ON VECTOR FIELD DEFINED BY THE HOPF MAP S^3 ON S^2

V.S. Dryuma

Institute of Mathematics and Computer Sciences AS of Moldova, Kishinev, Moldova
valdryum@gmail.com

The subject of our consideration is the system of ODE’s in E^3-space

$$\frac{dx(t)}{dt} = 8 \frac{4zx - y(x^2 + y^2 + z^2) + 4y}{(x^2 + y^2 + z^2 + 4)^2}, \quad \frac{dy(t)}{dt} = 8 \frac{4zy + x(x^2 + y^2 + z^2) - 4x}{(x^2 + y^2 + z^2 + 4)^2},$$

$$\frac{dz(t)}{dt} = \frac{24x^2 + 24y^2 - 8 \bar{z}^2 - (x^2 + y^2 + z^2)^2}{(x^2 + y^2 + z^2 + 4)^2},$$

associated with the Hopf map $S^3 \to S^2$ of three dimensional sphere with equation $z_1\bar{z}_1 + z_2\bar{z}_2 = 1$ on two-dimensional sphere S^2 considered as set of the points $[z_1/z_2, 1]$ of complex space C^2.

In our report we discuss the properties of this system of equations. The results presented generalize those obtained in [1].

Theorem. In the spherical system of coordinates $x(t) = r(t)\cos(\phi(t))\sin(\psi(t)), \quad z(t) = r(t)\cos(\psi(t)), \quad y(t) = r(t)\sin(\phi(t))\sin(\psi(t))$ the system takes form

$$\frac{dr(t)}{dt} = \frac{(r(t))^4 + 8 (r(t))^2 - 64 (r(t))^2\sin(\psi(t))^2 + 16)\cos(\psi(t))}{(r(t))^4 + 8 (r(t))^2 + 16},$$

$$\frac{d\phi(t)}{dt} = -\frac{4 + (r(t))^2}{(r(t))^4 + 8 (r(t))^2 + 16},$$

$$\frac{d\psi(t)}{dt} = \frac{\sin(\psi(t))(r(t))^4 + 40 (r(t))^2 - 64 (r(t))^2\sin(\psi(t))^2 + 16)}{(r(t))^4 + 8 (r(t))^2 + 16},$$

and its solutions are expressed through the function $\sqrt{H(r)}$ which satisfies to the equation

$$4C_1 \text{Bessel} I(0, 1/2 \sqrt{H(r)r^2}) + C_1 \text{Bessel} I(0, 1/2 \sqrt{H(r)r^2})r^2 -$$

$$-8C_1 \text{Bessel} I(1, 1/2 \sqrt{H(r)r^2})\sqrt{H(r)r^2} + 4 \text{Bessel} K(0, -1/2 \sqrt{H(r)r^2}) +$$

$$+ \text{Bessel} K(0, -1/2 \sqrt{H(r)r^2})r^2 - 8 \text{Bessel} K(1, -1/2 \sqrt{H(r)r^2})\sqrt{H(r)r^2} = 0,$$

where $\sqrt{H(r)} = \sin(\psi(r))$ and C_1 are the parameters.

More detail information about properties of the solutions can be obtained by means of the first order p. d. e. associated with the considered systems of equations [2].

Acknowledgement. The work is partially supported by Grant 14-01-00389.

References