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Abstract—A method of correlation search for binary objects in images by factorizing raster matrices is pro-
posed. A mathematical apparatus for factorizing raster binary matrices is considered. An expression for the 
upper bound of computational complexity of a 2D correlation function is obtained. An algorithm for detecting 
objects rotated by 180° relative to the horizontal axis without additional computational costs is developed. The 
results of experiments are presented. 

1. INTRODUCTION 
A search for objects in images is one of the key 

problems in visual data processing applications [1-3]. 
Conventional procedures for detecting objects employ 
correlation algorithms realizing all the advantages of 
the maximum-likelihood method. A correlation func-
tion then characterizes the degree of matching of the 
objects compared [3]. 

One of the main methods for detecting objects is the 
template matching method [4, 5]. All the objects in the 
image are compared to the template by scanning the 
image, usually from left to right and from top to bot-
tom. The estimate is based on mutual correlation of the 
input and template images [6]. 

Formally, the correlation processing of images con-
sists in calculating a 2D vector-matrix product (VMP) 
and analyzing the values of the correlation matrix 
obtained. However, the correlation methods are sensi-
tive to the object's rotation and scaling, which requires 
a large number of templates and increases the computa-
tional burden of determining the correlation functions. 
To overcome this shortcoming, one can use various 2D 
transforms which substantially reduce the number of 
multiplications and additions necessary for calculating 
the correlation function [7, 8]. The diminishing of the 
computational costs is attained by synthesizing fast 
algorithms for digital processing based on expansion 
(factorization) of the original matrix in a series of 
sparse matrices. Such an approach is possible for the 
major part of the existing algorithms employing double 
transforms [7, 8]. 

In many systems, an image is represented in a binary 
(black-and-white) format. In processing of binary 
images, the use of the above transforms leads to addi-
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tional computational costs caused by application of com-
plex arithmetics, arithmetics of digital rings, or alternative 
mathematical structures. Therefore, the correlation func-
tions of binary images can be calculated more effectively 
by direct approaches based on factorization of the raster 
matrices of the template images [1,9,10]. 

In this work, we present a method of the correlation 
search for images employing factorization of the raster 
binary matrices. This method does not require addi-
tional additive calculation of the elements of the corre-
lation matrix and enables one to detect an object iden-
tical to the template and rotated by 180° relative to the 
horizontal axis. We also present the results of experi-
ments, 

2. SEARCH FOR THE OBJECTS IN AN IMAGE 
BY A DIRECT APPROACH 

Let us introduce definitions. 
The /?th leading diagonal of a rectangular matrix [A] = 

{al7}w i = I 7 M j = ,M<N, andp = (0, ...,N -M) 
is the diagonal formed by the elements ( a i J = i + p ) . 

The pth secondary diagonal of a rectangular matrix 
[ A ] = { a y ) , i = T j t i , j = U N , M < N, a n d p = ( 0 , . . . , 

N - M) is the diagonal formed by the elements 
( ' a M - i + i J = /+/?)• 

Consider a problem of the correlat ive search for a 
given object A - [я,у] of size n x n in an image D -
{dfj} of size Nx N. An elementwise comparison of the 
pixels of the object and the image involves an extrac-
tion of the group of elements in the image of the size N 
x n. Then, the search for an object A in the extracted 
block Dx = { d i j } , i = 1, N , and j = 1, и is reduced to 
determining the correlation of the rows of the object 
and the image. Mathematically, such a procedure repre-
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sents a multiplication of the transposed matrix of the 
extracted block by the matrix of the object: 

H = Ax DT
U 

where [H] is the matrix of the correlation coefficients of 
the rows in the extracted fragment and the object. 

The aim is the detection of the object as a whole. 
Therefore, an object^ is detected in the extracted block 
D{ if n rows in [A] sequentially coincide with n rows in 
[Д] . The above condition is satisfied if the maximum 
correlation coefficients are obtained. These coefficients 
must lie at one of the leading diagonals of the matrix 
[//], which formally follows from the definition of the 
product of two matrices. The starting position of A in 
D{ depends on the position of the first element of the 
/?th diagonal. 

The selection of the p\h diagonal with maximum 
elements in the matrix H is equivalent to analyzing the 
elements of the vector [X] represented as 

n 

Xp = (i) 
i = i 

A decision regarding the presence of the object^ in 
the pth zone of the block Dx is made by comparing the 
elements of the vector [X] with a threshold level 
related to the signal-to-noise ratio in the image D. 

In practical applications, it is often necessary to 
search for an object rotated by 180° relative to the hor-
izontal axis. In matrix representation, a rotation of the 
object^ by 180° relative to the horizontal axis is equiv-
alent to a simple permutation of rows. For an object of 
size m x n occupying the rows ranging from i to к in an 
image of size M x N , the rotation is equivalent to sub-
stituting the kth, ( k - l)th, ( k -2 ) , etc., rows for the ith, 
(/ - l)th, (/ - 2), etc., rows, respectively. If m * 0, the 
row with the number (/ + k)/2 remains unchanged. 

In the matrix form, the transposition of a row from 
the ith position to the yth one can be done by multiply-
ing on the left the original matrix by a permutation 
matrix given by 

[P] = 

Hence, the correlation matrix H* of the object A 
and a fragment D{ of the image is calculated with 
allowance for the rotation of the object by 180° relative 
to the horizontal axis as 

[ # f ] = [A(PxP2...PmDx)T]. 

It is known [11] that [FG]T= [G^Ff-, therefore, 

[Z/f] = [AD\p\PT
2...PT

ml 2] 

= [HxP\PT
2...PT

mi 2]. 

Hence, it is possible to detect the rotated object by 
analyzing the correlation coefficients lying at the pth sec-
ondary diagonals of the matrix [Hx] based on the analysis 
of the elements of the vector [Y] represented as 

i 

Ь = ^ K j - I + p- ( 2 ) 

i = m 

The algorithm of searching for the objects based on 
direct matrix multiplication involves the following 
steps. 

(i) Extraction of the first fragment D{ = dy of size 
Mxn, i = 1, M and j= 1 ,n in the left-hand side of the 
raster image. 

(ii) Multiplication of the matrix of the extracted 
fragment D\ by the matrix of the template A. 

For calculating the correlation functions of the two 
raster binary matrices by VMP, we take into account 
that 0 and 1 are inverse symbols in terms of the raster 
binary data and introduce the following conditions: 

0 x 0 = 1, 1 x 0 = - 1 , 0 x 1 = - 1 , l x l = 1. (3) 

(iii) Analysis of the values of the elements in the 
obtained correlation matrix [//] = {/r,j} using expres-
sions (1) and (2). 

(iv) A shift to the right by one element in the image, 
selection of the next fragment of the size n x M and trans-
fer to step (ii) if the number of shifts is less than (N- n). In 
the opposite case, the procedure is terminated. The total 
number of the fragments analyzed is ( N - n + 1). 

Example. 

1 1 1 1 1 1 
0 1 1 1 1 0 
0 0 1 1 0 0 
0 1 1 1 1 0 
0 0 1 1 0 0 
0 0 1 1 0 0 

1 

д 

— '1-
• 

! 

-A ith row 

1 
-0 /th row 
: 1 

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 12 No. 3 2002 



CORRELATION SEARCH FOR BINARY OBJECTS IN IMAGES 269 

D = 

0 0 0 0 
0 0 0 0 
1 1 1 1 
0 1 1 1 
0 0 1 1 
0 1 1 1 
0 0 1 1 
0 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 1 1 
0 0 1 1 
0 1 1 1 
0 0 1 1 
0 1 1 1 
1 1 1 1 
0 0 0 0 
0 0 0 0 

0 0' 1 1 1 
0 ojo 1 1 
1 110 0 1 
1 0|0 1 1 
0 0|0 0 1 
1 010 0 1 
0 olo о 0 
о o'o о 0 
о o'o о 0 
0 oj 1 1 1 
0 0,0 1 1 
0 0,0 0 1 
1 0|0 1 1 
0 010 0 1 
1 olo 0 1 
1 11 о о 0 
о o'o о 0 
о ojo о 0 

1 1 1 0 0 0 
1 1 0 0 0 0 
1 0 0 0 1 1 
1 1 0 0 1 1 
1 0 0 1 1 1 
1 0 0 0 1 1 
0 0 0 1 1 1 
0 0 1 1 1 1 
0 0 0 0 0 0 
1 1 1 0 0 0 
1 1 0 0 0 0 
1 0 0 0 0 0 
1 1 0 0 0 1 
1 0 0 0 0 1 
1 0 0 0 1 1 
0 0 0 0 0 1 
0 0 0 0 1 1 
0 0 0 1 1 1 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 о 0 
0 0 0 
1 о 0 
1 1 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 о 0 
1 о 0 
1 1 0 
1 о 0 
1 1 0 
1 1 1 

Based on the algorithm proposed, the search for 
object A in image D involves the analysis of the ele-
ments of correlation matrix H obtained by multiplying 

a raster image of object A by fragments D x , . . . , Dl3 of 
the image analyzed. For fragment D], correlation matrix 
[Я0] of size 6 x 18 is written as 

[#o] = 

- 6 - 6 6 2 - 2 2 

- 2 - 2 2 6 2 6 
2 2 - 2 2 6 2 

- 2 - 2 2 6 2 6 
2 2 - 2 2 6 2 
2 2 - 2 2 6 2 

- 2 - 2 - 6 - 6 

2 2 - 2 - 2 
6 6 2 2 

2 - 2 - 2 

6 2 2 
6 2 2 

- 2 2 

2 6 
6 2 
2 6 
6 2 
6 2 

- 2 2 6 - 6 - 6 

2 6 2 - 2 - 2 

6 2 - 2 2 2 
2 6 2 - 2 - 2 
6 2 - 2 2 2 
6 2 - 2 2 2 

Then vectors X and Y corresponding to matrix [#0] 
are represented as 

X = [4, 8, 36, 16, 16, 16, 12, 8, 8, 16, 4, 16, 12]. 

Y = [12, 16, 4, 16, 8, 8, 12, 16, 16, 16, 36, 8, 4]. 
The analysis of the correlation functions shows that 

the object identical to the template and the object 
rotated relative to the horizontal axis start from the third 
and 11th rows of the fragment processed, respectively. 

To reduce the number of necessary operations, we 
use the following property: the calculation of a 2D cor-
relation can be represented as a series of calculations of 
one-dimensional correlation functions of the image and 
template rows, i.e., as a VMP calculation. In this case, 
the computational costs of multiplying a vector by a 

binary matrix can be decreased by expanding (factoriz-
ing) the original (template) matrix in a series with 
respect to sparse matrices, whose rows contain no more 
than two data elements, and a sequential multiplication 
of the vector formed by each row of the processed frag-
ment by each matrix of the expansion. 

3. BASIC NOTIONS OF FACTORIZATION 

Let us introduce definitions necessary for factoriz-
ing raster binary matrices. 

A binary image matrix or raster binary matrix is a 
matrix [A] of size Mx N with the elements ai} =1,0, 
i = I~M andy = I j V . 
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Zero and unity are the information elements (sym-
bols) of the raster binary matrix [А]. 

The elements of the /th row of raster binary matrix 
atj = 0(1) and aik = 1(0) are called inverse (opposite). 
The inversion is treated in terms of representation of the 
raster binary data. Then, row a, is inverse to row ak if all 
the elements of the former are opposite to the elements 
of the latter. 

Each row of a sparse raster binary matrix [£>] con-
tains at least one information symbol; other positions 
are vacant. There is no notation for the vacant positions 
of matrix dy. The absence of the information symbol 
allows elimination of the corresponding position from 
processing. 

For the sparse matrices, row a, is inverse to row ak if 
all the information symbols of the former are opposite 
to those of the latter. 

Let us introduce the rules for multiplying elements 
of the sparse raster binary matrices with allowance for 
the alphabet proposed: 

0 x 0 = 1 , 0 x 1 = 0 , 1 x 0 = 0, 1 x 1 = 1. 
The absence of the information symbol in position 

(if) allows skipping the multiplication of this element 
by the element whose position is determined by the 
rules of VMP calculation. Such a position is not taken 
into account in multiplying sparse raster binary matri-
ces. 

Statement 1. Any raster matrix [A] of the size MxN 
containing zeros and unities can be represented as a 
product 

[A] = [ D ] x [ B ] , 

where В is a matrix with size N x x N , NV<M derived 
from matrix [A] by eliminating repeating and inverse 
rows and D is a matrix of size MxN{ containing the fol-
lowing elements: 

d„ = 

1 if bj = ai 

0 if bj = - a , (4) 

otherwise, the information symbol is absent. 

Statement 2. Any raster matrix [A] of size Mx N con-
taining zeros and unities can be represented as a prod-
uct of h sparse raster matrices with block-diagonal 
structure, each of which contains no more than two 
information symbols in a row (h = Llog2jV J + 1, where 
L*J stands for the nearest integer). 

Proof. Let us represent matrix [A] of size M x TV as 

[A] = [ A i : A 2 l . . . ' A p \ • j - (5) 

where [AJ], { j = 1, p } is a matrix of size Mx к; к is an 
arbitrary integer; and [Ap+ (] is a matrix of size M x 
(N - kp). Using the first statement, one can represent 
matrix [.AT] from expression (5) as 

Mr] = 
A\ 

Ap + | 

B \ D ] 

[_BTp+ I 1_ 

It is known that 

Mr] = 

Hence, 

' F \ v ( ' v\ 

f p + 1 VT y p+1_ FT Г p+ I YTP+ L 

[A] = [ D , \ D 2 \ . . . ] D p + l J 

В p= и 

= [ W ] x [ Q l 

In matrix [W\, we group the neighboring blocks in 
pairs: 

Proof. The validity of the statement is evident, since 
matrix [D] represents a combination of the permutation 
matrices, which position the rows of matrix [5] in matrix 
[A] with inversions or repetitions. Each row of [D] matrix 
contains a single information symbol. The multiplica-
tion of the sparse matrices makes it possible to prove 
the validity of the first statement: 

1 1 1 
1 0 1 

1 1 1 1 
1 0 1 1 
0 1 0 = 0 
1 0 1 1 
1 1 1 1 

[W] = [ D : u D 2 ' : D 3 u D 4 : . . : : D p + l J 

" \di\d2.i — irfj]' 

where F = К 
2k 

Apparently, matrix [W\ = ^ ; d2 •... c a n a l s o b e 

represented as a product of two multipliers. One of them, 
[QJ, exhibits block-diagonal structure: 

[W] = [ W y ] x [ Q x \ . 
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Matrix Wx can be transformed in a similar way. 
Finally, the original matrix can be represented as a 
product of h = Llog2Ar J + 1 sparse multipliers: 

Ш = [ О к ] ] \ [ С , ] 9 where [CJ 
i = 1 

B( 1) 

В (2) 

Б 0>) 
p = L 

Л = 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 0 0 1 1 1 
1 1 0 0 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

1 
1 

1 0 

1 1 
1 1 

0 1 

1 1 
0 1 

1 1 
1 1 
1 0 

[£,] is a modified matrix corresponding to the zth step 
of factorization of the given matrix (submatrix) p, and 
[Ц] is the permutation matrix formed by condition (3) for 
the ith step of factorization. 

4. ALGORITHM OF FACTORIZING RASTER 
BINARY MATRICES 

Using the above definitions and theorems, we can 
propose an algorithm of factorizing an arbitrary raster 
binary matrix [A] of size MxN. 

(i) Matrix [A] is partitioned into blocks Aj contain-
ing pairs of the neighboring columns. The number of 
blocks is P = L(N + l ) /2 l 

(ii) For each block Aj9 we form an auxiliary matrix 
[Bj] by eliminating repeating and inverse rows accord-
ing to Statement 1. The first multiplier of factorization 
is formed from [Bj] matrices and exhibits block-diago-
nal structure in agreement with Statement 2: 

[W] = diag[ B j l 

(iii) The second multiplier in factorizing [£>] with 
blocks Dj is derived from auxiliary matrices [Bj] and 
the blocks of matrix Aj. For this purpose, we compare 
each row of block Aj with the rows of Bj according to 
Statement 1 and obtain element (dy) by expression (4). 

(iv) The neighboring blocks of Dj are grouped in 
pairs, which yields a new partition of matrix [£)]. The 
number of nonzero elements in each block does not 
exceed 2. 

(v) Steps 2-4 of the algorithm are repeated. The pro-
cedure is terminated after Llog2ArJ steps of factoriza-
tion. 

Using the algorithm proposed, one can represent the 
matrix [A] as a product of sparse matrices-multipliers: 

In the representation of an object as sparse raster 
binary matrices in a correlative search for objects in an 
image, only the first iteration employs the rule of mul-
tiplication (3). The output data of the first iteration rep-
resent correlation coefficients К for the matrix frag-
ments. The operations of the subsequent iterations 
employ the rule of multiplication (3): 

0 x K = - K 9 1 x K = K . (6) 

The absence of an information symbol in a position 
of a sparse binary matrix [A] makes it possible to omit 
the multiplication by the element (whose position is 
determined by the VMP regulations) of an intermediate 
correlation matrix [Н]. The corresponding position is 
not taken into account in calculations of the correlation 
values. 

5. ESTIMATION OF THE UPPER BOUND 
FOR THE COMPUTATIONAL COMPLEXITY 

OF THE CORRELATIVE SEARCH USING 
FACTORIZATION OF RASTER MATRICES 

OF TEMPLATES 

Factorization enables one to represent a raster 
binary matrix of size Nx N as a product of sparse matri-
ces with block-diagonal structure. Here, each of the 
matrices-blocks contains no more than two informa-
tion symbols per row. Therefore, the number of addi-
tions and subtractions does not exceed the total number 
of rows in the matrices-multipliers. 

In the general case, the maximum number of rows Z 
in a block of a matrix-multiplier depends on the num-
ber of various binary numbers in the block excluding 
inversions. Note that the number of rows cannot be 
greater than N. Hence, the number of operations for the 
ith multiplier is represented as 

4 
22'-l i f 2 2 ' - \ < n 

lN if 2 2 ~ 1 > N ; i = 1, A; h = [ toga t f j . 

The number of blocks in a matrix is given by 

Pi = 

if N = 0 mod 2' 

+ 1 if N * 0 mod 2'. 
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S/Smax N = 25 N= 26 N = 27 N = 2S N = 29 W = 210 

l.Or 

0.9 

0.8 

0.7 

more than N 
( - - о v m / 

additions and subtractions, 

where L* J is the nearest integer, N is the number of rows 
(columns) in the original square matrix, and m is the 
number of columns in the block-matrix. With allow-
ance for expression 

additions and subtractions necessary for calculating VMP 
is represented as [12] 

where n = log2N. 

The computational complexity is defined as 

* = s u n 
m V[_ m J J 

(7) 

It is seen from this expression that the computa-
tional complexity substantially depends on m for the 
given size of the matrix. 

To determine an optimum size m of the block for the 
given size of matrix N x TV, we use expression (7) as an 
objective function. The terms of a series К = f(m) [13] are 
well approximated by a function К == 0.91 x 2°93m. In this 
case, the objective function S is written as 

S(m) = 0.91 x 2 0.93 m 

4 5 6 7 8 9 10 11 
m 

Fig. 1. Plots of the ratio of the current and maximum com-
plexities of VMP calculation versus the number of columns 
in submatrices for N x N matrices (N= 2"). 

The number of operations necessary for calculating 
the product of a segment of an input vector-signal by 

blocks of size N x m is — k, where k is the number of 
\ m ) 

additions and subtractions (with allowance for partial 
sums and inversions) necessary for calculating a prod-
uct of the segment of the input vector by the block-
matrix. 

The further stage of multiplying a vector by a matrix 
by the factorization algorithm implies summation of 
the products of the input vector segments by the 
blocks-matrices. Thus, the VMP calculation involves 
both inner (multiplication of the input vector by the 
blocks-matrices) and outer (summation of the results 
of inner calculations) procedures. 

The summation of the results of multiplying the 
input vector segments by the blocks-matrices needs no 

m (Is И (8) 

The optimization of partitioning into blocks is 
reduced to determining the minimum of the computa-
tional complexity S =J(m) for the given N. 

Let us differentiate expression (8): 

dS 0.91 x 2093w x 0.93 ln2 xm- 0.91 x 2°'93m 

dm 

N _ (0.59m-0.91)2 0.93 n -N 

m m 

The minimum of function S = J[m) is attained for 

= 0. Therefore, 
dm 

(0.59m-0.91 )2093'" = N. (9) 
By taking the logarithm of expression (9) and 

approximating log2(0.59 w — 0.91) by the least-squares 
method with a linear function (Am + B) for m e [3-И0], 
we obtain 

0.93m + 0.377w- 1.099 == log2W. 

Then, expression 

m = 0.7651og2tf+0.84 (10) 

< m < л, the total number of 

determines the optimum size of the block for the given N. 
Of practical interest are only the integer values of m 

nearest to the optimum obtained. Therefore, for deter-
mining the real size, expression (10) can be rewritten as 

|0.7651og2tf+0.84| = i a - 1 . (H) 
A graphical analysis of the dependence of computa-

tional complexity of VMP calculations on various 
quantities for the given size of the square matrix (Fig. 1) 
proves the validity of expression (11). 

Table 1 summarizes the data regarding the number 
of operations necessary for calculating 2D correlation 
by various methods based on double transforms and by 
direct methods of matrix multiplication. Analysis of the 
data presented shows that the use of factorization in cal-
culations of 2D correlation decreases computational 
costs (in comparison to the basic methods) for tem-
plates of a size no greater than 256 x 256. 
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Table 1. The number of additions and subtractions in calculation of 2D correlation 

273 

NxN 
Agarval-

Cooley algo-
rithm 

Reider-
Breiner FFT 

Algorithm 
based on 

polynomial 
transforms 

Nussbaumer 
algorithm 

Algorithm 
employing 
NFPT and 

OFFFTSB* 

Direct 
approach of 

matrix multi-
plication 

Algorithm 
based on fac-

torization 

Algorithm 
based on fac-

torization 
and parti-

tioning into 
blocks 

16 x 16 11 580 8192 6676 6628 6844 3840 1792 1792 
30 x 30 60260 - - - - 26 100 1 M50 9450 
3 2 x 3 2 - 46 336 35 828 35 800 35516 31744 10240 10 240 
4 8 x 4 8 - - - - - 108 288 34 560 31795 
6 0 x 6 0 384 500 - - - - 212400 64 800 56 880 
6 4 x 6 4 - 241 152 196212 194 820 174 780 258 040 77 r 824 68 812 
7 2 x 7 2 700 352 - - - - 368 064 108 ;864 97 459 
8 0 x 8 0 1 134 750 - - - - 505 600 147 '200 126 720 

120 x120 2 927 040 - - - - 1 713 600 457 200 379 200 
128x128 - 1 190912 955 342 948 100 830 140 2 080 768 524 288 463 667 
240 x 240 - - - - - 13 766400 2 822 400 2 633 142 
256x256 - 5 675 008 - 4 739 204 3 844 796 16711 680 3 3421336 3 099 852 

1 Algorithm employing Nussbaumer fast polynomial transforms and odd-frequency fast Fourier transform with split base. 

6. COMPUTATIONAL COSTS 
OF PROCESSING REAL IMAGES 

For estimating the real computational costs, we used 
images of various structural complexity shown in Fig. 2. 
Table 2 summarizes experimental data. 

Analysis of the results shows that the real computa-
tional costs of using matrix factorization is a few times 
less than the maximum costs necessary for images of 
arbitrary sizes, The benefits depend on the image struc-

ture: the higher the regularity of the structure, the 
greater the benefit. 

The proposed algorithm allows one to detect objects 
of arbitrary sizes in images of various format. The com-
putational costs of calculating the correlation functions 
depend on the format of the image processed, the size 
of the object, and the number of operations necessary 
for multiplying a vector by a factorized matrix of the 
object. It is expedient to consider an optimum represen-

Fig. 2. Images with various structure regularity. 

PATTERN RECOGNITION AND IMAGE ANALYSIS Vol. 12 No. 3 2002 



274 ABLAMEYKO et al. 

The results obtained show that minimum computa-
tional costs correspond to the search for an object of 
book format in the image. To reduce the computational 
costs of the search for rectangular objects, one should 
use album format. 

7. EXAMPLES OF THE PRACTICAL 
APPLICATION OF THE ALGORITHMS 

Nowadays, the search for objects by comparison 
with the template is used in controlling photomasks, 
chips, and printed boards. It is known that the quality of 
manufacturing of photomasks is better controlled than 
that of chips or printed boards. Therefore, the quality 
control of photomasks can employ the correlation 
method of comparing the image processed and the tem-
plate. This method implements all the advantages of the 
maximum-likelihood method and enables one to detect 
objects with minimum deviations from the template. 
A high-quality photomask should be identical to the 
template. After preprocessing, the photomasks are pre-
sented in binary format. Thus, the photomasks can be 
classified as high-quality or low-quality ones based on 
the above correlation algorithm of the search for the 
objects. The computational costs can be decreased by 
preliminarily factorizing the raster matrices of the tem-

Table 2. Real number of operations in calculation of 2D correlation 

Type of the image 
processed 

NxN Type of the image 
processed 3 2 x 3 2 6 4 x 6 4 128 x128 256 x256 512x512 

(a) 4832 30 592 174464 906 752 2 138 624 

(b) 9248 54400 278 272 1 300 736 2918912 

(c) 9408 55 744 312832 1 558016 3 500032 

(d) 8800 60288 350 336 1 807 360 4 035 072 

(e) 8448 56 256 342 912 1 871 360 4 203 008 

(f> 5859 26 752 73710 205 275 576919 

(g) 8448 55 616 370 688 2 472 960 16 204 800 

(h) 7296 42 088 184 832 695 808 1 713 152 

Fig. 3. A decrease in the computational costs relative to the 
upper bound. 

tation of the format and template. Based on the experi-
mental data, we present the number of operations nec-
essary for a correlative search for the objects of book 
and album formats (see Table 3). 

Table 3. Computational costs of the search for rectangular objects 

Object size 
Image size 

Object size 
400 X300 300 x 400 700 x 300 300 x 700 

3 2 x 2 1 6 36 006000 58 774 500 63 010500 154 084 500 
2 1 6 x 3 2 48 806000 48 154 500 81 910500 87 305 500 

5 4 x 2 1 6 46 614 000 76090 500 81574 500 199480 500 
2 1 6 x 5 4 81 312 400 85 674 300 142 296 700 159 744 300 
108x216 64 512 000 105 984 000 112 896 000 278 764 000 
216 x108 122 593 600 139 585 200 214 538 800 iS2 505 200 
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Fig. 4. Results of the search for high-quality photomasks. 

plates. The factorization makes it possible to store ras- depends on the noise intensity and the threshold value, 
ter matrices of binary images as sparse matrices-multi- Filtration algorithms can diminish the noise intensity, 
pliers, which significantly reduces the computational although the corresponding procedures increase the 
costs. computational time. 

Figure 4 shows the results of the search for high-
quality photomasks based on calculating the correla-
tion function of the fragments of the image processed 
and the template photomask (Fig. 5). The correlation 
coefficient is assumed to be equal to unity. In this case, 
one can detect only objects completely identical to the 
template. Figure 4 also shows enlarged low-quality 
fragments of photomasks. 

In practice, it is sometimes necessary to detect an 
object in the presence of noise or interference. Gener-
ally, the search for objects in a noisy image can be 
defined as comparison of a certain threshold number to 
another number obtained by mathematical transforma-
tion of the description of the analyzed fragment and the 
template. For the proposed algorithm employing fac-
torization of matrices, the decision regarding the pres-
ence of the object is made from expressions (1) and (2). 
The adequacy of object detection is characterized by 
the probabilities of nondetection and false detection. 
False detection owing to a blurred correlation peak is 
typical of gray-scale images. Its probability can be 
diminished by normalizing mutual correlation of the 
template and image fragment. For binary images, the 
maximum of the correlation function is much sharper. 
In addition, the probability of false detection substan-
tially depends on the presence of extraneous objects 
similar to the template. The probability of nondetection 

1s t -H 

№ I t Qffi 
Fig. 5. Template photomask. 

(a) 

Fig, 6. Results of detecting arbitrary objects: (a) object and 
(b) image processed. 
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(a) (b) (c) (d) 

Fig. 7. Templates of objects for detection. 

(e) 

Fig. 8. Noisy images with the noise amplitude (a) 5, (b) 10, (c) 20, and (d) 30%. 

That is why it is expedient to study the possibility of 
correct detection of binary objects in the image by fac-
torizing matrices. Figure 7 shows template objects used 
for experiments on the search for objects in images 
with normal distribution of noise. 

Tables 4-7 demonstrate the results of experiments 
on detecting objects in the presence of normal noise for 
various thresholds and noise intensities. 

The data presented show that for the normal dis-
tribution of noise with the amplitude less than 10%, 

Table 4. The probability of object detection for images with 5% of noise 

Threshold 
^ ч . level 

T e m p l a t e ^ ^ 
position ^ ^ 

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.7 0.75 0.8 

A - 0.3 0.38 0.71 1 1 1 1 1 0.42 
В - 0.53 0.85 1 1 1 1 1 1 0.44 
С 0.54 1 1 1 1 1 1 0.91 0.5 0.08 
D - - - 0.25 0.44 0.92 1 1 0.88 0.25 
E - - - 0.43 0.9 1 1 1 0.9 0.43 
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Table 5. The probability of object detection for images with 10% of noise 

Threshold 
level 

T e m p l a t e \ ^ 
position 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

A - - - 0.76 0.98 i 1 0.92 0.85 0.22 
В - - 0.77 1 1 1 1 1 0.85 — 

С 0.7 1 1 1 1 0.91 0.83 - - — 

D - - - 0.58 1 1 0.58 - - -

E - - 0.69 0.88 1 1 0.93 - - -

Table 6. The probability of object detection for images with 20% of noise 

Threshold 
level 

position ^ ч . 

0.2 0.22 0.25 0.3 0.33 0.35 0.36 0.37 0.38 0.4 

A - - - 0.72 0.91 1 1 0.98 0.97 0.94 
В 0.95 0.97 1 1 1 1 0.97 
С 0.92 1 1 1 1 0.91 0.75 - - -

D - - - - - 0.74 0.98 1 1 0.85 
E - - - 0.75 0.88 1 1 1 1 0.93 

Table 7. The probability of object detection for images with 30% of noise 

correct detection is possible for a certain interval of the 
threshold values. 

9. CONCLUSION 
Substantial computational complexity and time costs 

are typical of correlative processing of images. The com-
putational costs are reduced by using fast processing algo-
rithms based on factorization of the original matrices. 

In this work, we present factorization of binary image 
matrices of arbitrary sizes and structures for (1, 0)-alpha-
bet representation of the raster data. An algorithm for the 
factorization of raster matrices of binary images is pro-
posed. It is based on the sequential elimination of 
repeating and inverse (in terms of representation of the 
raster binary data) rows. 

We obtained an expression for estimating the upper 
bound of the computational complexity of VMP by 
matrix factorization, optimized block partitioning of 
matrices for factorization, and determined real compu-
tational costs of the correlative search for objects in 
images. 

It is obvious from experimental data that the real 
computational costs of calculating 2D correlation during 
image processing by matrix factorization are a few 
times less than the maximum ones necessary for pro-
cessing images of arbitrary sizes. The benefits depend 
on the image structure and increase when the structure 
regularity increases. 

We developed a correlation algorithm of the search 
for binary objects that is invariant with respect to rota-
tion by 180° relative to the horizontal axis. 
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