УДК 512.542

О ФАКТОРИЗАЦИИ КОНЕЧНЫХ ГРУПП ПОДГРУППАМИ ФРОБЕНИУСА

П.В. БЫЧКОВ

(Гомельский государственный университет им. Ф. Скорины)

Рассматриваются вопросы, связанные с факторизациями, как важное направление в теории конечных групп. Наиболее интересны теоремы о строении конечной группы, представимой в виде произведения двух подгрупп с заданными свойствами. Естественным является изучение строения конечной группы, являющейся произведением двух групп Фробениуса. В данной работе изучаются конечные группы, факторизуемые собственными подгруппами Фробениуса. Получены композиционные факторы конечной группы, представимой в виде произведения разрешимых подгрупп Фробениуса взаимно простых порядков. Также описаны композиционные факторы конечной группы, представимой в виде произведения разрешимой подгруппы Фробениуса и неразрешимой подгруппы Фробениуса взаимно простых порядков. Найдены простые неабелевы группы, факторизуемые разрешимыми подгруппами Фробениуса.

Введение. Важным направлением в теории конечных групп являются вопросы, связанные с факторизациями. Наиболее интересны теоремы о строении конечной группы, представимой в виде произведения двух подгрупп с заданными свойствами. Данной тематике посвящены работы таких известных алгебраистов, как Сеп, Н. Ито, Х. Виландт, Ф. Холл, С.А. Чунихин, Л.С. Казарин, В.С. Монахов. Так, В.С. Монаховым [1] было установлено композиционное строение конечной группы, представимой в виде произведения двух групп Шмидта. Естественным является изучение строения конечной группы, являющейся произведением двух групп Фробениуса. Мотивировкой данных исследований является и тот факт, что группа Фробениуса может быть неразрешимой и хорошо известные результаты Е. Фисман и Л.С. Казарина о факторизациях разрешимыми сомножителями здесь не применимы. В данной работе установлены композиционные факторы конечных групп, представимых в виде произведения подгрупп Фробениуса взаимно простых порядков. А также перечислены простые конечные группы, факторизуемые разрешимыми подгруппами Фробениуса.

В работе получены следующие результаты:

ТЕОРЕМА 1. Пусть G – конечная неабелева группа, представимая в виде произведения двух своих собственных разрешимых подгрупп Фробениуса A и B, причем (|A|,|B|)=1, тогда любой неабелев композиционный фактор группы G изоморфен одной из следующих групп: PSL(2, 11); $PSL(2, 2^n)$, $n \ge 2$.

ТЕОРЕМА 2. Пусть G – конечная неабелева группа, представимая в виде произведения двух своих собственных подгрупп A и B, причем (|A|,|B|)=1 и A – неразрешимая группа Фробениуса, B – разрешимая группа Фробениуса, тогда любой неабелев композиционный фактор группы G изоморфен одной из следующих групп: PSL(2,5); PSL(2,11); PSL(2,29); PSL(2,59).

ТЕОРЕМА 3. Пусть G — конечная простая неабелева группа, представимая в виде произведения двух своих собственных разрешимых подгрупп Фробениуса A и B, тогда

$$G \in \{PSL(2, 2^n), n \ge 2, PSL(2, 11)\}.$$

Используемые обозначения и результаты

ОПРЕДЕЛЕНИЕ 1. Конечная группа G называется группой Фробениуса, если в ней найдется собственная подгруппа H, совпадающая со своим нормализатором и взаимно простая со своими сопряженными подгруппами, отличными от H. Последние два условия эквивалентны следующему: $H \cap H^g = E$ для всех $g \in G \setminus H$.

Обозначения в основном стандартны, их можно найти в [2]. I(G) — множество всех инволюций группы G, $Syl_p(G)$ — множество всех силовских p-подгрупп группы G, G_p — некоторая подгруппа из $Syl_p(G)$, $O(G) = O_2(G)$ — наибольшая нормальная подгруппа в G нечетного порядка. Если X — произвольная группа, то $Z^*(X)$ обозначает полный прообраз в X группы Z(X/O(X)), $m_p(G)$ — p-ранг группы G, [X]Y — полупрямое произведение с нормальной подгруппой X в [X]Y, S(G) — наибольшая разрешимая нормальная подгруппа группы G.

Для доказательства основных результатов нам будут необходимы известные факторизационные теоремы, сформулированные в виде следующих лемм.

ЛЕММА 1 [3]. Пусть G — конечная группа, все композиционные факторы которой принадлежат списку известных в настоящее время конечных простых групп. Предположим, что A и B — собственные разрешимые подгруппы в G взаимно простых порядков, причем G = AB. Тогда любой композиционный фактор группы G либо имеет простой порядок, либо изоморфен одной из следующих групп: $PSL(2, 2^n)$, $n \ge 2$; PSL(2, q), $q = -1 \pmod{4}$; PSL(3, 3); M_{11} .

ЛЕММА 2 [4]. В группе $PSL(2, 2^n)$ пусть N — нормализатор силовской p-подгруппы, являющийся группой Фробениуса, D — диэдральная группа порядка $2(2^n+1)$ при p=2 и p^n+1 при p>2, Z — циклическая подгруппа индекса 2 в D, S_4 и S_4^* — несопряженные в $PSL(2, p^n)$ симметрические группы степени 4, A_4 и A_4^* , A_5 и A_5^* — несопряженные в $PSL(2, p^n)$ знакопеременные группы степени 4 (соответственно 5).

Группа $PSL(2, p^n)$ допускает только следующие факторизации, с точностью до сопряженных подгрупп:

A.
$$PSL(2, 2^n) = ND = NZ, n \ge 2.$$

Б. Пусть p > 2. $PSL(2, p^n) = ND$ тогда и только тогда, когда $\frac{1}{2}(p^n - 1)$ — нечетное число.

В. При $p^n \ge 61$ и p > 2 группа $PSL(2, p^n)$ не имеет никаких других факторизаций, кроме указанной в Б.

Г. Пусть p > 2 и $p^n \le 59$. Тогда

1)
$$PSL(2, 7) = ND = NS_4 = NS_4^* = G_7S_4 = G_7S_4^*$$
.

2)
$$PSL(2, 9) = NA_s = NA_s^* = S_A A_s = S_A^* A_s^* = A_s A_s^* = A_A A_s^* = A_A^* A_s.$$

3)
$$PSL(2, 11) = ND = NA_4 = NA_5 = NA_5 = NA_5^* = G_{11}A_5 = G_{11}A_5^*$$

4)
$$PSL(2, 19) = ND = NA_s = NA_s^*$$
.

5)
$$PSL(2, 29) = NA_5 = NA_5^* = KA_5 = KA_5^*$$
, где $K \subseteq N$ и $|K| = 7 \cdot 29$.

6)
$$PSL(2, 59) = ND = NA_5 = NA_5^*$$
.

7)
$$PSL(2, p^n) = ND$$
, rate $p^n = 23, 27, 31, 43, 47, 51$.

ЛЕММА 3 [5]. Пусть G = PSL(3, q), тогда

- 1) если 3 делит q –1, тогда G не имеет факторизаций;
- 2) если 3 не делит q-1 и q>3, тогда G имеет следующие факторизации:

$$G = AB$$
, где $|A| = (q+1)q^3(q-1)^2$, а $|B| = 3(q^2+q+1)$; и $G = AB_1$, где $|B:B_1| = 3$, A изоморфна

подгруппе матриц с элементами
$$\begin{pmatrix} a & b & c \\ 0 & e & f \\ 0 & g & h \end{pmatrix}$$
;

- 3) если G = PSL(3, 2), тогда G допускает дополнительно к факторизациям пункта 2) следующую факторизацию G = SB, где |S| = 8, B такая, как в пункте 2);
- 4) если G = PSL(3, 3), тогда G допускает дополнительно к факторизациям 2) следующую факторизацию G = CB, где A: C/=3, B такая, как в 2).

ЛЕММА 4 [6]. Пусть G – конечная K-группа, представимая в виде произведения двух разрешимых подгрупп, тогда любой композиционный неабелев фактор группы G принадлежит следующему списку групп: M_{11} ; PSp(4,3); PSL(2,q), (q>3); PSL(3,q), (q<9).

ЛЕММА 5 [2, Z^* -теорема]. Пусть G – группа и S – силовская 2-подгруппа в G. Если z – изолированная инволюция в S, то $z \in Z^*(G)$.

Основная часть

В настоящей работе последовательно доказываются 3 теоремы, описывающие строение группы, факторизуемой подгруппами Фробениуса.

Для удобства доказательства сформулируем и докажем следующие три утверждения.

УТВЕРЖДЕНИЕ 1. Пусть G — конечная простая неабелева группа, представимая в виде произведения двух своих собственных подгрупп A и B, причем (|A|,|B|)=1 и A, B — разрешимые группы Фробениуса, тогда $G\cong PSL(2,\ 11)$.

Доказательство. Согласно лемме 1 рассмотрим следующие случаи:

- 1) $G \cong PSL(2, 2^n), n \geq 2$. По лемме 2 возможны следующие две факторизации группы $PSL(2, 2^n)$. $PSL(2, 2^n) = ND = NZ, n \geq 2$. Первая факторизация не удовлетворяет условию утверждения, так как факторы не взаимно простых порядков. Во второй факторизации второй фактор $Z_{2^{n+1}}$ не является группой Фробениуса. Поэтому случай 1) невозможен.
- 2) $G\cong PSL(2,\ q), q\equiv -1 \pmod 4, q=p^n$. Из леммы 2 следует, что возможны только следующие факторизации группы $PSL(2,\ q)$. Если $\frac{1}{2}(p^n-1)$ нечетное число, или $p^n\geq 61$, то $PSL(2,p^n)=ND$, где $N=[G_p]Z_{\frac{p^n-1}{2}},\ D=[Z_{\frac{p^n+1}{2}}]Z_2$. Покажем, что данный случай невозможен. Так как $\frac{p^n-1}{2}$ нечетное число, то $\frac{p^n-1}{2}=2m+1,\ p^n-1=4m+2,\ P^n+1=4m+4,\ \frac{p^n+1}{2}=2m+2=2(m+1)$ четное число, следовательно, D не является группой Фробениуса.

Пусть $p^n \le 59$. Тогда получим следующие возможные группы: PSL(2, 7), PSL(2, 9), PSL(2, 11), PSL(2, 19), PSL(2, 29), PSL(2, 59), $PSL(2, p^n)$ где $p^n = 23$, 27, 31, 43, 47, 51. Учитывая условие $p^n = -1 \pmod{4}$, группы PSL(2, 9) и PSL(2, 29) можно не рассматривать. Рассмотрим оставшиеся группы.

 $PSL(2,7) = ND = NS_4 = NS_4^* = G_7S_4 = G_7S_4^*$. Во всех приведенных факторизациях только сомножитель N является группой Фробениуса, поэтому данный случай невозможен.

$$PSL(2, 11) = ND = NA_4 = NA_5 = NA_5 = NA_5^* = G_{11}A_5 = G_{11}A_5^*$$
. Факторизация

 $PSL(2, 11) = NA_4 = ([Z_{11}]Z_5)([Z_2 \times Z_2]Z_3)$ удовлетворяет условию утверждения.

 $PSL(2,19) = ND = NA_5 = NA_5^*$. Группой Фробениуса в данных факторизациях является только N, поэтому данный случай невозможен.

 $PSL(2,59) = ND = NA_5 = NA_5^*$. Данный случай исключается в точности, как предыдущий.

- $PSL(2, p^n) = ND$, где $p^n = 23, 27, 31, 43, 47, 51$. В данных факторизациях одним из факторов являются следующие диэдральные группы: D_{24} , D_{28} , D_{32} , D_{44} , D_{48} , D_{52} , соответственно. Ни одна из них не являются группой Фробениуса, поэтому данный случай невозможен.
- 3) $G \cong PSL(3, 3)$ и $|G| = 2^4 \cdot 3^3 \cdot 13$. Порядок группы G делится на три простых числа, поэтому данная группа не может быть представлена в виде произведения двух подгрупп Фробениуса взаимно простых порядков.
- 4) $G \cong M_{11}$ и $|G| = 2^4 \cdot 3^2 \cdot 5 \cdot 11$. $M_{11} = ([Z_{11}]Z_5)B$, $|B| = 2^4 \cdot 3^2$. Из строения M_{11} [7] следует, что B не является группой Фробениуса. Случай 4) невозможен. Утверждение (1) доказано.

УТВЕРЖДЕНИЕ 2. Пусть G – конечная простая неабелева группа, представимая в виде произведения двух своих собственных подгрупп A и B, где A – циклическая группа, B – разрешимая группа Фробениуса, причем (|A|, |B|) = 1, тогда G изоморфна $PSL(2, 2^n)$, $n \ge 2$.

Доказательство. Согласно лемме 1 рассмотрим следующие случаи:

- 1) $G\cong PSL(2,\ 2^n),\ n\geq 2.$ По лемме 2 $PSL(2,\ 2^n)=ND=NZ,\ n\geq 2.$ Первая факторизация не удовлетворяет условию леммы, так как в ней ни один из факторов не является циклической подгруппой. Во второй факторизации $[G_2]Z_{2^{n}-1}$ группа Фробениуса, Z_{2^n+1} циклическая группа. Покажем, что $(2^n+1,\ 2^n-1)=1.$ Действительно, пусть существует общий делитель $k\neq 1$, тогда $2^n+1=km,\ 2^n-1=kl,$ где $k,\ m,\ l$ натуральные числа, не делящиеся на 2. Вычтем из первого равенства втрое. Получим 2=k(m-l). Следовательно, $k=2,\ m-l=1.$ Получили противоречие с тем, что k нечетное число. Поэтому порядки сомножителей взаимно просты и вторая факторизация удовлетворяет условию леммы.
- 2) $G \cong PSL(2, q), q \equiv -1 \pmod 4$, $q = p^n$ Из леммы 2 следует, что возможны только следующие факторизации группы PSL(2, q).

Если $\frac{1}{2}(p^n-1)$ — нечетное число, или $p^n \ge 61$, то $PSL(2,p^n) = ND$. Ни один из факторов не является циклической подгруппой, поэтому данный случай невозможен.

Пусть $p^n \le 59$, где $p^n \equiv -1 \pmod{4}$ тогда получим, что необходимо рассмотреть следующие случаи:

- $-PSL(2,\ 7)=ND=NS_4=NS_4^*=G_7S_4=G_7S_4^*$. В приведенных факторизациях циклической подгруппой является только один фактор G_7 . Однако S_4 не является группой Фробениуса, поэтому данный случай невозможен;
- $-PSL(2, 11) = ND = NA_4 = NA_5 = NA_5 = NA_5^* = G_{11}A_5 = G_{11}A_5^*$. Циклическим фактором является G_{11} , но поскольку A_5 не является группой Фробениуса, то данный случай невозможен;
- $-PSL(2, 19) = ND = NA_5 = NA_5^*$. Во всех факторизациях нет циклических сомножителей, следовательно, данный случай невозможен;
- $-PSL(2, 59) = ND = NA_5 = NA_5^*$. В данных факторизациях нет циклических факторов, и данный случай невозможен;
- $-PSL(2,p^n)=ND$, где $p^n=23$, 27, 31, 43, 47, 51. В данных факторизациях одним из факторов являются следующие диэдральные группы: D_{24} , D_{28} , D_{32} , D_{44} , D_{48} , D_{52} соответственно. Все они не являются циклическими подгруппами, поэтому данный случай невозможен.
- 3) $G \cong PSL(3,3)$ и $|G| = 2^4 \cdot 3^3 \cdot 13$. Группа G допускает факторизацию $G = G_{13}B$. Так как $m_2(G_2) \ge 2$ и $m_3(G_3) \ge 2$, то группа порядка $2^4 \cdot 3^3$ не является группой Фробениуса. Случай 3) невозможен.
- 4) $G \cong M_{11}$ и $G = ([Z_{11}]Z_5)B$, где $|B| = 2^4 \cdot 3^2$. Из строения M_{11} [7] следует, что B не является циклической группой. Случай 4) невозможен. Утверждение 2 доказано.

УТВЕРЖДЕНИЕ 3. Пусть G — конечная простая неабелева группа, представимая в виде произведения двух своих собственных подгрупп A и B, где A — разрешимый дополнительный множитель группы Фробениуса, B — разрешимая группа Фробениуса, причем (|A|,|B|)=1, тогда G изоморфна $PSL(2, 2^n), n \ge 2$. или PSL(2, 11).

Доказательство. Отметим, что силовские p-подгруппы нечетного порядка из дополнительного множителя Фробениуса циклические, а силовская 2-подгруппа либо циклическая, либо Q_8 , либо Q_{16} и $m_2(S_2)=1$ [8]. Согласно лемме 1 рассмотрим следующие случаи:

- 1) $G \cong PSL(2, 2^n), n \ge 2$. По лемме 2, $PSL(2, 2^n) = ND = NZ, n \ge 2$. Первая факторизация не удовлетворяет условию леммы, так как (|N|, |D|) = 2. Во второй факторизации фактор Z_{2^n+1} является дополнительным множителем группы Фробениуса, N группа Фробениуса, следовательно, данная факторизация удовлетворяет условию утверждения;
- 2) $G \cong PSL(2, q), q \equiv -1 \pmod{4}, q = p^n$ Из леммы 2 следует, что возможны только следующие факторизации группы PSL(2, q).

Если $\frac{1}{2}(p^n-1)$ — нечетное число, или $p^n \geq 61$, то $PSL(2,p^n)=ND$. Так как $\frac{p^n+1}{2}$ — четное число, то $D=[Z_{\frac{p^n+1}{2}}]Z_2$ не является группой Фробениуса. Поскольку $m_2(D)=2$, то D не может быть дополнительным множителем Фробениуса. Поэтому данный случай невозможен.

Пусть $p^n \le 59$, где $p^n \equiv -1 \pmod{4}$. Рассмотрим возникающие по лемме 2 следующие случаи:

- $-PSL(2, 7) = ND = NS_4 = NS_4^* = G_7S_4 = G_7S_4^*$. В приведенных факторизациях группой Фробениуса является только N. Так как $m_2(D) = 2$, то D не может быть дополнительным множителем группы Фробениуса. Следовательно, данный случай невозможен;
- $-PSL(2,\ 11)=ND=NA_4=NA_5=NA_5=NA_5^*=G_{11}A_5=G_{11}A_5^*.$ Факторизация $PSL(2,\ 11)=NA_4$ удовлетворяет условию утверждения 3;
- $-PSL(2, 19) = ND = NA_{5} = NA_{5}^{*}$. Диэдральная группа D порядка 20 не является группой Фробениуса и не может быть дополнительным множителем в группе Фробениуса, поскольку ее 2-ранг равен 2. Следовательно, данный случай невозможен;
 - $-PSL(2, 59) = ND = NA_{\xi} = NA_{\xi}^*$. Данный случай исключается аналогично предыдущему случаю;
- $-PSL(2, p^n) = ND$, где $p^n = 23, 27, 31, 43, 47, 51$. В данных факторизациях одним из факторов являются следующие диэдральные группы: D_{24} , D_{28} , D_{32} , D_{44} , D_{48} , D_{52} соответственно. Все они имеют 2-ранг, равный 2, а значит, не будут ни группами Фробениуса, ни дополнительным множителем группы Фробениуса. Поэтому данный случай невозможен.

- 3) $G \cong PSL(3,3)$ и $|G| = 2^4 \cdot 3^3 \cdot 13$. Так как $m_2(G_2) \ge 2$ и $m_3(G_3) \ge 2$, то группа порядка $2^4 \cdot 3^3$ не является группой Фробениуса. Случай 3) невозможен.
- 4) $G \cong M_{11}$ и $|M_{11}| = 2^4 \cdot 3^2 \cdot 5 \cdot 11$. $M_{11} = ([Z_{11}]Z_5)B$, где $|B| = 2^4 \cdot 3^2$. Из строения M_{11} [7] получаем, что B не является ни группой Фробениуса, ни дополнительным множителем группы Фробениуса. Случай 4) невозможен. Утверждение 3 доказано.

ТЕОРЕМА 1. Пусть G – конечная неабелева группа, представимая в виде произведения двух своих собственных разрешимых подгрупп Фробениуса A и B, причем (|A|,|B|)=1, тогда любой неабелев композиционный фактор группы G изоморфен одной из следующих групп: PSL(2, 11); $PSL(2, 2^n), n \ge 2$.

Доказательство. Обозначим $\Re = \{PSL(2, 11); PSL(2, 2^n), n \geq 2\}$ Если G — простая группа, то по утверждению (1) $G \in \Re$. Следовательно, G не простая группа. Пусть N — минимальная нормальная подгруппа в G.

- 1) $N\cong Z_p\times ...\times Z_p$. Так как (|A|,|B|)=1, то можем считать, что $N\subseteq A=[A_0]A_1$, где A_0 инвариантный, а A_1 дополнительный множители группы Фробениуса и $(|A_0|,|A_1|)=1$. Из свойств групп Фробениуса, $N\subseteq A_0$. Если $N\neq A_0$, тогда $G/N=\overline{AB}$, где $\overline{A},\overline{B}$ группы Фробениуса, и по утверждению (1) факторы группы \overline{G} принадлежат $\mathfrak R$. Если $N=A_0$, тогда $G/N=\overline{A_1B}$. Где $\overline{A_1}$ дополнительный множитель группы Фробениуса, \overline{B} группа Фробениуса. По утверждению 3 факторы группы G принадлежат $\mathfrak R$. Поэтому можем считать, что S(G)=1.
- 2) $N\cong N_1\times\ldots\times N_k$ прямое произведение изоморфных простых неабелевых групп. Поскольку G=AB и (|A|,|B|)=1, то $N=(N\cap A)(N\cap B)$. Если $N\cap A$ и $N\cap B$ группы Фробениуса, то по утверждению 1 $N\in\mathfrak{R}$. Если $N\cap A$ и $N\cap B$ нильпотентные группы, тогда по теореме Кегеля Виландта группа N разрешима, что невозможно, так как S(G)=1. Пусть теперь $N\cap A$ нильпотентная группа, а $N\cap B$ группа Фробениуса. Так как $(|N\cap A|,|N\cap B|)=1$, то N_1 содержится в списке групп леммы 1. Так как группы PSL(3,3) и M_{11} не допускают факторизаций нильпотентной подгруппой и подгруппой Фробениуса [7], то $N_1\cong PSl(2,q)$. Из утверждения 2 следует, что $N_1\cong PSl(2,2^n)\in\mathfrak{R}$. Следовательно, $N\in\mathfrak{R}$. Мы показали, что $N\in\mathfrak{R}$. Из утверждений 1-3 следует, что неабелевы факторы группы G/N содержатся в \mathfrak{R} . Теорема доказана.

ТЕОРЕМА 2. Пусть G – конечная неабелева группа, представимая в виде произведения двух своих собственных подгрупп A и B, причем (|A|,|B|)=1 и A – неразрешимая группа Фробениуса, B – разрешимая группа Фробениуса, тогда любой неабелев композиционный фактор группы G изоморфен одной из следующих групп: PSL(2, 5); PSL(2, 11); PSL(2, 29); PSL(2, 59).

Доказательство. Пусть A = [U]V, B = [S]T, где $V \subseteq (SL(2, 5) \times R)$ 2 и (|R|, |30|) = 1 [8]. 2-ранг группы G равен 1, поэтому силовская 2-подгруппа в группе G изоморфна группе кватернионов Q_8 или Q_{16} . Пусть $\tau \in I(G)$. Согласно Z^* -теореме Глаубермана [2, теорема 4.95] $\overline{\tau} \in Z(G/O(G))$. Если O(G) = 1, то $\tau \in Z(G)$, что невозможно. Следовательно, $O(G) \neq 1$.

Рассмотрим фактор-группу $\overline{G}=G/O(G)=AO(G)/O(G)\cdot BO(G)/O(G)$. Если BO(G)=G, то G – разрешима. Если AO(G)=G, то G имеет неабелев композиционный фактор PSL(2,5). Будем считать, что $AO(G)\neq G$, $BO(G)\neq G$. Имеет место изоморфизм $G\cong A/A\cap O(G)\cdot B/B\cap O(G)$. Очевидно, что $A\cap O(G)\lhd A$. Если $A\cap O(G)\subset U$, то в силу Z^* -теоремы Глаубермана $O(\overline{G})\neq 1$, что невозможно. Таким образом, $U\subseteq A\cap O(G)\subseteq O(G)$. Точно так же $S\subseteq O(G)$.

Силовская 2-подгруппа в фактор-группе $\overline{G}=G/Z^*(G)$ либо $Z_2\times Z_2$, либо D_8 . Из результата Уолтера — Горенстейна $[2, c.\ 27,\ 248]$ следует, что простая группа с абелевыми или диэдральными силовскими 2-подгруппами является одной из следующих групп: $PSL(2,\ 2^n)$; $PSL(2,\ q)$, где q — степень нечетного простого числа, причем $q\equiv \pm 3 \pmod 8$; $J_1;\ ^2G_2(q)$, где $q=3^{2n+1}$; $PSL(2,\ q),\ q>3,\ q$ — нечетно; A_7 . Так как силовская 2-подгруппа группы \overline{G} имеет наибольшую абелеву подгруппу $Z_2\times Z_2$, то композиционный неабелев фактор в группе \overline{G} принадлежит списку: { $PSL(2,\ q),\ q>3,\ q$ — нечетно; A_7 }.

 $\overline{G} = \overline{VT}$, причем \overline{V} содержит нормальный в \overline{V} композиционный фактор, изоморфный A_5 . Из строения силовской 2-подгруппы группы \overline{G} следует, что группа \overline{G} содержит единственный неразрешимый композиционный фактор \overline{L} , нормальный в \overline{G} . Так как $S(\overline{G}) = 1$, то $\overline{L} = (\overline{L} \cap \overline{V})(\overline{L} \cap \overline{T})$ — простая неабелева группа, причем $1 \neq \overline{L} \cap \overline{T} \lhd \overline{V} \subseteq (\overline{R} \times A_5)$ 2 и $\overline{L} \cap \overline{V}$ содержит силовскую 2-подгруппу группы A_5 . Отсюда легко заключить, что $A_5 \subseteq \overline{L} \cap \overline{V}$.

Рассмотрим все возможные случаи:

- 1) $PSL(2, 2^n)$, $n \ge 2$. Возможны следующие две факторизации группы $PSL(2, 2^n)$: $PSL(2, 2^n) = ND = NZ$. Ни в одном из факторов не присутствует секции A_5 . Поэтому случай 1) невозможен;
- 2) если p > 2 и $\frac{1}{2}(p^n 1)$ нечетное число, или $p^n \ge 61$ и p > 2, то $PSL(2, p^n) = ND$. Данный случай также невозможен, поскольку в факторизации отсутствует A_{ς} ;
 - 3) пусть p > 2 и $p^n \le 59$. Из леммы 2 следует, что возможны следующие случаи:
- $-PSL(2, 7) = ND = NS_4 = NS_4^* = G_7S_4 = G_7S_4^*$. Группа A_5 не входит ни в один из факторов. Поэтому данный случай невозможен;
- $-PSL(2, 9) = NA_5 = NA_5^* = S_4A_5 = S_4^*A_5^* = A_5A_5^* = A_4A_5^* = A_4^*A_5$. Во всех приведенных факторизациях не выполняется условие взаимной простоты порядков факторов. Следовательно, данный случай невозможен;
- $-PSL(2, 11) = ND = NA_4 = NA_5 = NA_5 = NA_5^* = G_{11}A_5^* = G_{11}A_5^*$. Факторизация $PSL(2, 11) = A_5G_{11}$ удовлетворяет условию теоремы 2;
 - $PSL(2, 19) = ND = NA_5 = NA_5^*$. Поскольку (| N |, | A_5 |) ≠ 1, то данный случай невозможен;
- $-PSL(2, 29) = NA_5 = NA_5^* = KA_5 = KA_5^*$. В приведенных факторизациях K разрешимая группа Фробениуса и ($|K|, |A_5|$) = 1, поэтому PSL(2, 29) может являться композиционным фактором группы G;
- $-PSL(2, 59) = ND = NA_5 = NA_5^*$. В данных факторизациях $N = [Z_{59}]Z_{29}$ разрешимая группа Фробениуса и $(|N|, |A_5|) = 1$, поэтому PSL(2, 59) может являться композиционным фактором группы G.
- $-PSL(2,p^n)=ND$, где $p^n=23$, 27, 31, 43, 47, 51.В данных факторизациях одним из факторов являются диэдральные группы: D_{24} , D_{28} , D_{32} , D_{44} , D_{48} , D_{52} соответственно. Поскольку их порядок делится на 4, то данный случай не удовлетворяет условию теоремы.
- Если $\overline{G}\cong A_7$, то $|A_7:A_5|=6\cdot 7$ не взаимно прост с A_5 , поэтому A_7 не допускает необходимую нам факторизацию. Теорема доказана.

ТЕОРЕМА 3. Пусть G — конечная простая неабелева группа, представимая в виде произведения двух своих собственных разрешимых подгрупп Фробениуса A и B, тогда

$$G \in \{PSL(2, 2^n), n \ge 2, PSL(2, 11)\}.$$

Доказательство. Согласно лемме 4 возможны следующие случаи:

- 1) $G\cong M_{11}$ и $|M_{11}|=2^4\cdot 3^2\cdot 5\cdot 11$. Рассмотрим факторизацию $M_{11}=AB$ и будем считать, что 11 делит |A|. Тогда из [7] следует, что $A\subset PSL(2,\ 11)$ и $A\cong Z_{11}$ или $A\cong [Z_{11}]Z_5$. Если $M_{11}=Z_{11}B$, то из [7] следует, что $B\cong M_{10}\cong A_6\cdot 2$, B не является группой Фробениуса. Пусть $M_{11}=([Z_{11}]Z_5)B$, $\Delta=([Z_{11}]Z_5)\cap B$. Если $\Delta=1$, то $|M_{11}:B|=55$ и из [7] следует, что $B\cong 3^2:Q_8\cdot 2$, B не является группой Фробениуса. Если $\Delta=5$, то $|B|=2^4\cdot 3^2\cdot 5$ и из [7] следует, что $B\cong M_{10}\cong A_6\cdot 2$, B не является группой Фробениуса. Если $\Delta=11$, то $|B|=2^4\cdot 3^2\cdot 11$ и из [7] следует, что такой подгруппы в группе G не существует. Данный случай невозможен;
- 2) $G\cong PSp(4,3)$. Тогда $|G|=2^6\cdot 3^4\cdot 5$. Из [9] следует, что в любой максимальной факторизации группы PSp(4,3) один из сомножителей является параболической подгруппой и, следовательно, его порядок не делится на 5. Пусть $5\mid |A|$, тогда (|B|,5)=1. Если G_5 содержится в инвариантном множителе подгруппы A, то так как $C_G(G_5)=G_5$ [7], следовательно, $A\cong [Z_5]Z_2$ или $A\cong [Z_5]Z_4$. В группе PSp(4,3) нет подгрупп индекса, не превосходящего 20 [7]. Таким образом, силовская 5-подгруппа содержится в дополнительном множителе подгруппы A. Из [7] следует, что $A\subseteq 2^4:A_5$ или $A\subseteq S_6$. Если $A\subseteq 2^4:A_5$, то $A\cong 2^4:Z_5$. Отсюда получаем, что $3^4\mid |B|$ и, значит, B борелевская подгруппа в

- $PSp(4,\ 3)$, поэтому $B\subseteq N_G(G_3)$ и $B\cong [G_3]Z_2$. Очевидно, |AB|<|G|, что невозможно. Так как для всякой разрешимой подгруппы T из S_6 $O_{S'}(T)=1$ то случай $A\subseteq S_6$ также невозможен;
- 3) $G \cong PSL(2, q)$, (q > 3). Рассмотрим все возможные факторизации групп PSL(2, q). Согласно лемме 2 возможны случаи.
- Если $G \cong PSL(2, 2^n)$, $n \ge 2$. Тогда $PSL(2, 2^n) = ND = NZ$. В первой факторизации оба фактора являются группами Фробениуса, поэтому $PSL(2, 2^n)$ удовлетворяют условию теоремы.
- Если p > 2 и $\frac{1}{2}(p^n 1)$ нечетное число, или $p^n \ge 61$ и p > 2, то $PSL(2, p^n) = ND$. Так как D не является группой Фробениуса, то данный случай невозможен.
 - Если p > 2 и $p^n \le 59$. Тогда по лемме 2 имеют место следующие случаи:
- $-PSL(2, 7) = ND = NS_4 = NS_4^* = G_7S_4 = G_7S_4^*$. Во всех факторизациях только сомножитель N является группой Фробениуса, поэтому данный случай невозможен;
- $-PSL(2, 9) = NA_5 = NA_5^* = S_4A_5 = S_4^*A_5^* = A_5A_5^* = A_4A_5^* = A_4^*A_5$. Группами Фробениуса во всех факторизациях являются N и A_1 . Так как $PSL(2, 9) \neq NA_1$, то данный случай невозможен;
- $-PSL(2, 11) = ND = NA_4 = NA_5 = NA_5 = NA_5^* = G_{11}A_5^* = G_{11}A_5^*$. Факторизация $PSL(2, 11) = NA_4$ удовлетворяет условию теоремы;
- $-PSL(2, 19) = ND = NA_5 = NA_5^*$. В данных факторизациях только N является группой Фробениуса, поэтому случай невозможен;
- $-PSL(2, 29) = NA_5 = NA_5^* = KA_5 = KA_5^*$. Группами Фробениуса в данных факторизациях являются N и K. Так как PSL(2, 29) ≠ NK, то данный случай невозможен;
- $-PSL(2, 59) = ND = NA_5 = NA_5^*$. В данных факторизациях только N является группой Фробениуса, поэтому случай невозможен;
- $-PSL(2, p^n) = ND$, где $p^n = 23$, 27, 31, 43, 47, 51. В данных факторизациях одним из факторов являются диэдральные группы: D_{24} , D_{28} , D_{32} , D_{44} , D_{48} , D_{52} соответственно. Ни одна из них не является группой Фробениуса, поэтому случай невозможен;
- 4) $G \cong PSL(3,q)$, (q < 9). Из леммы 3 следует, что группы PSL(3,4) и PSL(3,7) не имеют факторизаций, поэтому рассмотрим следующие группы и их факторизации: PSL(3,2), PSL(3,3), PSL(3,5), PSL(3,8).
 - $G \cong PSL(3, 2)$. Так как $PSL(3, 2) \cong PSL(2, 7)$, то данная группа уже рассмотрена.
- $G \cong \mathrm{PSL}(3,3)$. Из леммы 3 следует, что $G = AB = CB = AB_1$ где $A = 3^2 : 2S_4$, B = 13 : 3, $C = 3^2 : G_2$, $B_1 \cong Z_{31}$. Группа A и C не являются группами Фробениуса, поэтому данный случай невозможен.
- $G\cong \mathrm{PSL}(3,5)$. Из леммы 3 следует, что $G=AB=AB_1$, где $A=5^2$: GL(2,5), B=31:3, $B_1\cong Z_{31}$. Группа A не является группой Фробениуса, поэтому данный случай невозможен.
- $G \cong \mathrm{PSL}(3,\,8)$. Из леммы 3 следует, что $G = AB = AB_1$, где $A = 2^6 : (7 \times PSL(2,\,8))$, B = 73 : 3, $B_1 \cong Z_{73}$. Группы A не являются группой Фробениуса, поэтому данный случай невозможен. Теорема доказана.

ЛИТЕРАТУРА

- 1. Монахов, В.С. Произведение конечных групп, близких к нильпотентным / В.С. Монахов // Конечные группы. Минск: Наука и техника, 1975. С. 70 100.
- 2. Горенстейн, Д. Конечные простые группы. Введение в их классификацию / Д. Горенстейн. М.: Мир, 1985. 352 с.
- 3. Fisman, E. On product of two finite solvable groups / E. Fisman // J. Algebra. 1983. Vol. 80, № 2. P. 517 536.
- 4. Ito, N. On the faktorisations of the linear fractional group $LF(2, p^n)$ / N. Ito // Acta scient. math. 1953. N_2 15. P. 79 84.
- 5. Blaum, M. Factorizations of the simple groups PSL(3, q) and $PSU(3, q^2)$ / M. Blaum // Arch. Math. 1983. Vol. 40. P. 8 13.
- 6. Kazarin, I.S. Product of two finite solvable groups / I.S. Kazarin // Commun. Algebra. 1986. Vol. 14, N_{2} 6. P. 1001 1066.

- 7. Conway, J.H. Atlas of Finite Groups / J.H. Conway, [et al.]. Oxford: Clarendon Press, 1985.
- 8. Старостин, А.Н. О группах Фробениуса / А.Н. Старостин // Укр. мат. журнал. 1971. Т. 28, № 3. С. 629 639.
- 9. Liebeck, M.W. The maximal factorizations of the finite simple groups and their automorphism groups / M.W. Liebeck, C.E. Praeger, J Saxl // Amer. Math. Soc. -1990. Vol. 86, N 432. P. 1-151.

Поступила 16.09.2008