УДК 621.315.592:546.28

МОДИФИКАЦИЯ ПРИПОВЕРХНОСТНЫХ СЛОЕВ МОНОКРИСТАЛЛОВ КРЕМНИЯ, ИМПЛАНТИРОВАННЫХ ИОНАМИ В⁺ И Р⁺ В ПРОЦЕССЕ СОЗДАНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ ПО КМОП ТЕХНОЛОГИИ

канд. физ.-мат. наук Д.И. БРИНКЕВИЧ (Белорусский государственный университет, Минск); канд. физ.-мат. наук, доц. С.А. ВАБИЩЕВИЧ (Полоцкий государственный университет); канд. физ.-мат. наук, доц. В.С. ПРОСОЛОВИЧ; канд. физ.-мат. наук Ю.Н. ЯНКОВСКИЙ (Белорусский государственный университет, Минск)

Методами масс-спектрометрии вторичных ионов, измерений поверхностного сопротивления и микротвердости проведены исследования свойств приповерхностной (рабочей) области пластин монокристаллического кремния, имплантированных ионами бора и фосфора с целью формирования сильнолегированных «карманов» КМОП-структур. Обнаружено приповерхностное упрочнение монокристаллов при имплантации. Аморфизация имплантированной области кремния снижает микротвердость приповерхностного слоя. Быстрый термический отжиг приводит к разупрочнению приповерхностной области монокристалла кремния на глубине до 1 мкм и увеличению трещиностойкости (росту K_{1C} и γ) при малых нагрузках. Полученные экспериментальные результаты объяснены с учетом генерации вакансий в процессе быстрого термического отжига.

Введение. Использование высокоэнергетичной ($E \sim 1$ МэВ) ионной имплантации донорных и акцепторных примесей в кремнии при изготовлении КМОП-структур позволяет создавать ретроградный профиль распределения примесей в «карманах» транзисторов с максимумом концентрации примеси, расположенным в глубине подложки, где поверхностный канал МОП-транзистора не формируется. В этом случае на поверхности возможно сформировать низкую концентрацию носителей заряда, необходимую для невысоких значений порогового напряжения транзистора, а в глубине – высокую, что уменьшит сопротивление самого «кармана» и снизит коэффициент усиления паразитного биполярного транзистора. В конечном итоге создание «карманов» с подобным распределением примесей позволит создавать КМОП-структуры, в которых ослаблен или подавлен эффект «защёлки» [1].

Поскольку канал транзистора расположен в приповерхностной области, то целью настоящей работы являлось исследование влияния радиационных дефектов, созданных имплантацией, на свойства рабочей области пластин монокристаллического кремния.

Методика эксперимента

Пластины кремния КЭФ 4,5(100), КДБ 12(100) и КДБ 10(111) имплантировались ионами В⁺ (E = 500 кэВ) и Р⁺ (E = 1000 кэВ) дозами (Ф) от 5·10¹² до 5·10¹⁴ см⁻² при комнатной температуре на ускорителе ионов DTL. Плотность ионного тока варьировалась в интервале от 0,3 до 2,5 мкА/см². Быстрый термический отжиг (БТО) осуществлялся галогеновыми лампами накаливания при температуре 1000 °C длительностью до 60 с на установке AST-500.

Методом масс-спектрометрии вторичных ионов (ВИМС) на установке IMS-4f «Сатеса» определяли профили распределения примесей в имплантированных слоях. Измерение поверхностного сопротивления производилось четырехзондовым методом прибором ИУС-3. Для изучения распределения электрофизических параметров по глубине кристалла применялась методика последовательного стравливания тонких слоев. Измерения микротвердости (H) проводились на приборе ПМТ-3. Нагрузка (P) на индентор варьировалась в пределах от 20 до 200 г. При каждом измерении на поверхность образца наносилось не менее 50 отпечатков и проводилась обработка результатов измерений с использованием методов математической статистики. Это обеспечивало погрешность измерений микротвердости менее 2,5 % (с доверительной вероятностью 0,95). Значения коэффициента вязкости разрушения K_{1C} и эффективной энергии разрушения γ рассчитывались по средней длине радиальных трещин в углах отпечатков согласно [2]. Погрешность измерений не превышала 8 %.

Экспериментальные результаты и их обсуждение

Исследованием ВИМС было установлено, что профили распределения имплантированных примесей бора и фосфора имеют максимум на глубинах ~ 1 мкм. Концентрация примеси у поверхности пластины в зависимости от дозы находится в пределах $1,0\cdot10^{16}$ см⁻³... $1,0\cdot10^{17}$ см⁻³, что необходимо для субмикронных МОП-транзисторов. При увеличении дозы имплантации в пределах до $5 \cdot 10^{13}$ см⁻² наблюдался рост микротвердости приповерхностного слоя, то есть имел место эффект приповерхностного упрочнения. Однако при нагрузке 200 г, что соответствует глубине проникновения индентора ~3 мкм, существенных изменений величины H, обусловленных радиационными дефектами, после имплантации не происходило. Такое поведение характерно как для имплантации бора, так и для фосфора.

При дозах имплантации свыше $5 \cdot 10^{13}$ см⁻² поведение образцов, имплантированных ионами P⁺ и B⁺, существенно различается. В образцах, имплантированных бором, эффект приповерхностного упрочнения продолжает возрастать, а при имплантации фосфора дозой $1 \cdot 10^{14}$ см⁻² он резко снижается и при $\Phi_P = 5 \cdot 10^{14}$ см⁻² практически исчезает (рис. 1).

Рис. 1. Дозовая зависимость эффекта приповерхностного упрочнения (разница между значениями микротвердости при нагрузках 200 и 50 г) пластин КДБ 12, имплантированных ионами фосфора (1) и пластин КЭФ 4,5, имплантированных ионами бора (2)

Принимая во внимание, что глубина проникновения индентора при минимальной нагрузке 20 г составляла 0,8...0,9 мкм и практически совпадала с проецированным пробегом R_P ионов фосфора в исследовавшихся образцах, можно предположить, что наблюдавшееся экспериментально снижение величины микровердости H при нагрузке 20 г в образцах, имплантированных дозами Φ_P свыше 1·10¹⁴ см⁻², обусловлено, вероятнее всего, аморфизацией приповерхностной области монокристалла [1]. Следует отметить, что микротвердость аморфных образцов всегда ниже микротвердости монокристалла. Так, микротвердость пористого кремния почти на порядок ниже по сравнению с монокристаллом Si [3]. При имплантации бора аморфизация, вероятно [1], не имела места, поэтому при увеличении дозы ионов B⁺ эффект упрочнения приповерхностного слоя монокристалла не исчезал.

После проведения постимплантационного БТО методом ВИМС (рис. 2) установлено, что профили распределения имплантированных примесей бора и фосфора не претерпевают существенных изменений, то есть положение максимума распределения примесей в районе 1 мкм и ретроградный характер профиля распределения сохраняются. Данное обстоятельство является весьма существенным, поскольку если бы термообработка после ионного внедрения изменяла профиль распределения примесей, то это приводило бы к невозможности подавления эффекта «защелки».

Рис. 2. Профиль распределения примеси бора, внедренной с энергией 500 кэВ дозой 1,0·10¹⁴ см⁻³, после быстрого (60 с) термического отжига при 1000 °С

После БТО длительностью 60 секунд устанавливаются значения слоевого сопротивления, коррелирующие с величиной дозы внедрения. Исследованиями значений поверхностного сопротивления в процессе последовательного удаления слоев кремния (рис. 3) установлено, что его максимальное изменение соответствует максимуму профиля распределения примеси в кармане; 60-ти секундный отжиг является вполне достаточным для полной активации примеси и отжига радиационных дефектов. Следует отметить, что повышение температуры быстрого термического отжига свыше 1000 °С приводит к увеличению количества структурных дефектов, обусловленных эффектом закалки кремния при остывании образцов после высокотемпературного нагрева.

Рис. 3. Изменение слоевого сопротивления в процессе последовательного удаления слоев образцов кремния, имплантированных ионами бора с энергией 500 кэВ, дозой 5,0·10¹³см⁻², и последующего быстрого термического отжига при 1000 °C в течение 60 с

Быстрый термический отжиг исследовавшихся образцов, имплантированных ионами бора В⁺, приводил к резкому снижению микротвердости в приповерхностной области монокристалла на глубинах до 1 мкм, что соответствовало нагрузкам 20...40 г. При увеличении нагрузки микровердость резко возрастает и при P = 100 г и выше достигает значений, характерных для исходного необлученного кремния. Какой-либо зависимости от дозы имплантации для подвергавшихся БТО образцов не наблюдалось. При БТО имплантированных ионами P⁺ образцов наблюдалась несколько иная картина. При увеличении дозы имплантации отжиг протекает менее интенсивно. В аморфизированных имплантацией образцах (дозы $\Phi_P > 1 \cdot 10^{14}$ см⁻²) микротвердость после БТО не снижается ниже H = 9 ГПа даже после отжига длительностью 60 с.

Микрохрупкость имплантированных и подвергнутых БТО образцов была несколько ниже, чем исходных пластин кремния. Так, даже при максимальной нагрузке 200 г разрушения отпечатков не наблюдалось, в то время как в исходном неимплантированном кремнии при этой же нагрузке разрушалось около 10 % отпечатков.

Имплантация ионов бора приводила также к снижению трещиностойкости кремния. Трещины в углах отпечатков появлялись только при нагрузке 50 г и выше. Значения коэффициента вязкости разрушения K_{1C} и эффективной энергии разрушения γ при увеличении нагрузки снижаются, то есть трещиностойкость материала падает (табл. 1, 2). С увеличением дозы ионов бора $\Phi_{\rm B}$ прослеживалось монотонное снижение значений данных параметров. Быстрый термический отжиг длительностью 60 с приводил к увеличению трещиностойкости при малых нагрузках. Значения K_{1C} и γ во всех исследовавшихся образцах независимо от дозы имплантации восстанавливались до величин, характерных для пластин исходного (неимплантированного) кремния (табл. 1).

При имплантации ионов P⁺ дозой Φ_P до 5·10¹³ см⁻² также наблюдалось снижение трещиностойкости при малых нагрузках, а БТО приводил к восстановлению величин K_{1C} и γ до их значений в исходных (неимплантированных) монокристаллах. При увеличении дозы имплантации Φ_P свыше порога аморфизации кремния (1...5·10¹⁴ см⁻²) значения коэффициента вязкости разрушения K_{1C} при нагрузке 50 г в имплантированных образцах возрастают до ~ 2,0...2,2 Па·м^{1/2}, причем последующий БТО существенного влияния на значения K_{1C} не оказывает. Их изменения в процессе БТО составляют 10...15 % и близки к погрешности измерений (табл. 2). Аналогично ведет себя и эффективная энергия разрушения γ .

Таблица 1

$arPhi_{ m B}$, см $^{-2}$	Длительность БТО, с	$K_{1c}, \ 10^6 \Pi a \cdot m^{1/2},$				γ, Па•м,			
		при нагрузке, г				при нагрузке, г			
		50	100	150	200	50	100	150	200
5·10 ¹³	-	1,65	1,36	1,31	1,29	9,1	6,1	5,7	5,5
	60	2,66	1,68	1,35	1,31	23,6	9,35	6,0	5,7
5·10 ¹²	-	2,24	1,61	1,34	1,28	16,7	8,6	5,9	5,4
	60	2,74	1,64	1,34	1,29	25,0	9,1	5,9	5,5

Параметры трещиностойкости кремния марки КЭФ4,5 ориентацией (100), имплантированного ионами бора ($E_{\rm B} = 500$ кэВ) и подвергнутого быстрому термическому отжигу

Таблица 2

Параметры трещиностойкости кремния марки КДБ12 ориентацией (100), имплантированного ионами фосфора (*E*_P = 1000 кэВ) и подвергнутого быстрому термическому отжигу

$\Phi_{ m P},$ см $^{-2}$	Длительность БТО, с	<i>K</i> _{1c} , 10 ⁶ Па · м ^{1/2} , при нагрузке, г				γ, Па·м, при нагрузке, г			
		50	100	150	200	50	100	150	200
5·10 ¹³	_	1,47	1,40	1,40	1,38	7,2	6,7	6,5	6,3
	15	1,83	1,54	1,35	1,30	11,1	7,12	6,05	5,7
	60	3,00	1,52	1,40	1,38	29,9	7,7	6,5	6,34
1.1014	-	2,05	1,50	1,50	1,50	14,0	7,5	7,5	7,5
	15	1,90	1,54	1,40	1,33	11,9	7,9	6,6	5,9
	60	1,91	1,64	1,53	1,51	12,1	9,0	7,7	7,6
5·10 ¹⁴	-	2,00	1,41	1,40	1,40	12,6	6,6	6,5	6,5
	15	1,92	1,66	1,51	1,48	12,4	9,2	7,6	7,0
	60	2,22	1,47	1,47	1,43	16,4	7,2	7,1	6,8

Поскольку проецируемый пробег ионов R_P составлял ~ 1 мкм, что сопоставимо с глубиной внедрения индентора при минимальной нагрузке 20 г, то в процессе индентирования тестируется нарушенный ионной имплантацией слой. Следовательно, упрочнение приповерхностного слоя монокристалла обусловлено радиационными дефектами, созданными при имплантации. Наличие полей упругих напряжений на границе раздела «нарушенный имплантацией слой – бездефектная подложка» обусловливает снижение трещиностойкости при малых нагрузках в имплантированных образцах. Эту границу индентор достигает при нагрузке 50...70 г. Аморфизация нарушенного ионной имплантацией слоя приводит к снижению напряжений на этой границе раздела, что проявляется как увеличение трещиностойкости при нагрузке 50 г в образцах, имплантированных ионами P⁺ дозой свыше 1·10¹⁴ см⁻² (см. табл. 2). Увеличение трещиностойкости кремния после быстрого термического отжига обусловлено увеличением пластичности материала и хорошо коррелирует с поведением микротвердости.

При БТО происходит отжиг радиационных дефектов, что приводит к подавлению эффекта радиационного упрочнения и снижению микротвердости приповерхностного слоя. Кроме того, свой вклад дает и другой механизм снижения *H*. Так, известно [4; 5], что в процессе БТО по всему объему монокристалла кремния имеет место генерация вакансий, которые могут приводить к разупрочнению кремния [6]. Это легко объяснимо, если учесть, что сжатие (индентирование) бездислокационных полупроводников сопровождается генерацией избыточных собственных междоузельных атомов [7]. Резкое снижение (ниже значений, характерных для необлученного кремния) микротвердости в приповерхностной области после проведения БТО имплантированных образцов обусловлено, вероятнее всего, указанным разупрочняющим воздействием вакансионных дефектов, формирующихся в результате ионной имплантации и последующего быстрого термического отжига. В заключение проведенного исследования, исходя из полученных экспериментальных результатов, можно сделать следующие выводы:

- обнаружено приповерхностное упрочнение монокристаллов при имплантации ионами бора и фосфора с проецированным пробегом в кремнии ~ 1 мкм;

- аморфизация нарушенного ионной имплантацией слоя приводит к разупрочнению материала в области пробега ионов и к росту концентрации вакансионных дефектов за слоем внедрения ионов. Действие этих двух механизмом способствует существенному снижению значений *H* при малых нагрузках;

- быстрый термический отжиг приводит к разупрочнению приповерхностной области монокристалла кремния на глубине до 1 мкм и увеличению трещиностойкости (росту K_{1C} и γ) при малых нагрузках вследствие генерации вакансий в процессе БТО.

ЛИТЕРАТУРА

- 1. Технология СБИС: в 2-х кн. Кн. 1 / под ред. С. Зи. М.: Мир, 1986. С. 235–353.
- 2. Колесников, Ю.В. Механика контактного разрушения / Ю.В. Колесников, Е.М. Морозов. М.: Наука, 1989. 220 с.
- Соколов, В.И. Некоторые характеристики пористого кремния (отражение, рассеяние, показатель преломления, микротвердость) / В.И. Соколов, А.И. Шелых // Письма в ЖТФ. – 2008. – Т. 34, № 5. – С. 34–39.
- 4. Patent 6686620 US, primary class 438/473 / R.J. Falster, M.J. Binns, H.W. Korb; publication 03.02.2004.
- 5. Voronkov, V.V. Effect of vacancies on nucleation of oxide precipitates in silicon / V.V. Voronkov, R. Falster // Materials science in semiconductor processing. 2003. V. 5 P. 387–390.
- 6. Головин, Ю.И. Недислокационная пластичность и ее роль в массопереносе и формировании отпечатка при динамическом индентировании / Ю.И. Головин, А.А. Дмитриевский, Н.Ю. Сучкова // Физика твердого тела. – 2006. – Т. 48, № 2. – С. 262–265.
- 7. Головин, Ю.И. Структура комплексов, ответственных за радиационно-стимулированное разупрочнение монокристаллов кремния / Ю.И. Головин, А.И. Тюрин // Физика твердого тела. 2000. Т. 42, № 10. С. 1818–1820.

Поступила 05.03.2015

MODIFICATION OF THE SURFACE LAYERS OF SILICON SINGLE CRYSTALS IMPLANTED WITH B⁺ AND P⁺ IONS AT THE CREATION OF SEMICONDUCTOR DEVICES BY CMOS TECHNOLOGY

D. BRINKEVICH, S. VABISHCHEVICH, V. PROSOLOVICH, Y. YANKOVSKI

Properties of the surface layers of monocrystalline silicon wafers implanted with boron and phosphorus to form a heavily doped "pockets" of CMOS structures was investigated by mass spectrometry of secondary ions, measuring the surface resistivity and microhardness. Near-surface hardening of single crystals during implantation was founded. Amorphization of the implanted region of silicon reduces the microhardness of the surface layer. Rapid thermal annealing leads to a softening of the surface layer of the of the silicon single crystal to a depth of 1 µm and an increase in fracture toughness (K_{1C} and γ) at low loads. The experimental results are discussed in terms of the generation of vacances in the process of rapid thermal annealing.