Литература

1. Лазакович Н.В. Стохастические дифференциалы в алгебре обобщенных случайных процессов // Докл. АН Беларуси. 1994. Т. 38, № 5. С. 17–22.

2. Yablonski A.L. The calculus of variations for processes with independent increments // Rocky Mountain J. of Mathematics. 2008. Vol. 38, № 2. P. 669–701.

A MANY-KIND PARTICLE SYSTEMS IN THE BOLTZMANN – GRAD LIMIT

H.M. Hubal

Lutsk national technical university, Lutsk, Ukraine galinagbl@yandex.ru

The evolution of states of many-particle systems is determined by an infinite system of integral and differential equations known as the BBGKY hierarchy of equations [1].

States of many-particle systems are described by an infinite sequence of particle distribution functions that satisfy the Cauchy problem for the BBGKY hierarchy of equations. A solution of the Cauchy problem for the BBGKY hierarchy of equations can be represented in the form of the iteration or the functional series, or the non-equilibrium cluster expansion [2, 3].

We consider an one-dimensional many-kind system of particles of lengthes $2\sigma_i > 0$ and masses $m_i > 0$ interacting as hard rods via a pair short range potential Φ .

In the paper, we present the probability approach to describe the state of the particle system in the Boltzmann — Grad limit. We take Maxwell velocity distribution function as the initial one. A solution of the problem on description of the state is a solution of the Cauchy problem for the diffusion equation.

Refrences

1. Bogolyubov N. N. Problems of a dynamical theory in statistical physics // Gosudarstv. Izdat. Tehn.-Teor. Lit. 1946 (Russian).

2. Hubal H. M. The generalized kinetic equation for symmetric particle systems // Mathematica Scandinavica. 2012. Vol. 110. Fasc. 1. P. 140–160.

3. Gubal' G.N., Stashenko M.A. Improvement of an estimate of the global existence theorem for solutions of the Bogolyubov equations // Theoretical and Mathematical Physics. 2005. Vol. 145, no. 3. P. 1736–1740.

FEJER KERNELS OF p-ADIC SOLENOID

A.Ya. Radyna¹

 $Belarusian\ State\ University,\ Minsk,\ Belarus\ ales.radyna@gmail.com$

Let p be a prime number. Consider a ring of p-adic integers \mathbb{Z}_p as a set of series

$$u = \sum_{k=0}^{\infty} u_k p^k, \quad u_k \in \{0, 1, \dots, p-1\}$$

with summation and multiplication in *p*-adic number system. It is a locally compact group and hence it has a Haar measure $d_p u$. The factor group $\mathbb{R} \times \mathbb{Z}_p / \{(n, n) : n \in \mathbb{Z}\}$ is called a *p*-adic solenoid and denoted by Σ_p (see [1]). As a set with a measure $\Sigma_p \cong [0,1) \times \mathbb{Z}_p$. It is a compact group and has a natural measure $dx \cdot d_p u$. Pontryagin's dual group of the *p*-adic solenoid is $\widehat{\Sigma_p} = \mathbb{Q}^{(p)} = \bigcup_{n=0}^{\infty} p^{-n} \mathbb{Z}$. That means any $f \in L_2(\Sigma_p)$ can be expanded into a Fourier series

$$f(x,u) = \sum_{\alpha \in \mathbb{Q}^{(p)}} \widehat{f}(\alpha) \chi_{\alpha}(x,u),$$

where $\chi_{\alpha}(x, u) = \exp(2\pi i \alpha x) \exp(-2\pi i \{\alpha u\}_p)$ are characters of Σ_p , $\{\cdot\}_p$ is a fractional part of a p-adic number $\{\cdot\}_p$ and

$$\widehat{f}(\alpha) = \int_{0}^{1} \int_{\mathbb{Z}_p} f(x, u) \overline{\chi_{\alpha}(x, u)} \, dx d_p u$$

are Fourier coefficients. Hence Dirichlet kernels for Σ_p are

$$D_{m,n}(x,u) = \sum_{\alpha \in (-m, m) \cap p^{-n}\mathbb{Z}} \chi_{\alpha}(x,u), \quad m,n \in \mathbb{N}_0.$$

We proved in [2] that the Lebesgue constants have the asymptotics

$$L_{m,n} := \|D_{m,n}\|_{L_1(\Sigma_p)} = \int_0^1 \int_{\mathbb{Z}_p} |D_{m,n}(x,u)| dx d_p u \sim \frac{2}{\pi^2} \ln(m^2 p^n).$$

when $m \to +\infty$, $n \to +\infty$. Consequently the Fourier series is divergent in $L_1(\Sigma_p)$ and it is reasonable to consider Fejer kernels

$$F_{m,n}(x,u) = \sum_{\alpha \in (-m, m) \cap p^{-n}\mathbb{Z}} \left(1 - \frac{|\alpha|}{m}\right) \chi_{\alpha}(x,u), \quad m, n \in \mathbb{N}_0$$

that will be discussed in our talk and I will prove

Theorem 1. For all nonnegative integers $n, m ||F_{m,n}||_{L_1(\Sigma_p)} = 1$.

Refrences

1. Hewitt E., Ross K.A. Abstract harmonic analysis. Vol. 2. Berlin, Springer, 1970.

2. Radyna A. Ya., Karpovich N.I. The Lebesgue constants of p-adic solenoid // Vesnik Bielaruskaha Dziaržaŭnaha Universiteta. Ser. 1. Math. 2012. No. 3. P. 87–90 (in Russian).

SOLVING MATRIX DISCRETE THE FIRST ORDER EQUATIONS BY MEANS OF ALGEBRAIC MATRICIANT

I.L. Vasiliev, D.A. Navichkova

Belarusian State University, Minsk, Belarus navdasha@tut.by

Let $K_0^{m \times m}$ be an algebra of matrix sequences with multiplication in the form of Laplace convolution. For matrix $X = [x^{ij}]_{i,j=1}^m$ denote $\widetilde{m}_n(X) = \max_{1 \le i,j \le m} |x_n^{ij}|$. **Definition 1.** The sequence $\widetilde{m}(X) = \{\widetilde{m}_0(X), \widetilde{m}_1(X), \dots, \widetilde{m}_n(X), \dots\}$ is called a

majorizing sequence for matrix $X \in K_0^{m \times m}$.