нагрева и охлаждения (при пуске и остановке технологической установки) возникают существенные эксплуатационные напряжения.

Изменение поля напряжений при переходе от одного участка сварного соединения к другому обусловлено изменением свойств этих участков и их способностью к пластической деформации. Это приводит к появлению напряжений различного уровня на соседних участках сварного соединения, т.е. возникает концентрация напряжений в локальных участках материала. При превышении концентрации напряжений предельного значения возможно образование трещины в сварном соединении.

Таким образом, сварные соединения стали 15X5M, выполненные аустенитными электродами, не обеспечивают работоспособность печных змеевиков после эксплуатации более 10 лет.

УДК 621.793

ИЗНОСОСТОЙКОСТЬ ГИПЕРЗВУКОВЫХ ГАЗОТЕРМИЧЕСКИХ ПОКРЫТИЙ ИЗ ВЫСОКОХРОМИСТЫХ СТАЛЕЙ

В.А. Кукареко¹, А.Н. Григорчик¹, М.А. Белоцерковский¹, Н.Н. Попок² Объединенный институт машиностроения НАН Беларуси, Минск ² Полоцкий государственный университет, Полоцк

Исследовано структурно-фазовое состояние и трибомеханические характеристики гиперзвуковых газотермических покрытий, выполненных из высокохромистых проволочных сталей 40X13, 95X18 и 06X19H9T. Показано, что увеличение содержания углерода и хрома в напыляемых сталях приводит к снижению твердости покрытий. Установлено, что газотермическое покрытие из стали 95X18 вследствие распада метастабильного аустенита при трении обладает повышенной износостойкостью по сравнению с покрытиями из сталей 40X13 и 06X19H9T.

Введение. Гиперзвуковая металлизация является высокопроизводительным и экономичным методом получения газотермических покрытий. К отличительным особенностям гиперзвукового напыления можно отнести: высокую скорость напыления, низкую пористость получаемых покрытий ($\sim 2-5$ %) и высокий коэффициент использования напыляемого материала (0,85).

Вместе с тем, до настоящего времени отсутствуют систематизированные данные о триботехнических характеристиках гиперзвуковых газотермических покрытий из высокохромистых проволочных сталей. В связи с этим задачей настоящей работы являлось сравнительное исследование трибомеханических характеристик покрытий из высокохромистых сталей 40X13,95X18 и 06X19H9T.

Методика проведения исследований. Для получения газотермических покрытий из сталей 40X13, 95X18 и 06X19H9T использовалась установка АДМ-10, разработанная в ОИМ НАН Беларуси. Скорость полета напыляемых частиц составляла 400-500 м/с, размер частиц 5-40 мкм.

Рентгеновская съемка образцов проводилась на дифрактометре "ДРОН-3" в монохроматизированном CoK_{α} излучении.

Триботехнические испытания образцов покрытия проводились на трибометре АТВП. Сравнительные испытания триботехнических свойств образцов проводились в режиме трения без смазочного материала (удельная нагрузка испытаний составляла $p=1,5\,$ МПа). При испытаниях использовалось контртело из закаленной стали У8 (800 HV10). Путь трения составлял $\approx 1200\,$ м.

Измерения твердости и микротвердости по Виккерсу проводились на твердомере DuraScan 20 при нагрузке на индентор P=10 кг (98 H), 10 г (0,098 H).

Результаты исследования. Напыленные покрытия имели толщину $\sim 0.6 \div 0.8$ мм. В результате напыления формируется волнистая микроструктура с остаточной пористостью, не превышающей ~ 5 %, и повышенным содержанием оксидов на границах напыленных частиц. Твердость газотермических покрытий, напыленных из проволочных сталей 40X13, 95X18 и 06X19H9T, составляла, соответственно, 600, 350 и 350 HV 10 (табл.).

Покрытие из аустенитной стали 06X19H9T содержит фазы: γ -Fe (67 об. %), α -Fe (8 об. %), Fe₃O₄ и FeO (25 об. %). Фазовый состав газотермического покрытия из стали 40X13 после механической шлифовки включает в себя: α -Fe (55 об.%), аустенит γ -Fe (15 об.%), оксиды Fe₃O₄ и FeO (30 об.%). Гиперзвуковое газотермическое покрытие из стали 95X18 имеет следующий фазовый состав: α -Fe (7 об. %), γ -Fe (68 об. %), оксиды Fe₃O₄ и FeO (25 об. %). Таким образом, данные рентгенофазового анализа свидетельствуют о том, что покрытия из стали 95X18 и аустенитной стали 06X19H9T после механической шлифовки содержат практически одинаковое количество остаточного аустенита (γ -фазы).

В то же время содержание аустенита в шлифованном покрытии из стали 40X13 в ≈ 4 раза меньше, чем в покрытиях из сталей 95X18 и 06X19H9T. Термическая стабилизация аустенита в покрытиях из мартенситных сталях 40X13 и 95X18 обеспечивается относительно низкой скоростью охлаждения газотермических покрытий в интервале температур повышенной устойчивости аустенита (100-300°C).

Необходимо отметить, что по сравнению с высокоуглеродистым покрытием из сталью 95X18 в покрытии из среднеуглеродистой стали 40X13 мартенситное превращение при охлаждении происходит более полно. В результате этого в покрытии из стали 40X13 регистрируется относительно более низкое содержание остаточного аустенита и высокий уровень твердости по сравнению с покрытиями из сталей 95X18 и 06X19H9T (табл.).

Таблица Характеристики напыленных газотермических покрытий

Материал напы- ляемого покрытия	Твердость HV 10, кгс/мм ²	Интенсивность массового изнашивания $I_q, \cdot 10^{-3}, \text{ мг/м}$	Микротвердость поверхностного слоя после трения HV 0,01, кгс/мм ²
40X13	600	4,5	700-800
95X18	350	1,1	800-850
06X19H9T	350	17,5	400-450

Проведенные сравнительные триботехнические испытания образцов напыленных покрытий показали, что покрытие из высокоуглеродистой стали 95Х18 несмотря на его низкую твердость обладает наиболее высоким уровнем износостойкости ($I_q=1,1\cdot 10^{-3}$ мг/м) по сравнению с покрытиями из сталей 40Х13 и 06Х19Н9Т (таблица 1). В то же время покрытие из аустенитной стали 06Х19Н9Т при таком же невысоком исходном уровне твердости демонстрирует весьма низкую износостойкость и величина интенсивности массового изнашивания составляет $I_q=17,5\cdot 10^{-3}$ мг/м. Для понимания причин указанного явления необходимо принимать во внимание то, что остаточный аустенит в покрытиях из сталей 95Х18 и 06Х19Н9Т характеризуется разным уровнем деформационно-термической стабильности. При этом в покрытии из мартенситной стали 95X18 аустенитная фаза метастабильна и превращается в мартенсит в процессе деформационнотермического воздействия при трении. В частности, содержание остаточного аустенита в поверхностном слое покрытия после трения снижается до 25 об.% Последнее приводит к существенному возрастанию микротвердости и износостойкости поверхностных слоев покрытия из стали 95Х18 (см. табл.). В случае покрытия из аустенитной стали 06Х19Н9Т ее матричная уфаза вследствие высокой легированности никелем отличается повышенной деформационно-термической стабильностью и практически не претерпевает мартенситного $\gamma \rightarrow \alpha$ превращения при трении. В частности, после сухого трения в покрытии сохраняется 58 об.% аустенита. Вследствие этого износостойкость и микротвердость поверхности трения покрытия из стали 06Х19Н9Т сохраняется на низком уровне.

Для покрытия из стали 40X13 характерна более высокая износостой-кость (I_q =4,5· 10^{-3} мг/м) по сравнению с покрытием из аустенитной стали 06X19H9T, что связано с деформационно-активированным γ — α превра-

щением в поверхностном слое покрытия при трении и его исходной высокой твердостью.

Заключение. Проведено исследование структурно-фазового состояния и триботехнических свойств гиперзвуковых газотермических покрытий из высокохромистых сталей 40X13, 95X18 и 06X19H9T. Показано, что газотермические покрытия из высокохромистых сталей содержат фазы: α -Fe, γ -Fe, Fe₃O₄, FeO. Установлено, что в механически шлифованном покрытии из стали 95X18 регистрируется повышенное количество метастабильной γ -фазы (68 об.%), которое соизмеримо с содержанием аустенита в покрытии из аустенитной стали 06X19H9T. Показано, что покрытие из стали 95X18 характеризуется наиболее высокой износостойкостью из исследованных сталей. Сделано заключение, что высокая износостойкость покрытия из стали 95X18 достигается в результате протекающего в поверхностном слое при трении мартенситного γ — α превращения.

УДК 621.9

ФОРМИРОВАНИЕ ЗАКОНОМЕРНО ИЗМЕНЯЮЩИХСЯ ПАРАМЕТРОВ КАЧЕСТВА ПОВЕРХНОСТНОГО СЛОЯ ДЕТАЛЕЙ В ТЕХНОЛОГИЧЕСКИХ СИСТЕМАХ ПОВЫШЕННОЙ ГИБКОСТИ

М.Н. Нагоркин, В.П. Фёдоров

Брянский государственный технический университет, Российская Федерация

Рассматривается пример формирования закономерно изменяющихся параметров качества поверхностей деталей, работающих в неоднородных условиях эксплуатации.

Для получения поверхностей с равномерными эксплуатационными свойствами (ЭС) необходимо использовать методы, позволяющие непосредственно в процессе обработки варьировать силовыми, кинематическими и другими технологическими факторами. Таким образом, процесс обработки при решении задачи адаптации поверхности к переменным условиям эксплуатации должен быть гибким, обеспечивающим закономерное изменение качества поверхностного слоя (КПС).

Под гибкостью технологической системы (ТС) понимается способность обеспечить заданное множество параметров КПС детали или ЭС в регламентированных интервалах с заданной надёжностью путём направленного варьирования условиями обработки и управления механизмом технологического наследования. Возможны два рода технологической гибкости систем обработки: 1) технологическая гибкость 1-го рода — воз-