A.Ya. Radyna ${ }^{1}$

Belarusian State University, Minsk, Belarus ales.radyna@gmail.com
Let p be a prime number. Consider a ring of p-adic integers \mathbb{Z}_{p} as a set of series

$$
u=\sum_{k=0}^{\infty} u_{k} p^{k}, \quad u_{k} \in\{0,1, \ldots, p-1\}
$$

with summation and multiplication in p-adic number system. It is a locally compact group and hence it has a Haar measure $d_{p} u$. The factor group $\mathbb{R} \times \mathbb{Z}_{p} /\{(n, n): n \in \mathbb{Z}\}$ is called
a p-adic solenoid and denoted by Σ_{p} (see [1]). As a set with a measure $\Sigma_{p} \cong[0,1) \times \mathbb{Z}_{p}$. It is a compact group and has a natural measure $d x \cdot d_{p} u$. Pontryagin's dual group of the p-adic solenoid is $\widehat{\Sigma_{p}}=\mathbb{Q}^{(p)}=\bigcup_{n=0}^{\infty} p^{-n} \mathbb{Z}$. That means any $f \in L_{2}\left(\Sigma_{p}\right)$ can be expanded into a Fourier series

$$
f(x, u)=\sum_{\alpha \in \mathbb{Q}^{(p)}} \widehat{f}(\alpha) \chi_{\alpha}(x, u),
$$

where $\chi_{\alpha}(x, u)=\exp (2 \pi i \alpha x) \exp \left(-2 \pi i\{\alpha u\}_{p}\right)$ are characters of $\Sigma_{p}, \quad\{\cdot\}_{p}$ is a fractional part of a p-adic number $\{\cdot\}_{p}$ and

$$
\widehat{f}(\alpha)=\int_{0}^{1} \int_{\mathbb{Z}_{p}} f(x, u) \overline{\chi_{\alpha}(x, u)} d x d_{p} u
$$

are Fourier coefficients. Hence Dirichlet kernels for Σ_{p} are

$$
D_{m, n}(x, u)=\sum_{\alpha \in(-m, m) \cap p^{-n} \mathbb{Z}} \chi_{\alpha}(x, u), \quad m, n \in \mathbb{N}_{0} .
$$

We proved in [2] that the Lebesgue constants have the asymptotics

$$
L_{m, n}:=\left\|D_{m, n}\right\|_{L_{1}\left(\Sigma_{p}\right)}=\int_{0}^{1} \int_{\mathbb{Z}_{p}}\left|D_{m, n}(x, u)\right| d x d_{p} u \sim \frac{2}{\pi^{2}} \ln \left(m^{2} p^{n}\right),
$$

when $m \rightarrow+\infty, n \rightarrow+\infty$. Consequently the Fourier series is divergent in $L_{1}\left(\Sigma_{p}\right)$ and it is reasonable to consider Fejer kernels

$$
F_{m, n}(x, u)=\sum_{\alpha \in(-m, m) \cap p^{-n} \mathbb{Z}}\left(1-\frac{|\alpha|}{m}\right) \chi_{\alpha}(x, u), \quad m, n \in \mathbb{N}_{0}
$$

that will be discussed in our talk and I will prove
Theorem 1. For all nonnegative integers $n, m\left\|F_{m, n}\right\|_{L_{1}\left(\Sigma_{p}\right)}=1$.

Refrences

1. Hewitt E., Ross K. A. Abstract harmonic analysis. Vol. 2. Berlin, Springer, 1970.
2. Radyna A. Ya., Karpovich N.I. The Lebesgue constants of p-adic solenoid // Vesnik Bielaruskaha Dziaržaŭnaha Universiteta. Ser. 1. Math. 2012. No. 3. P. 87-90 (in Russian).

SOLVING MATRIX DISCRETE THE FIRST ORDER EQUATIONS BY MEANS OF ALGEBRAIC MATRICIANT

I.L. Vasiliev, D.A. Navichkova
Belarusian State University, Minsk, Belarus
navdasha@tut.by

Let $K_{0}^{m \times m}$ be an algebra of matrix sequences with multiplication in the form of Laplace convolution. For matrix $X=\left[x^{i j}\right]_{i, j=1}^{m}$ denote $\widetilde{m}_{n}(X)=\max _{1 \leqslant i, j \leqslant m}\left|x_{n}^{i j}\right|$.

Definition 1. The sequence $\widetilde{m}(X)=\left\{\widetilde{m}_{0}(X), \widetilde{m}_{1}(X), \ldots, \widetilde{m}_{n}(X), \ldots\right\}$ is called a majorizing sequence for matrix $X \in K_{0}^{m \times m}$.

