По разработанным технологиям упрочнения были изготовлены образцы деталей с покрытиями (рис. 2).

Рис. 2. Упрочненные детали легкой промышленности

УДК 621.791.72

ВЛИЯНИЕ РЕЖИМОВ ЛАЗЕРНОЙ НАПЛАВКИ НА СОСТАВ ПОКРЫТИЯ ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛЯ

О. Г. Девойно, М. А. Кардаполова, Н. И. Луцко, А. А. Ковальчук, А. С. Лапковский Белорусский национальный технический университет, Минск

Анализируются современные методы быстрого прототипирования и место лазерной наплавки в этих методах. Рассматривается влияние режимов лазерной наплавки на распределение элементов в наплавленных валиках из самофлюсующегося сплава на основе никеля.

Одной из проблем современного производства является время, которое затрачивается на разработку технологии, а, следовательно, и на получение готовой продукции. В производстве лимитирующим для многих изделий является время, требующееся для конструирования и изготовления литейных форм и штампов всех типов. Активно развивающиеся в последние годы методы быстрого прототипирования (rapid prototyping – RP) и быстрой обработки (rapid tooling – RT) призваны помочь в процессе подготовки нового продукта посредством его визуализации непосредственно из базы данных САD и последующего прямого изготовления продукта путем нанесения материалов с использованием лазеров [1].

Последние разработки технологий direct metal deposition (DMD), light engineered net shaping (LENS) и direct light fabrication (DLF) продемонстрировали, что объемные объекты с плотностью близкой к полной, могут быть произведены непосредственно из базы данных CAD со свойствами эквивалентными процессу пластической деформации. Эти и ряд других подобных технологий уже потенциально возможны для прямого изготовления деталей и штампов [2, 3, 4].

Во всех упомянутых технологиях для непосредственного нанесения металлического материала используется метод лазерной наплавки. Лазерная наплавка – это технология создания покрытий, включающая нанесение материалов разной природы на металлическую подложку с использованием в качестве источника энергии лазерного луча [5].

Состав покрытия, образуемого при лазерной наплавке особенно важен для исследования, так как для придания покрытиям высоких физикомеханических характеристик для наплавки используются многокомпонентные материалы, имеющие сложный состав, который в процессе наплавки претерпевает серьезные изменения. Данные о влиянии режимов лазерной наплавки на состав покрытия после наплавки позволяют прогнозировать результат наплавки и свойства наплавленного слоя.

В настоящей статье нами предпринята попытка исследовать фактическое распределение элементов в наплавленных валиках из самофлюсующегося сплава на основе никеля в процессе лазерной наплавки.

Для выполнения исследований использовали лазерный технологический комплекс, включавший газовый СО₂-лазер непрерывного действия типа «Комета 2» и координатную систему, обеспечивавшую необходимое перемещение луча лазера относительно образцов.

Луч лазера через систему поворотных зеркал и линзу направлялся на поверхность образца. Фокус потока порошка, подаваемого по наклонным каналам коаксиального сопла, совпадал с фокусом лазерного излучения. Лазерная наплавка производилась при мощности излучения лазера 1000 Вт, величина подачи порошка составляла 12 г/мин, скорость наплавки варьировалась от 40 до 120 мм/мин. Дистанция наплавки, определяющая положение фокуса лазерного луча относительно поверхности образца, изменялась от 10 до 14 мм. Для каждого случая наносились единичные валики. Наплавка выполнялась на образцы изготовленные из стали 45. В качестве наплавочного материала использовался порошок самофлюсующегося сплава на основе никеля – ПГ-10H-01, с грануляцией 20 – 80 мкм.

Распределение элементов определяли на поперечных шлифах валиков с помощью рентгеновской дифракционной системы SmartLab RIGAKU (X-ray diffraction system), а снимки микроструктур делали на металлографическом микроскопе с видеофиксацией МИКРО 200. Исследовавшиеся на каждом шлифе валика наплавки зоны приведены на рисунке 1.

> Рис. 1. Зоны исследовавшиеся на шлифах валиков при определении распределения элементов

Для каждой зоны валика были получены зависимости содержания железа, никеля, хрома и кремния в покрытии от скорости наплавки при различных дистанциях наплавки. Результаты исследований приведены на рисунках 2 – 6.

Рис. 2. Содержание никеля, % вес. в зоне 1 (покрытие) при различных скоростях V и дистанциях L наплавки

25,00 20,00 → L=10 мм Bec. 15.00 10.00 5 📥 L=14 мм 5.00 0.00 40 60 80 100 120 V. мм/мин

Рис. 3. Содержание хрома, % вес. в зоне 1 (покрытие) при различных скоростях V и дистанциях L наплавки

Рис. 4. Содержание кремния, % вес. в зоне 1 (покрытие) при различных скоростях V и дистанциях L наплавки

Рис. 5. Содержание железа, % вес. в зоне 1 (покрытие) при различных скоростях V и дистанциях L наплавки

Как видно из приведенных данных, наибольшее содержание никеля (см. рис. 2), хрома (см. рис. 3) и кремния (см. рис. 4) в покрытии наблюдается при дистанции наплавки L = 14 мм (расфокусированный луч, фокус над поверхностью основы) для всех исследованных зон валиков, т.е. в случае, когда имеет место минимальный переплав основы. Наименьшее содержание никеля, хрома и кремния в покрытии имеет место при дистанции наплавки L = 12 мм (фокус на поверхности основы, также для всех зон валиков), что может свидетельствовать о переплаве поверхности основы, когда часть этих элементов из покрытия переходит в последнюю. С увеличением скорости наплавки наблюдается уменьшение содержания никеля, хрома и кремния в покрытия лереходит в последнюю. К увеличением скорости наплавки наблюдается уменьшение содержания никеля, хрома и кремния в покрытии, хотя следовало бы ожидать уменьшения степени переплава основы и выноса указанных элементов из покрытия. Наиболее вероятно, определяющую роль в этом случае играет эффект экранирования покрытия испарениями, возникающими при расплавлении частиц

порошка в зоне воздействия лазерного излучения [6]. При малой скорости сканирования испарение более интенсивное, экранирование достаточно сильное, никель, хром и кремний меньше переходят в основу. При большой скорости сканирования испарение сильно уменьшается, экранирование незначительное, указанные элементы интенсивно переходят в основу.

Рис. 6. Микроструктура сплава ПГ-10Н-01 после лазерной наплавки при V = 100 мм/мин и L = 10 мм в зоне 1, х 980

В процессе наплавки имеет место ожелезнение материала получаемого покрытия. При этом содержание железа в покрытии (см. рис. 5) для всех зон валиков минимально при дистанции L = 14 мм (расфокусированный луч, фокус над поверхностью основы), что хорошо согласуется с наименьшим переплавом основы в этом случае. Наибольшее содержание железа в покрытии наблюдается при дистанции L = 12 мм (фокус на поверхности основы), т.е. когда происходит наибольший переплав основы и взаимное перемешивание покрытия с основой. С увеличением скорости наплавки содержание железа в покрытии увеличивается во всех случаях, хотя из-за уменьшения вводимой энергии можно было бы ожидать обратного. Здесь, опять же, сказывается эффект экранирования излучения испарениями материала покрытия, когда при малой скорости наплавки испарения больше экранируют излучение и железо меньше переходит в покрытие. При большой скорости наплавки испарений выделяется меньше, экранирование слабое, железо больше переходит в покрытие.

Сравнивая зависимости содержания элементов в покрытии от технологических режимов лазерной наплавки в различных зонах валиков можно отметить, что какие-либо существенные отличия между ними отсутствуют. Из этого факта можно заключить, что скорее всего температура валика из-за его сопоставимости по размеру с диаметром лазерного пятна распределяется достаточно равномерно по его объему и эффект перемешивания протекает в разных зонах идентично. Этот факт также подтверждается тем, что микроструктуры покрытия во всех зонах практически не отличаются (см. рис. б). Таким образом, полученные результаты показывают следующее:

1. В валиках полученных методом лазерной наплавки самофлюсующегося сплава на основе никеля – ПГ-10Н-01 морфология структуры во всех исследованных зонах имеет сходный характер, что подтверждает наличие сильного перемешивания жидкой ванны расплава.

2. Наблюдается четкая зависимость распределения элементов в покрытии от режимов лазерной наплавки.

3. С увеличением скорости наплавки содержание никеля, хрома и кремния в покрытии уменьшается, а содержание железа увеличивается. При этом обнаруживается сильное влияние эффекта экранирования покрытия испарениями, возникающими при расплавлении частиц порошка в зоне воздействия лазерного излучения. Это приводит к тому, что при малой скорости наплавки, когда испарение более интенсивное, никель, хром и кремний меньше переходят в основу, а железо меньше проникает в покрытие. При большой скорости наплавки, когда испарение значительно уменьшается, наблюдается противоположный эффект.

4. Наибольший перенос элементов из основы в покрытие и наоборот, из покрытия в основу, наблюдается при дистанции наплавки 12 мм, когда фокус лазерного луча находится на поверхности основы, а наименьший – при дистанции наплавки 14 мм, когда фокус находится над поверхностью основы.

5. Все установленные закономерности одинаково действуют во всех исследованных зонах валиков, что свидетельствует о равномерном распределении температуры по сечению валика, полученного лазерной наплавкой, и одинаковых процессах перемешивания, протекающих во всех зонах валиков.

ЛИТЕРАТУРА:

- 1. Wohlers, T. Wohlers Report Rapid Prototyping / T. Wohlers // Tooling & Manufacturing State of the Industry. Colorado : Wohlers Associates Inc., 2003.
- 2. Mazumder, J. Direct materials deposition: designed macro and microstructure / J. Mazumder, A. Schifferer, J. Choi // Mater Res Innovat. 1999. № 3. P. 118 131.
- 3. Keicher, D.M., Smugersky JE. The laser forming of metallic components using particulate materials / D.M. Keicher, J.E. Smugersky // J. Metals. 1997. № 49 (5). P. 51 54.
- 4. Directed light fabrication a solid metal hemisphere using 5-axis powder deposition / J.O. Milewski [& et al.] // J. Mater Process Tech. 1998. № 75(1-3). P. 165 172.
- 5. Toyserkani, E. Laser Cladding / E. Toyserkani, A. Khajepour, S. Corbin. Florida : CRS Press, Boca Raton, 2005.
- 6. Liu, C.Y. Thermal processes of a powder particle in coaxial laser cladding / C.Y. Liu, J. Lin // Opt. Laser Technol. 2003. № 35 (2) P. 81 86.