УДК 621.315.592

ПРОЧНОСТНЫЕ СВОЙСТВА ТЕРМООБРАБОТАННОГО КРЕМНИЯ, ВЫРАЩЕННОГО В МАГНИТНОМ ПОЛЕ

канд. физ.-мат. наук, проф. Д.И. БРИНКЕВИЧ (Белорусский государственный университет, Минск); Н.В. ВАБИЩЕВИЧ, канд. физ.-мат. наук, доц. С.А. ВАБИЩЕВИЧ (Полоцкий государственный университет)

Методами микроиндентирования, измерения спектров ИК-поглощения, эффекта Холла и проводимости исследованы свойства термообработанного кремния, полученного по методу Чохральского при наложении на расплав вертикального магнитного поля (M–Si). Показано, что микротвердость M–Si выше (примерно на 8 %), чем у кремния, выращенного традиционным методом Чохральского без наложения магнитного поля. Термообработка M–Si при 900 °C длительностью 5 часов в протоке водорода не приводила к заметным изменениям микротвердости и коэффициента вязкости, в отличие от традиционного кремния. Обнаружен эффект увеличения концентрации междоузельного кислорода в процессе термообработки M–Si. Показано, что особенности поведения M–Si обусловлены формированием в процессе выращивания кислородсодержащих дефектно-примесных комплексов. В процессе термообработки указанные комплексы распадаются с выделением междоузельного кислорода, что способствует подавлению эффекта термического упрочнения, характерного для монокристаллов кремния, полученных традиционным методом.

Введение. Кремний является базовым материалом современной микроэлектроники. Кроме того, на его основе изготавливаются сенсоры, микро- и наноэлектромеханические системы и другие гибридные продукты нанотехнологий. Одна из основных причин деградации электрических параметров полупроводниковых приборов – механические и термические воздействия в процессе разделения пластин на кристаллы, монтажа кристаллов, микросварки проволочных и пайки ленточных выводов, герметизации. Структурные и остаточные термомеханические напряжения на операциях сборки полупроводниковых приборов могут достигать разрушающего полупроводниковый материал уровня [1]. Исходя из сказанного задача исследования прочностных свойств кремния является весьма актуальной.

Высокие требования современной микроэлектроники к чистоте и однородности базовых полупроводниковых структур инициируют активные поиски перспективных технологий получения материалов с целью оптимизации физических свойств последних [2, 3]. Для кремния перспективным является получение монокристаллов при наложении на расплав магнитного поля (M–Si) [3, 4]. Наложение на расплав магнитных полей позволяет весьма эффективно управлять процессами сегрегации кислорода и варьировать в широких пределах профили его распределения как по длине слитка, так и по его диаметру [5]. Помимо этого, изменение условий конвекции в расплаве кремния должно оказывать влияние на состояние всего дефектно-примесного ансамбля в монокристалле кремния. С другой стороны, наложение на расплав слабого постоянного вертикального магнитного поля позволяет получать монокристаллы кремния с концентрацией междоузельного кислорода (N_0) ниже $5 \cdot 10^{17}$ см⁻³ [6]. Предполагается, что снижение N_0 позволит минимизировать влияние примеси кислорода на процессы термического дефектобразования в кремнии и снизить стоимость производства кремния, сравнимого по своим характеристикам с кремнием, полученным бестигельной зонной плавкой. Отсюда цель настоящей работы – исследование прочностных свойств термообработанных монокристаллов М–Si, полученных при наложении на расплав слабого вертикального магнитного поля индукцией 0,05 Тл.

Методика эксперимента. В работе исследовались образцы монокристаллического M–Si, легированного фосфором при выращивании из расплава в направлении <100>. Параметры образцов, измеренные непосредственно после выращивания, приведены в таблице 1.

Таблица 1

Кристалл	Положение* пластины в слитке	ρ _{исх} , Ом·см	Δρ, %	$N_{\rm O}$ ·10 ¹⁷ , cm ⁻³	$N_{\rm C} \cdot 10^{16}, {\rm cm}^{-3}$	$N_{T\!$	τ, мкс	Δτ, %	
Cz–Si	Н	14,1	10	9,1	4,2	3,8	60	12	
M–Si	В	315	7	5,7	1,0	< 0,5	70	7	
M–Si	Н	283	21	3,9	1,0	< 0,5	65	9	
*Индекс В означает, что пластина вырезана из верхней части слитка; Н – из нижней.									

Параметры исследовавшихся образцов

Параллельно исследовались монокристаллы кремния, полученные традиционным методом Чохральского (Cz–Si) в условиях (объем загрузки, температурный режим и т.д.), близких к условиям получения М–Si. Концентрации междоузельного кислорода и углерода ($N_{\rm C}$) в положении замещения определялись по соответствующим полосам ИК-поглощения при 1106 и 607 см⁻¹ [7]. Содержание фоновых технологических примесей (Cu, Au, Ni, Fe и т.д.) контролировалось методом нейтронно-активационного анализа. Измерения эффекта Холла и проводимости проводились по стандартной методике в интервале температур 77...300 К. Время жизни носителей заряда (τ) измерялось при 300 К по бесконтактной CBЧ-методике [8].

Термообработка (TO) осуществлялась в протоке водорода при температуре 900 °С. Скорость охлаждения составляла примерно 0,5 К·мин⁻¹ (охлаждение с установкой). На поверхность части образцов методом магнетронного распыления наносились пленки вольфрама и золота толщиной ~80 нм и после термообработки в протоке водорода сошлифовывался приповерхностный слой толщиной 50 мкм для удаления области, обогащенной Au и W. Отметим, что высокотемпературный отжиг с пленкой вольфрама применяется для очистки пластин кремния от металлических быстродиффундирующих примесей.

Измерения микротвердости проводились на приборе ПМТ-3 по стандартной методике вдоль направления <100>. В качестве индентора использовался алмазный наконечник в форме четырехгранной пирамиды с квадратным основанием и углом при вершине (α), равным 136°. Нагрузка на индентор (P) варьировалась в пределах 50...200 г. Выбор нагрузки обусловлен двумя обстоятельствами:

1) глубина проникновения индентора должна быть достаточно большой для исключения влияния поверхности;

2) при индентировании отпечаток не должен разрушаться.

При нагрузке 50 г глубина проникновения индентора составляла ~1 мкм, что позволяло минимизировать влияние обработки поверхности. Доля непригодных (разрушенных) для измерения микротвердости отпечатков при максимальной нагрузке не превышала 10 %. При каждом измерении на поверхность пластины наносилось не менее 50 отпечатков, измерялись обе диагонали отпечатка и по их усредненному значению согласно [9] рассчитывалась величина микротвердости (*H*). Обработка результатов измерений проводилась с использованием методов математической статистики [10]. Это позволило установить, что имеет место нормальный (гауссов) закон случайного распределения величин микротвердости. При этом погрешность измерения микротвердости составляла 3 % (с доверительной вероятностью 0,95). Микрохрупкость Z пластин оценивали по пятибалльной шкале согласно стандартной методике [11]. При этом погрешность измерений составляла около 5 %. Рассчитывались также коэффициент вязкости разрушения (трещиностойкость) K_{1C} и эффективная энергия разрушения γ , оцениваемые по длине радиальной трещины, согласно формулам [12]:

$$K_{1C} = 0,016 \left(\frac{E}{H}\right)^{\frac{1}{2}} \frac{P}{L^{\frac{3}{2}}}; \quad \gamma = \frac{K_{1C}^2}{2E}$$

где E – модуль Юнга (для кремния 1,5·10¹¹ Па), L – длина трещины.

Погрешность измерений не превышала 8 %.

Экспериментальные результаты и их обсуждение. Экспериментальные результаты представлены в таблице 2 (нагрузка при индентировании 200 г).

T (^
Гаолина	
таолица	~

Положение в слитке	Z	$K_{1c}, 10^6 \Pi a \cdot m^{\frac{1}{2}}$	γ, Па∙м
Bepx	4,2	1,33	5,91
Середина	3,9	1,37	6,21
Низ	4,1	1,31	5,74

Прочностные характеристики М-Si

Длина трещин у отпечатков на M–Si была несколько меньше, а, соответственно, трещиностойкость и эффективная энергия разрушения несколько выше, чем в кремнии, полученном традиционным методом Чохральского. Существенной зависимости значений микрохрупкости Z, коэффициента вязкости разрушения K_{1C} и эффективной энергии разрушения γ от положения пластины в слитке M–Si обнаружено не было (см. табл. 2). Отметим также, что зона разрушения вокруг отпечатков при индентировании M–Si была в 1,5 раза меньше, чем у контрольного Cz–Si. При малых нагрузках наблюдались большие разбросы в размерах отпечатков, что свидетельствует о неоднородности приповерхностного слоя M–Si. Обнаруженные различия в величине удельного сопротивления (ρ) в M–Si и Cz–Si (см. табл. 1) обусловлены «ростовыми» термодонорами, генерирующимися при охлаждении слитков. Отметим, что в M–Si концентрация междоузельного кислорода была в 2...3 раза ниже, чем в контрольном Cz–Si, и не превышала 5,7·10¹⁷ см⁻³ на всем протяжении слитка. Концентрация «ростовых» термодоноров N_{TZ}^{P} , вводящихся в процессе остывания слитка при вытягивании, существенно зависит от концентрации кислорода [13]. Указанное обстоятельство обусловливает более низкую (более чем в 4 раза) концентрацию N_{TZ}^{P} в M–Si (см. табл. 1). Заметного влияния ни на величину времени жизни неравновесных носителей заряда τ , ни на профиль его распределения в радиальном направлении по сравнению с пластинами Cz–Si обнаружено не было (см. табл. 1).

Во всех образцах M-Si в процессе термообработки имело место возрастание концентрации междоузельного кислорода (рис. 1).

Рис. 1. Распределение кислорода по длине слитка: 1 – исходный; 2 – термообработка при 900 °С длительностью 5 ч; 3 – геттерирующий отжиг с пленкой W при 900 °С длительностью 5 ч; 4 – диффузия из пленки золота при 900 °С длительностью 5 ч

В пластинах Cz–Si, наоборот, наблюдалось снижение концентрации междоузельного кислорода, которое отмечалось рядом авторов [14 - 16] и широко известно. Геттерирующий отжиг (нагрев с пленкой вольфрама) усиливал переход кислорода в междоузельное положение (см. рис. 1, кривая 3) по всей длине слитка M–Si. Диффузия золота, наоборот, подавляла указанный процесс (см. рис. 1, кривая 4). Следует отметить, что геттерирующий отжиг приводил к снижению (примерно в 5 раз) концентрации фоновых металлических примесей (Au, Cu, Na и т.д.) в объеме монокристалла. Указанное обстоятельство способствовало сохранению высокого времени жизни (т) в пластинах, подвергнутых геттерирующему отжигу. Так, несмотря на то, что термообработка приводила к снижению т до 7...12 мкс, в геттерированных пластинах время жизни составляло 60 мкс, что близко к времени жизни в исходных нетермообработанных пластинах M–Si (65...70 мкс). Отметим также, что в M–Si в процессе диффузии Au изменения ρ не наблюдалось, хотя в промышленном кремнии с близкими параметрами после аналогичной термообработки ρ возрастало до значений ~2·10³ см⁻³ Ом·см.

Отмеченные особенности в поведении исследовавшихся пластин М–Si указывают на то, что в указанном материале имеются ростовые микродефекты, в состав которых входят кислород, фоновые металлические примеси и, вероятнее всего, структурные дефекты. Атомы кислорода, входящие в состав этих микродефектов, стабилизированы примесями металлов. Взаимодействие мелких кислородных преципитатов с атомами кислорода широко известно и наблюдалось ранее [17]. На этом эффекте основан, например, процесс внутреннего геттерирования [18]. Указанные микродефекты, вероятнее всего, термически не стабильны и распадаются при высокотемпературном нагреве.

Возрастание концентрации междоузельного кислорода в процессе термообработки обусловлено распадом этих микродефектов и переводом связанного на них кислорода в междоузельное положение. В пластинах с нанесенной на поверхность пленкой вольфрама вследствие геттерирующего эффекта распад этих микродефектов протекает более интенсивно, что ускоряет переход кислорода в междоузельное положение. С другой стороны, золото при диффузии осаждается на этих микродефектах, в связи с чем не проявляет электрической активности. Осаждение Au препятствует распаду этих микродефектов, что приводит к замедлению роста концентрации междоузельного кислорода. О наличии в исследовавшихся монокристаллах M–Si указанных микродефектов свидетельствуют также результаты микроиндентирования. Так, известно [19], что микродефекты междоузельного типа увеличивают микротвердость монокристаллического кремния. Экспериментальные данные (рис. 2) говорят о том, что микротвердость M–Si выше (примерно на 8...15 % по всей длине слитка), чем у кремния, выращенного традиционным методом Чохральского, без наложения магнитного поля. Повышенная микротвердость M–Si, вероятнее всего, обусловлена обсуждаемыми ростовыми микродефектами. Наличие ростовых микродефектов способствует повышению трещиностойкости K_{1C} и эффективной энергии разрушения у в M–Si.

Рис. 2. Зависимость микротвердости М–Si от величины нагрузки Р. Положение пластин в слитке: 1 – верх; 2 – середина; 3 – низ. Кривая 4 – контрольный образец Cz–Si (см. табл. 1)

Немонотонная зависимость микротвердости от положения пластины в слитке M–Si может быть объяснена следующими причинами. Более высокие значения *H* в пластинах, вырезанных из верха слитка, обусловлены повышенной концентрацией кислорода. Как известно [20], атомы кислорода препятствуют росту и размножению дислокаций при деформации кремния и, соответственно, способствуют упрочнению кремния. В образцах, вырезанных из нижних частей слитка, повышение микротвердости обусловлено повышенной концентрацией фоновых междоузельных технологических примесей [19].

В отличие от традиционного кремния Cz–Si, в котором обычно имеет место увеличение микротвердости в процессе термического отжига [19], термообработка M–Si при 900 °C длительностью 5 часов в протоке водорода приводила к существенному снижению значений H в приповерхностной области пластины на глубинах около 1 мкм (при малых нагрузках, в частности 50 г) и практически не изменяла микротвердость при больших нагрузках (рис. 3). При этом имело место снижение значений микрохрупкости (на 25...50 %) для всех исследовавшихся образцов во всем диапазоне нагрузок (50...200 г).

Полученные экспериментальные результаты указывают на релаксацию в процессе термообработки упругих напряжений в приповерхностной области исследовавшихся монокристаллов M–Si. Об этом также свидетельствует повышение трещиностойкости M–Si в процессе термического отжига: коэффициент вязкости разрушения K_{1C} и эффективная энергия разрушения γ (рис. 4) в процессе термообработки существенно возрастали (особенно при малых нагрузках). Наиболее отчетливо указанный эффект проявлялся для образцов из верхних частей слитка M–Si.

Рис. 4. Зависимость эффективной энергии разрушения γ от величины нагрузки *P* для исходных (1, 2), геттерированных (1["]) и термообрабатанных (1['], 2[']) образцов M–Si. Положение пластин в слитке: 1, 1['], 1["] – верх; 2, 2['] – низ

При геттерирующей обработке (отжиг с пленкой вольфрама) описываемые эффекты были выражены существенно слабее, чем при обычной термообработке без пленки. Это связано с удалением приповерхностного слоя пластины после геттерирования с целью удаления области, обогащенной фоновыми металлическими примесями.

Отметим, что образцы M–Si, полученные при других условиях наложения электромагнитных полей (например, при наложении скрещенных вертикального и горизонтального переменных магнитных полей), были близки по своим свойствам к традиционному Cz–Si и отмеченных выше особенностей не проявляли. Так, величина H в них составляла примерно 10,5 МПа и возрастала при термообработке. Кроме того, в указанных образцах, как и в Cz–Si, термообработка приводила к снижению концентрации междоузельного кислорода. То есть образования рассматриваемых ростовых микродефектов в таких кристаллах M–Si не наблюдалось.

Выводы. В работе показано, что микротвердость M–Si, полученных при наложении на расплав слабого вертикального магнитного поля с индукцией B = 0,05 Тл, выше (примерно на 8 %), чем у кремния, выращенного традиционным методом Чохральского, без наложения магнитного поля. Термообработка указанных образцов M–Si при 900 °C длительностью 5 часов в протоке водорода не приводила к заметным изменениям микротвердости и коэффициента вязкости (в отличие от традиционного кремния). Обнаружен эффект увеличения концентрации междоузельного кислорода в процессе термообработки M–Si. Показано, что особенности поведения M–Si обусловлены формированием в процессе выращивания кислородсодержащих дефектно-примесных комплексов. В процессе термообработки указанные комплексы распадаются с выделением междоузельного кислорода, что способствует подавлению эффекта термического упрочнения, характерного для монокристаллов кремния, полученных традиционным методом Чохральского.

ЛИТЕРАТУРА

- 1. Мужиченко, О. Термомеханические напряжения в сборочных микроузлах / О. Мужиченко, Н. Плис // Электроника: Наука. Технология. Бизнес. 2000. № 6. С. 63 64.
- 2. Мильвидский, М.Г. Полупроводниковые материалы в современной электронике / М.Г. Мильвидский. М: Наука, 1986. 144 с.

- Пелевин, О.В. Новое в методах получения полупроводниковых материалов / О.В. Пелевин, Б.Г. Гирич // Металлургия цветных металлов: сб. ст. // Итоги науки и техники ВИНИТИ АН СССР. – М.: Изд. ВИНИТИ, 1988. – Т. 19. – С. 49 – 107.
- Vizman, D. Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si Czochralski melts under the influence of different magnetic fields / D. Vizman, J. Friedrich, G. Muller // J. Crystal Growth. 2001. V. 230, № 1 2. P. 73 80.
- 5. Kakimoto, K. Oxygen distribution in silicon melt under inhomogeneous transverce-magnetic fields / K. Kakimoto // J. Crystal Growth. 2001. V. 230, № 1 2. P. 100 –107.
- 6. Сальник, З.А. Термодоноры в кремнии, содержащем кислород (обзор) / З.А. Сальник // Неорганические материалы. 1995. Т. 31, № 11. С. 1393 1399.
- 7. Ильин, М.А. Определение содержания кислорода и углерода в кремнии / М.А. Ильин, В.Я. Коварский, А.Ф. Орлов // Заводская лаборатория. 1884. Т. 50, № 1. С. 24 32.
- 8. Исследование времени жизни неравновесных носителей заряда в кремнии фазовым методом / М.И. Тарасик [и др.]. М.: Электронная техника. Сер. 6, Материалы. 1989. № 1. С. 21 23.
- Березина, Г.М. К вопросу измерения микротвердости в кремнии / Г.М. Березина // Докл. АН БССР. 1979. – Т. 33, № 5. – С. 431 – 433.
- 10. Калоша, В.К. Математическая обработка результатов эксперимента / В.К. Калоша, С.И. Лобко, Т.С. Чикова. Минск: Выш. шк., 1991. 164 с.
- 11. Концевой, Ю.А. Пластичность и прочность полупроводниковых материалов и структур / Ю.А. Концевой, Ю.М. Литвинов, Э.А. Фаттахов. – М.: Радио и связь, 1982. – 240 с.
- Колесников, Ю.В. Механика контактного разрушения / Ю.В. Колесников, Е.М. Морозов. М.: Наука, 1989. – 220 с.
- Влияние легирования германием и гадолинием на термостабильность монокристаллического бездислокационного кремния / В.В. Борщенский [и др.] // Высокочистые вещества. – 1991. – № 4. – С. 61 – 64.
- 14. Влияние кислорода на поведение примеси золота в кремнии / Д.И. Бринкевич [и др.] // Неорганические материалы. 1993. Т. 29, № 12. С. 1587 1589.
- 15. Shimura, F. Precipitation and redistribution of oxygen in Czochralski-groun silicon / F. Shimura, H. Tsuya, T. Kawamura // Appl. Phys. Let. –1980. V. 37, № 6. P. 483 486.
- 16. Бабич, В.М. Кислород в монокристаллах кремния / В.М. Бабич, Н.И. Блецкан, Е.Ф. Венгер. Киев: Интерпрес ЛТД, 1997. 240 с.
- Бринкевич, Д.И. Поведение металлических примесей при геттерирующей термообработке кремния / Д.И. Бринкевич, В.С. Просолович, Н.В. Вабищевич // Микроэлектроника. – 1997. – Т. 26, № 5. – С. 392 – 395.
- Process for producing thermally annealed wafers having improved internal gettering: US patent 6686620, primary class 438/473, public. 3.02.2004 / R.J. Falster, M.J. Binns, H.W. Korb; MEMC Electronics Materials, Inc.
- Вабищевич, С.А. Микротвердость пластин кремния, прошедшего геттерирующую термообработку / С.А. Вабищевич, Н.В. Вабищевич, Д.И. Бринкевич // Перспективные материалы. – 2005. – № 2. – С. 20 – 22.
- Sumino, K. Interaction of dislocation with impurities and influence on the mechanical properties of silicon crystals / K. Sumino // Defects Semiconductors. Symp., Boston, Mass., Nov. 1982. – N.Y., 1983. – P. 307 – 321.

Поступила 29.01.2009