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Analogous neural networks are considered for which interneuronal (synaptic) connections evolve in time 

according to some dynamical law. Such a dynamics have been found for the synaptic efficacies that the 

corresponding network performs nonlinear optimization. Minimizing function can be chosen in such a way that 

learning and retrieval of patterns are easily done. Neural networks are designed able to self-learning, i.e. 

parameters of such a system are adjusted due to an intrinsic network dynamics so as to ensure learning signals 

received and no external agents (teachers) are necessary to train the network. The above networks can be 

supplemented by a specific neural network with evolving synaptic couplings that function as a detector of novelty 

in such a way that an incoming signal is kept intact, if it is linearly independent on patterns received by the 

system in the past, and put it to zero otherwise. 

 
A recent advance in grasping mechanisms of information processing by neural systems is considerably 

affected by the known paper of Hopfield [1] paved the way for analytical treatment such systems due to concepts 

and methods of statistical physics and other  theoretical  tools  since  Hamiltonian-like functions have been 

introduced both  for binary [1] and analogous [2, 3] neural networks. Most of works in this research area treat 

neural networks as systems characterized by the only type of dynamical variables – states of neurons, while 

synaptic connections between neurons are taken to be rigid (constant in time) during the network evolution. (The 

synaptic efficacies are modified in a learning process but the latter is usually considered separately from the 

network dynamics). 

Although a certain progress has been achieved due to the Hopfield model (see, e.g., [4]), a huge number 

of problems is still open on the way towards both understanding brain mechanisms and designing neuro-

computers. One possible way out is to study generalizations of the Hopfield models. Some results along such a 

line of modifications as analogous networks with asymmetric interneuronal connections are given in [5]. The 

direction of improving facilities of neural networks adopted in this paper is exploring analogous networks with 

symmetric synaptic efficacies which evolve in time in accordance with some dynamical law. 

Some works have been done in which networks have flexible synapting couplings. So, investigations of 

the so-called unsupervised learning are aimed to describe how synapses evolve in time with available local 

signal information (see, e.g., [6] and references therein). In the area of pattern recognition, e.g., such systems 

adaptively cluster patterns into classes. Learning and recognition of temporal sequences of patterns were studied 

in a model with randomly delayed interactions [7]. A «brainwashing» algorithm have been proposed [8] for 

modification of interneuronal connections in a context of development and self-organization of neural networks. 

The approach of the present work consists of three stages. First I find such a dynamics of synaptic 

connections that the corresponding network fulfils nonlinear optimization, i.e. minimization of a given arbitrary 

nonlinear function. This task is interesting itself and important in view of a broad area of applications. (For 

another approach to nonlinear optimization by electrical circuits which are close to neural networks see [9] and 

references therein). The second step is application of the above networks to associative memory goal. Namely,  

I show that functions for minimization can be chosen in such a way that learning and retrieval of patterns are 

easily done. Further I design systems able to adaptive learning or self-learning. This means that parameters of 

such a network are adjusted due to the usual (intrinsic) network evolution so as to ensure learning signals 

received by the system and no external agents are necessary to train the network. Finally a specific network is 

proposed with evolving connections that functions as some kind of detector of novelty selecting incoming 

signals which are linearly independent on signals received in the past. 

Consider a network composed of N  neuron-like elements whose states evolve in time according to the 

equations [3]: 

1

N

i i i ij j i

j

u u T I ,        1,i N .                                                        (1) 

Here the variable 
i iu u t  describes the state of neuron i  at time t , the positive parameter i  characterizes its 

properties, the synaptic efficacy ijT  determines strength of influence of the output of the j -th neuron j on the 
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input of neuron i  through their interneuronal (synaptic) connection, 
iI  is some any other (e.g., sensory) input 

to neuron i . The neuronal variables 
i
 and 

iu  are connected by an instantaneous input-output transfer 

function 
if , i.e. i i it f u t .  

This function is normally taken to be a monotone sigmoid and therefore positive parameter  controls its 

maximal slope. As is shown in [3] (see also [2]) the quantity 

1

0

1 1

2

i

ij i j i i i i

ij i i

T I d f                                                (2) 

is a Hamiltonian-like function for the system, i.e. it plays the role of a  global Lyapunov function, if the matrix 

ijT  is symmetric and constant in time. 

In contrast to [2, 3], I consider the case when the 
ijT  and iI  evolve in time in such a way that 

ij i jT GG ,   i iI G ,    , 1,i j N .                                                     (3) 

Here 
i iG  is a component of the gradient of some (nonlinear) function , 

1, , N
;  is 

some positive constant or function and , is such a function of the scalar product G  that the 

conditions 0 , R  and 0 0  are satisfied. Then it is easy to prove that the function  is again 

a Lyapunov function for the system and 0  if const  and 0G . This means that our network 

converges to such a stationary point that the necessary condition for a local extremum of the function  is 

held. Therefore such a network can be used for nonlinear optimization. 

The discrete-time counterpart to the system (1) writen in the form [10] 

1

1

t N
t t ti

ij j i

ji

u
T I

R
,      1,i N ,..    0,1t                                              (4) 

can be treated as well. Indeed, introducing new variables t

ix  by the relations 1 1t t t t

ij j i i iT x u R I  and 

redefining the ijT  and iI  so as 1t t

ij ijT T  and 1t t

ij iI I , we recast eqs.(4): 

1 1 1t t t t

i i ij j i

j

x F T x I ,       1,i N , 0,1t                                     (5) 

where 
i i iF z f R z  with z  dummy argument. Take the discrete-time analogs of eqs. (3) 

1t t t t t

ij ij i jT T G G , 1t t t t

i i iI I G ,                                               (6) 

where 
tx x

t

i iG x x . Then we can construct the global Lyapunov function for the system: 

1

0

1

2

t
ix

t t t t t t

ij i j i i i

ij i

T x x I x dzF z , 

which is similar to eq.(2). We find that 0t
 and 0t

 if 
tx const  and t

t

x x
G x  for all time 

moments t  after some 
*t . (For more detail about nonlinear optimization by the networks above formulated, 

some possible applications and ways of hardware implementation of the networks see [11]). 

Now turn to the problem of autoassociative memory. Suppose that a prescribed set of patterns represented 

by the vectors of the network state 1, , p  should be memorized. Then it is enough to construct such a 

function x  that every  is a local minimum of x .  
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It is obvious that this task can easily be solved in a number of ways. E.g., we can take such quadratic 

functions as  

2

,x c x  or 
T

x x Q x                                   (7) 

with appropriately chosen c  and Q . 

Mention main features of such a memory: (i) Number of memorized patterns p  can be arbitraryly large 

(cf. with the Hopfield model for which p N  [4]). (ii) Basins of attraction around the patterns and rate of 

convergence towards them can be controlled (to some extent, of course). (iii) Full phase space of such a network 

can be used for storage of information. All these properties are achieved by appropriate «gardening» of the 

landscape of the minimizing function x . 

Now we are in a position to design systems able to adaptive learning or self-learning. Indeed, consider a 

network which evolve, e.g., in discrete time in such a way that its dynamics is given by the equations 

1 1 1t t t t t

i i ij j i i

j

x F T x I ,     (8) 

1 ,t t t t t

i i iГ z к Г z z                                                                  (9) 

and by eqs. (6) in which 
t t t

i iG Г x . Here t  and t  are input (sensory) signals incoming  to the system (they 

can be related with each other; e.g., a simple reasonable variant is ;t t t

i i iF к  is a constant or function 

restricted by the condition 0 1tк . The variable z  belongs to the phase space of the network so that eq.(9) 

together with the assignment 
t t t

i iG Г x  means iterative computation of the function Г z  which brings the 

current value of the gradient for the motion of the system. A simple underlain picture is that our network evolves 

in such a way that a minimizing function z  is iteratively calculated according to the relation  

1 ,t t t tz к z z .    (10) 

Then 

t t

i iГ z z z , , ,t t t

i iz z z . 

It is obvious that the increment term , tz  should be chosen so as to ensure a required form for the t z  (in 

particular, ,0 0t z ). E.g., in order to obtain the quadratic function (7), we put 

,
T

t t t tz z Q z  

and therefore 

, 2t t t t

i ik k k

k

z Q z . 

Analyse behaviour of a network described by eqs. (8), (9), (6). First consider the case when 0  but 0 . 

We see that forming the function Г z  takes place, i.e. this regime is learning the system (iterations of x , T  

and I  are idle). 

A second particular situation is 0  (but 0 ). Since 1tк  and ,0 0z , then eq. (9) yields a 

slow decay of the Г z , i.e. forgetting the stored information (this phenomenon presents  permanently in 

our model). 

Suppose that incoming signal  is such that the network state x  becomes close to a memorized pattern  

(after some time). Then, due to the intrinsic dynamics of the system discussed above, the state converges to the 

fixed point  This is nothing but retrieval of stored information. 
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In a general case when both 0  and 0  such a network displays a more complex behaviour 

accompanied by learning, forgetting, remembering and other transforming patterns. 

The networks above discussed may be improved in different ways. E.g., we can supplement such a 

system by some kind of detector of novelty filtering input information. So, let an incoming signal  be 

transformed so as t t t

i i
, where t t td , 1x , if 0x  and 0x  if 0x , t t td D  and 

matrix D  evolves in time in accordance with the iterated map 

1

t t

i jt t

ij ij t t

d d
D D

d
,  

ij ijD ,  , 1,i j N . 

Then using results of [12] one can show that the input signal is kept intact if it is linearly independent on the 

previous signals and the t  is changed to zero if it is a linear combination of signals received by the network in 

the past. The system just above described can be viewed as some kind of neural networks whose synaptic 

efficacies 
ijD  evolve in time. 

The results above reported clearly show that generalization of neural networks to systems with evolving 

interneuronal connections open new possibilities for information processing. 
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