УДК 665.765

СМАЗ

НЕ

По

Предлога

СМАЗОЧНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ ОТХОДОВ НЕФТЕХИМИИ ДЛЯ КОНСЕРВАЦИИ ТЕХНИКИ

Ю. А. БУЛАВКА

Полоцкий государственный университет, Беларусь

Предложена смазочная композиция на основе низкомолекулярного полиэтилена и продукта остаточного гидрокрекинга, которая по эксплуатационным свойствам отвечает требованиям, предъявляемым к химически стойким, консервационным и защитным смазкам и дешевле промышленно производимых аналогов.

Актуальным направлением развития нефтепереработки и нефтехимии является использование отходов и подобных продуктов различных производств.

Предлагается в качестве базового компонента смазочной композиции использовать низкомолекулярный полиэтилен, а в качестве пластификатора – продукт остаточный гидрокрекинга.

Для получения смазочной композиции использовали низкомолекулярный полиэтилен (НМПЭ) с температурой каплепадения 90 °C, выпускающийся по ТУ РБ 300041455.031-2004 на заводе «Полимир» ОАО «Нафтан», являющийся сопутствующим продуктом производства полиэтилена высокого давления. Благодаря тому, что НМПЭ состоит из смеси насыщенных углеводородов преимущественно нормального строения, он стоек к действию коррозионно- и химически агрессивных сред, является водонепроницаемым гидрофобным веществом, проявляет высокую стойкость к атмосферному старению. Все вышеперечисленные свойства являются весьма ценными, присущими консервационным смазывающим материалам [1–3].

В качестве пластификатора (размягчителя) для снижения вязкости использовали продукт остаточный гидрокрекинга (ПОГ), выпускающийся по ТУ ВҮ 300220696.034-2005 на ОАО «Нафтан» и получаемый в процессе «Юникрекинг» фирмы UOP. Ряд НПЗ использует данный ценный продукт неэффективно, вовлекая в малосернистое котельное топливо. Пластификатор представляет собой смесь углеводородов высококипящих, выкипающую в интервале 350...530 °C, состоящую преимущественно из парафиноS B C C 5 O T T C C P C P C P

вых и нафтеновых углеводородов. Для исследований использовали образец с плотностью при 15° C 840 кг/м³, кинематической вязкостью при 100° C 5,05 мм²/с, массовой долей серы 0,001 % масс., температурой вспышки, определяемой в открытом тигле 220° C, фракционным составом: 10%об. перегоняется при температуре 390° C, 50% об. при температуре 430° C, 90% об. перегоняется при температуре 495° C, 95% об. перегоняется при температуре 515° C.

Приготовление смазочной композиции осуществляют в цилиндрическом смесителе с механическим перемешивающим устройством с регулируемым подогревом всей наружной поверхности путем смешения НМПЭ с ПОГ при массовом соотношении 70:30 при температуре (100±5) °С и переплавлении при данной температуре в течение 180 минут при постоянном перемешивании со скоростью вращения мешалки 60 об/мин и последующим охлаждении на воздухе до застывания при постоянном перемешивании. Смазочная композиция представляет собой однородную липкую термически обратимую высококонсистентную дисперсную систему вазелинообразного вида желтого цвета, стойкую к расслаиванию. В таблице приведены эксплуатационные свойства полученной смазочной композиции и промышленных аналогов.

Синтезированная смазочная композиция не содержит водорастворимых кислот и щелочей, выдерживает испытания по ГОСТ 6307, выдерживает испытание зашитных свойств в течение 24 ч при 50 °C по ГОСТ 9.054 (метод А). Проявляют хорошие адгезионные и консервационные (защитные) свойства, химическую стойкость, водо- и морозостойкость. Анализ химической стойкости по ГОСТ 21068 показал, что в течении 30 сут образец, погруженный 10%-ные водные растворы соляной и серной кислот, щелочи и соли не подвержен изменению массы и внешнего вида (отсутствуют трещины, вздутия, отслоения и др.). По большинству показателей синтезированная композиция, сходна с химически стойкой ЦИАТИМ-205, консервационной смазкой ГОИ-54п, и смазкой, защищающей от коррозии металлические изделия ПВК. Верхний температурный предел применения смазочной композиции 60 °C (оценен по температуре сползания), нижний температурный предел применения определен по динамической вязкости по ГОСТ 7163 и составляет выше минус 25°C (динамическая вязкость при этих температурах близка к 1500 Па с – максимально допустимая для смазок).

PolotskSu

Таблица Свойства смазочной композиции и промышленных аналогов

Показатели	Смазочная компо- зиция на основе НМПЭ и ПОГ	ПВК	ЦИАТИ М-205	ГОИ-54п	Метод испы- тания
Температура каплепадения, °С	73	не ниже 60	не ниже 65	не ниже 61	ГОСТ 6793
Пенетрация при 25°C, 0,1 мм за 5с	158	90150	не более 165	200245	ГОСТ 5346
Температура сползания, °С	60	не ниже 50	-	не ниже 48	ГОСТ 6037
Кислотное число, мг КОН/г	отс.	0,51	Не бо- лее 0,05	0,60,9	ГОСТ 5985
Испаряемость, за 1 ч при 100°C/150°C	0/ 0	0/ 0	1/ 15	13/	ГОСТ 9566
Окисляемость при 120°C за 10 ч, мг КОН/г	0,02	-	0,2	-	ΓΟCT 5734
Коллоидная ста- бильность, % масс.	3,9	менее 4	менее 4	менее 7	ГОСТ 7142
Коррозионное воздействие на металлы (5 ч при 70°C)	выдерживает (Ст., Al, Cu)	выдер- живает (Cu)	выдер- живает (Ст., Al)	выдержи- вает (Ст., Си)	ΓΟCT 9.080
Содержание, механических при- месей, % мас.	отсутствие	не более 0,07	не более 0,01	не более 0,015	ГОСТ 6570
Интервал применения, °С	-2550	-5050	-2050	-4050	-

Выполнены исследования антифрикционных свойств на испытательной машине на трение MMW-1A по схеме «три штифта (пальца) –диск». Подвижным образцом служил штифт из стали ШХ-15 закаленной с отжигом при 720°С с твердостью HRC 25-27. В качестве контртела (неподвижного образца) использовали диск из закаленной стали 45 с твердостью HRC 57. Испытания проводились при удельном давлении в зоне трения 1 МПа без пополнения смазочного материала. Штифт совершал возвратновращательное движение при скорости трения скольжения 2,58 см/с. На рисунке показана зависимость изменения коэффициента трения от пути трения для исследуемой смазочной композиции в сравнении с антифрикционной смазкой Солидол Ж (ГОСТ 1033) с температурой каплепадения 84°С.

Результаты анализа антифрикционных свойств, позволили установить, что до прохождения 2,8 м пути трения синтезированная смазка показывает более низкий коэффициент трения, чем Солидол Ж, однако при увеличении

DSXSTORY IN THE PROPERTY OF TH

пути трения коэффициент трения возрастает и по прошествии 34,8 м пути зарегистрировано «сухое» трению, вероятно, обусловленное возрастанием температуры в узле трения расплавлением образца и его смыванием с пар трения. Исходя из этого, предлагаемая композиция не рекомендуется к применению в качестве антифрикционной смазки.

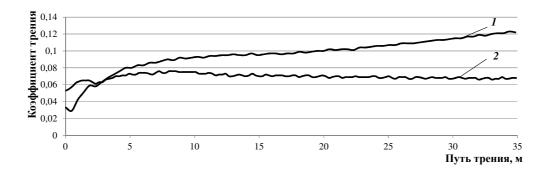


Рис. Зависимость изменения коэффициента трения от пути трения: 1 – смазочная композиция на основе НМПЭ и ПОГ, 2 – солидол Ж

Таким образом, по комплексу физико-химических и эксплуатационных свойств синтезированная смазочная композиция отвечают требованиям, предъявляемым к химически стойким, консервационным и защитным смазкам, однако исходные компоненты для их приготовления дешевле промышленно производимых аналогов (в сравнении со смазкой ЦИАТИМ-205 стоимость в 2 раза ниже).

Автор выражает благодарность за помощь в работе с испытательной машиной на трение Денисенку С.Ф. и Колесову Э.А.

ЛИТЕРАТУРА

- Булавка, Ю.А. Современные альтернативные направления промышленного использования низкомолекулярного полиэтилена / Ю.А. Булавка, Ю.С. Петровская, В.С. Ширабордина // Вестник Полоцкого государственного университета. Серия В, Промышленность. Прикладные науки. 2017. № 11. С. 103–110.
- Получение композиционных материалов на основе отходов нефтехимии и нефтепереработки / Ю.А. Булавка [и др.] // Нефтехимический комплекс. Науч.-техн. бюллетень. Приложение к журналу «Вестник Белнефтехима». – 2017. – №1(16). – С. 10–12
- 3. Нефтяные композиции на основе низкомолекулярного полиэтилена / Ю.А. Булав-ка [и др.] // Наука и инновации 2017. Т. 6. № 172. С. 31–33.