Министерство образования Республики Беларусь

Учреждение образования «Полоцкий государственный университет»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по курсу

«Основы радиационной безопасности» для студентов всех специальностей

СОДЕРЖАНИЕ

Введение	3
Лабораторная работа №1	4
Лабораторная работа №2 Лабораторная работа №3 Лабораторная работа №4 Лабораторная работа №5 Лабораторная работа №6	9 17 22 27 32
Основные правила работы с радиометрами-дозиметрами типа «Анри-01. Сосна», «Белрад 4»	37 43 44

ВВЕДЕНИЕ

Согласно Государственной программе по ликвидации в Беларуси последствий аварии на Чернобыльской АЭС, Министерство образования предложило ввести в высших учебных заведениях специальный курс "Радиационная безопасность", который должен разъяснить явление радиоактивности, рассказать о воздействии радиации на биологические организмы, способах защиты от излучений, видах ионизирующих излучений и других вопросах связанных с понятием "радиация".

Одним из условий успешного освоения курсом "Радиационной безопасности", является изучение на практике основных свойств ионизирующего излучения, получение навыков работы с дозиметром. Это позволяет не только углубить знание теоретического материала, но также получить определенный опыт работы с источниками который может пригодиться в будущей профессии от юриста до технолога, а также в нашей повседневной жизни.

Методические указания рассчитаны на студентов как технических специальностей, имеющих достаточную подготовку по физике атомного ядра, так и для студентов нетехнической специальностей, которые в силу своей будущей профессии физику в вузе не изучают, т. е. обладают достаточно слабой естественнонаучной подготовкой. Поэтому методические указания ко всем лабораторным работам содержат необходимые для понимания сути работы краткие теоретические сведения, порядок и методику проведения измерений и вычислений.

Перед выполнением лабораторных работ, студентам предлагается внимательным образом изучить порядок и режимы работы, а так же методику проведения измерений дозиметрами-радиометрами типа «Анри-01. Сосна», «Белрад 04». Это обусловлено тем, что, во-первых, данный тип приборов применяется при выполнении всех лабораторных работ, а, вовторых дозиметры данного типа относятся к полупрофессиональным, поскольку обладают достаточно низкой погрешностью измерений и в отдельных случаях могут быть использованы для профессиональных заключений.

Лабораторная работа №1

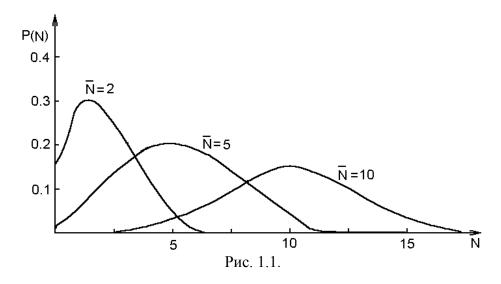
«Изучение статистических закономерностей радиоактивных процессов»

Цель работы: ознакомится с методикой обработки радиометрической информации, научиться работать с дозиметром, убедиться в непостоянности радиационного фона.

Краткие теоретические сведения

Естественным радиационным фоном называется ионизирующее излучение, состоящее из вторичных космических лучей и излучения радионуклидов космогенного и земного происхождения, рассеянных в земной коре, биосфере, гидросфере и атмосфере. Измененный в результате деятельности человека естественный радиационный фон называют техногенно измененным естественным радиационным фоном или техногенным фоном.

Радиоактивный распад естественных, искусственных и космогенных радионуклидов имеет вероятностный характер. Поэтому число ионизирующих частиц, регистрируемых счетчиками любых конструкций и типов в одних и тех же условиях за одинаковые промежутки времени при измерении интенсивности радиационного фона, оказывается, как правило, разным. Это означает, что при различных радиометрических и дозиметрических измерениях всегда существуют статистические ошибки, порождаемые флуктуациями самой измеряемой величины. Статистические ошибки являются случайными. Их величина и знак меняются от опыта к опыту.


Число радиоактивных распадов в источнике, а также интенсивность космического излучения, регистрируемые импульсным счетчиком, являются дискретными случайными величинами, и их можно описать с помощью распределения Пуассона:

$$P(N) = \frac{\overline{N}^N \exp(-\overline{N})}{N!} \tag{1.1}$$

где P(N) — вероятность того, что счетчик за некоторое время зарегистрирует N частиц;

$$\overline{N} = \frac{1}{n} \sum_{i=1}^{n} N_{i}$$
 — среднее число частиц, зарегистрированных счетчиком (n — число измерений).

Форма зависимости P(N) определяется в значительной степени величиной \overline{N} . По мере роста \overline{N} график P(N) становится все более симметричным относительно $N=\overline{N}$. При выполнении условия $\sqrt{\overline{N}}>>1$ (не менее чем в 10 раз) достигается полная симметрия зависимости, и распределение Пуассона переходит в нормальное распределение Гаусса (рис. 1.1).

В этом случае плотность вероятности p(N) определяется выражением

$$p(N) = \frac{1}{\sqrt{2\pi N}} \exp\left(-\frac{\left(N - \overline{N}\right)^2}{2\overline{N}}\right)$$
 (1.2)

В частности, вероятность того, что значение исследуемой величины лежит в интервале значений от a до b может быть определена следующими способами:

- с помощью распределения Пуассона:

$$P(a < N < b) = \sum_{i=a}^{b} P(N_i)$$

$$(1.3)$$

- с помощью распределения Гаусса:

$$P(a < N < b) = \frac{1}{\sqrt{2\pi N}} \int_{a}^{b} \exp\left(\frac{-\left(x - \overline{N}\right)^{2}}{2\overline{N}}\right) dx \tag{1.4}$$

Для определения истинного значения N_{ucm} исследуемой величины, распределенной согласно выражению Пуассона (1.1), вводят параметр σ_N – среднеквадратичную ошибку отдельного измерения

$$\sigma_N = \sqrt{\frac{\sum_{i=1}^{n} \left(N_i - \overline{N}\right)^2}{n-1}}$$
(1.5)

Согласно теории ошибок, средняя квадратичная ошибка отдельного измерения случайной величины, распределенной по закону Пуассона

$$\sigma_N \approx \sqrt{\overline{N}}$$
 (1.6)

В теории вероятности определяют также величину $\sigma_{\overline{N}}$ – среднеквадратичную ошибку среднего значения \overline{N} . Величина $\sigma_{\overline{N}}$ в серии из n измерений меньше средней квадратичной ошибки отдельного измерения $\sigma_{\overline{N}}$ в \sqrt{n} раз.

$$\sigma_{\overline{N}} = \frac{\sigma_N}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^n \left(N_i - \overline{N}\right)^2}{n(n-1)}}$$
(1.7)

Выражение (1.6) позволяет определить, насколько достоверно (с какой вероятностью) полученное значение исследуемой величины N соответствует истинному значению. Например:

- с достоверностью 68% можно утверждать, что истинное значение N_{ucm} заключено в пределах [N- σ_N , N+ σ_N];
 - с достоверностью 95% N_{ucm} заключена в пределах $[N-2\sigma_N, N+2\sigma_N]$;
- с достоверностью 99,7% N_{ucm} принадлежит диапазону [N- $3\sigma_N$, N+ $3\sigma_N$];

Аналогично, выражение (1.7) позволяет утверждать, что с заданной достоверностью истинное значение N_{ucm} измеряемой величины N заключено в некотором интервале:

- с достоверностью 68% в интервале $[\overline{N} \sigma_{\overline{N}}, \overline{N} + \sigma_{\overline{N}}];$
- с достоверностью 95% в интервале [\overline{N} $2\sigma_{\overline{N}}$, \overline{N} + $2\sigma_{\overline{N}}$];
- с достоверностью 99,7% в интервале [\overline{N} $3\sigma_{\overline{N}}$, \overline{N} + $3\sigma_{\overline{N}}$].

Средняя квадратичная относительная ошибка измерения среднего значения \overline{N} определяется выражением

$$\varepsilon_{\overline{N}} = \frac{\sigma_{\overline{N}}}{\overline{N}} 100\% = \frac{\sigma_{N}}{\overline{N}\sqrt{n}} = \frac{100\%}{\sqrt{n}} = \frac{100\%}{\sqrt{N}}$$
(1.8)

Из последнего выражения следует, что относительная точность измерения зависит только от общего числа частиц, зарегистрированных счетчиком, независимо от того зарегистрированы они в одном опыте или в серии из n опытов. Простые вычисления по формуле (1.8) показывают, что для измерения счетчиком числа ионизирующих частиц с 1%-ной относительной ошибкой необходимо зарегистрировать 10000 частиц, при измерениях с точностью 3% примерно 1000 частиц и т.д.

Статистические закономерности процессов радиоактивности отчетливо видны на гистограммах. Для построения гистограмм распределения некоторой статистической величины N проводят n ее измерений. Затем находят максимальное N_{max} и минимальное N_{min} значения величины N. Весь диапазон наблюдаемых значений N разбивают 10 - 20 интервалов ΔN и откладывают значения их границ по оси абсцисс. По оси ординат откладывают W – относительную частоту появления измеряемой величины N_i , характеризуемой в заданном интервале прямоуголь- ΔN $W = F_i/n$, c основанием И высотой ником F_i – число измерений, результаты которых N_i попали в интервал $[N_i$ - $\Delta N, N_i$ + $\Delta N], n$ — общее число измерений.

Для примера рассмотрим построение гистограмм распределения некоторой дискретной величины N при общем числе измерений n. Пусть в

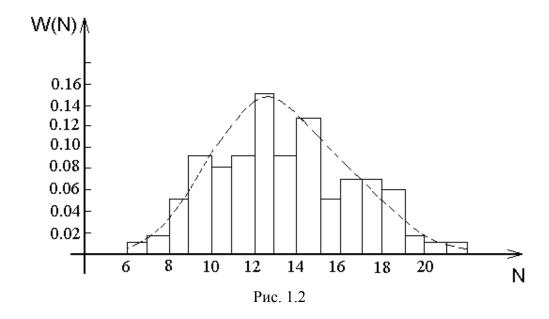

результате n=100 измерений были получены следующие значения, представленные в таблице:

Таблица 1

1	ľ	l,
6	7	9
1	1	ľ
9	7	21
:	•	:
ı	1	J
9	12	21

Диапазон полученных значений от N_{min} =6, до N_{max} =21. Число N_1 =6 встречается один раз, значит, для первого числа (N_1 =6) F_1 =1 и W_1 =0,01. Значение N_2 =7 встречается два раза, значит, для числа N_2 =7 имеем F_2 =2 и W_2 =0,02. Аналогично находим число значений величин F_i и W_i .

По результатам строится гистограмма, представленная на рисунке 1.2. По средним значениям каждого интервала экспериментальной гистограммы может быть построена кривая, качественно соответствующая распределению Пуассона (1.1), которая позволяет оценить вероятность появления соответствующего показания на табло дозиметра (пунктирная линия на рис. 1.2).

Порядок выполнения работы

- 1. Экспериментальная часть
- 1.1. Провести 100 последовательных измерений мощности экспозиционной дозы естественного радиационного фона N_{γ} (согласно п. 2.2 Основных правил работы с дозиметрами) при фиксированном положении дозиметра на лабораторном столе.
 - 1.2. Результаты измерений представить в виде таблицы.
 - 1.3. Вычислить среднеарифметическое значение

$$\overline{N} = \frac{\sum_{i=1}^{n} N_i}{n}$$

1.4. По результатам измерений определить величины F_i и W_i для каждого из встречаемых в таблице измерений значений мощности экспозиционной дозы. Данные занести в таблицу 2:

		Таблица	a 2
N_i , мк P /ч			
F_i			
W_i	 //		

1.5. По результатам, представленным в таблице 2, построить гистограмму распределения W=W(N).

Контрольные вопросы.

- 1. Что представляет собой естественный радиационный фон?
- 2. Что представляет собой техногенный радиационный фон?
- 2. Какую величину, характеризующую радиационный фон, измеряют с помощью дозиметра и чем обусловлена нестабильность его показаний?
- 3. Какой физический смысл имеет площадь, ограниченная распределением Пуассона и осью абсцисе?

Лабораторная работа №2

«Основы дозиметрии ядерных излучений»

Цель работы: ознакомиться с основными дозиметрическими величинами, характеризующими ионизирующие излучения, а также с методами их измерения и расчета.

Краткие теоретические сведения

Результат радиационного воздействия зависит от множества разнообразных факторов, однако объективным показателем воздействия этих факторов является количество поглощаемой энергии излучения в рассматриваемой массе вещества. Эта величина получила название дозы.

Доза — общий термин, означающий количество поглощенного излучения или энергии веществом. В настоящее время выделяют экспозиционную, поглощенную, эквивалентную и эффективную дозы и другие. Рассмотрим более подробно некоторые из них.

Экспозиционная доза и ее мощность являются основными характеристиками фотонного излучения. Фотонными называются электромагнитные ионизирующие излучения. К ним относятся γ -кванты, рентгеновское и частично ультрафиолетовое излучения. Экспозиционная доза представляет собой количественную меру ионизационного воздействия фотонного излучения на сухой атмосферный воздух. При определении экспозиционной дозы должно выполняться условие электронного равновесия, при котором сумма энергий заряженных частиц, покидающих рассматриваемый объем, соответствует сумме энергий заряженных частиц, входящих в этот объем. Экспозиционная доза определяется как отношение суммарного заряда всех ионов одного знака ΔQ , которые образуются рентгеновским или γ -излучением в некотором объеме, к массе воздуха Δm , заключенного в этом объеме:

$$X = \frac{\Delta Q}{\Delta m} \tag{2.1}$$

За единицу экспозиционной дозы принят один кулон электрического заряда в одном килограмме облучаемого воздуха – $1 \, \text{Кл/к2}$. Внесистемная единица экспозиционной дозы – рентген (P). Между этими единицами существуют следующие соотношения:

$$1 P = 2.58 \cdot 10^{-4} \text{ Kp/k2}, \qquad 1 \text{ Kp/k2} = 3.88 \cdot 10^{3} \text{ P}.$$
 (2.2)

Рентген — единица экспозиционной дозы фотонного излучения, при прохождении которого через 0.001293 грамма сухого воздуха создается $2 \cdot 10^9$ пар ионов.

Хотя экспозиционная доза вводится только для воздуха и только для рентгеновского или *у*-излучения, введение этой величины оправдано по ряду причин:

Во-первых, измерение экспозиционной дозы (в отличие от других видов доз) основано на простом физическом методе.

Во-вторых, в области малых доз, экспозиционная доза линейно связана с поглощенной дозой, и, измерив экспозиционную дозу, можно вычислить другие.

В-третьих, на загрязненной радионуклидами местности, человек достаточно равномерно облучается лишь γ -квантами (большая часть α -и β -излучения поглощается одеждой и верхними кожными покровами)

Интенсивность ионизирующих излучений на загрязненной территории со временем не остается постоянной. Уровень загрязнения может уменьшаться, например, за счет распада части радионуклидов или их перераспределения по поверхности вследствие природных явлений и земледелия, или наоборот, увеличиваться при выпадении радиоактивных осадков. Поэтому на практике часто пользуются понятием мощности экспозиционной дозы учизлучения.

Мощность экспозиционной дозы — это величина, равная отношению изменения экспозиционной дозы к промежутку времени, за которое про-изошло это изменение:

$$\dot{X} = \frac{\Delta X}{\Delta t} \tag{2.3}$$

В системе Си мощность экспозиционной дозы измеряется в Амперах на килограмм ($IA/\kappa z$). Внесистемной единицей является рентген в час (P/u). Соотношение между ними

$$1A/\kappa_2 = 1{,}397 \cdot 10^7 P/q$$
 $1P/q = 7{,}16 \cdot 10^{-8} A/\kappa_2$ (2.4)

Экспозиционная доза описывает радиационную обстановку независимо от свойств облучаемых объектов. Конечно, чем больше интенсивность радиации, о чем косвенно позволяет судить экспозиционная доза, тем опаснее. Однако воздействие на объект оказывает только та часть излучения, которая поглотилась в нем, поэтому на практике используются дополнительные величины.

Поглощенная доза — отношение средней энергии ионизирующего излучения ΔE , поглощенной элементарным объемом облучаемого вещества, к массе Δm вещества, заключенного в этом объеме:

$$D = \frac{\Delta E}{\Delta m} \tag{2.5}$$

Единицей поглощенной дозы в системе СИ является Грей (Γp). Грей равен поглощенной дозе, при которой веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж; $I \Gamma p = 1 \ Дж/кг$.

На практике до сих пор широко используется внесистемная единица поглощенной дозы — рад.

$$1 \ pad = 0.01 \ \Gamma p; \ 1 \ \Gamma p = 100 \ pad.$$

В отличие от экспозиционной дозы понятие поглощенной дозы применимо при описании воздействия любого вида ионизирующего излучения на любое вещество.

При облучении вещества поглощенная доза может изменяться. Скорость изменения дозы характеризуется мощностью поглощенной дозы. Мощность поглощенной дозы — отношение приращения поглощенной дозы излучения ΔD за интервал времени Δt к этому интервалу:

$$\dot{D} = \frac{\Delta D}{\Delta t} \tag{2.6}$$

Единицей мощности поглощенной дозы в системе СИ является $1 \Gamma p/c$. Внесистемная единица – 1 pad/c.

Поглощенная доза и ее мощность характеризуют не само излучение, а результат его взаимодействия с веществом. Поэтому, говоря о поглощенной дозе, необходимо указывать, для какой среды рассчитана или измерена эта величина. Например, поглощенная доза излучения в мягкой биологической ткани называется тканевой.

Поглощенная доза D фотонного излучения в веществе с известным химическим составом может быть рассчитана по его экспозиционной дозе:

$$D = K_D X \tag{2.7}$$

где K_D — энергетический эквивалент экспозиционной дозы. Его величина зависит от природы данного вещества. Например, для воздуха энергетический эквивалент K_D =34,1 $\Gamma p/K_D/\kappa_Z$ (во внесистемных единицах K_D =0,88pad/P), а для биологической ткани этот коэффициент имеет значение: K_D = 37,2 $\Gamma p/K_D/\kappa_Z$, либо K_D = 0,96pad/P.

Конечным итогом воздействия ионизирующего излучения на вещество является ионизация и возбуждение атомов среды. Интенсивность этого воздействия определяется дозой излучения, поглощенной веществом. Однако при одной и той же дозе облучения неблагоприятные биологические последствия оказываются разными для различных видов излучений. Это означает, что вероятность возникновения биологического эффекта зависит не только от количества, но и от "качества" поглощенной энергии. В конечном итоге, при одной и той же поглощенной дозе различные виды излучений вызывают неодинаковое повреждение биологических объектов. Объясняется это различной ионизирующей способностью излучений, т.е. числом ионов, возникающих на единице длины пути данного излучения в веществе.

Для сравнения биологических эффектов, вызываемых разными видами ионизирующих излучений, введено понятие относительной биологической эффективности (OEЭ). Под OEЭ понимают отношение поглощенной дозы D_o образцового излучения, вызывающего определенный биологический эффект, к поглощенной дозе D_x исследуемого излучения, вызывающего тот же биологический эффект:

$$OE\Theta = \frac{D_0}{D_x} \tag{2.8}$$

В качестве образцового принимается рентгеновское излучение с граничной энергией фотонов 200 кэВ. Величина коэффициентов ОБЭ зависит от многих физических и биологических факторов: поглощенной дозы, вида облучаемого объекта и условий облучения, критерия оценки наблюдаемого биологического эффекта.

С введением относительной биологической эффективности непосредственно связано понятие радиационного риска, поскольку *ОБЭ* показывает, на сколько данное излучение опаснее, чем образцовое.

Регламентированные значения *ОБЭ* установленные для контроля степени радиационной опасности при хроническом облучении, называются коэффициентом качества излучения (*k*). Коэффициент качества определяет зависимость неблагоприятных биологических последствий облучения человека в малых дозах от ионизирующей способности данного излучения в условиях хронического облучения в малых дозах. При больших дозах коэффициент качества начинает заметно зависеть от мощности поглощенной дозы, т.е. от промежутка времени, за который получена эта доза. Поэтому для оценки последствий аварийного облучения человека при больших уровнях воздействия излучения эквивалентную дозу применять не допускается. Значения коэффициента качества, рекомендованные Международной комиссией по радиационной защите (*МКРЗ*), приведены в таблице 1.

Таблица 1

Коэффициенты качества

коэффициснты качества				
Вид излучения				
Рентгеновское и у-излучение	1			
Электроны, позитроны	1			
Протоны с энергией меньше 10 МэВ	10			
Нейтроны с энергией меньше 20 кэВ	3			
Нейтроны с энергией в диапазоне 0.1–10 МэВ	10			
α-частицы с энергией меньше 10 МэВ	20			
Тяжелые ядра отдачи	20			

Чтобы избежать ошибок при определении степени радиационной опасности облучения поглощенную дозу умножают на коэффициент качества. Полученную таким образом дозу называют эквивалентной дозой:

$$H = kD \tag{2.9}$$

При сложном по составу излучении эквивалентная доза определяется суммой эквивалентных доз каждого компонента излучения:

$$H = k_{\alpha}D_{\alpha} + k_{\beta}D_{\beta} + k_{\gamma}D_{\gamma} + \dots \tag{2.10}$$

Единицей эквивалентной дозы является 1 Зиверт (*3в*). Используется также внесистемная единица – бэр (биологический эквивалент рентгена).

$$13e=100$$
 бэр, 1 бэр $=10^{-2}3e$

Бэр — внесистемная единица эквивалентной дозы любого вида излучения, которое создают такой же биологический эффект, как и поглощенная доза в 1 рад рентгеновского или γ -излучения с энергией квантов 200 $\kappa \ni B$

В случае неравномерного облучения организма недостаточно определить эквивалентную дозу по ряду причин:

- облучение менее губительно для простых организмов, чем для сложных;
- наблюдения за облученными показали, что органы и ткани организма обладают различной чувствительностью к облучению, что определяется их функциональными особенностями;
- эквивалентная доза рассчитывается для "средней" биологической ткани организма и потому велика вероятность ошибки в случае неравномерного облучения;
- некоторые радионуклиды, попавшие в организм, избирательно накапливаются в определенных органах и тканях (например, йод в щитовидной железе);
- при лучевой терапии опухолей облучению подвергаются лишь отдельные их участки и надо знать, каким испытаниям подвергается весь организм.

Поскольку человек представляет собой сложноорганизованную систему, то при неравномерном облучении организма необходимо учитывать радиочувствительность органов и тканей, отличающихся по уровню сложности строения и функциональным особенностям.

Согласно беспороговой концепции действия радиации, между вероятностью возникновения стохастических эффектов (опухоли, генетические повреждения) и дозой существует линейная зависимость. Тогда степень риска неблагоприятных последствий можно описать выражением:

$$r_i = r_{i,H} H_i \tag{2.11}$$

где H_i — значение эквивалентной дозы в i-ом органе или ткани; $r_{i,H}$ — коэффициент риска облучения i-го органа или ткани (N — общее число взятых в рассмотрение органов и тканей). Суммарный риск при неравномерном облучении всего тела определяется так:

$$R_1 = \sum_{i=1}^{N} r_i = \sum_{i=1}^{N} r_{i,H} H_i$$
 (2.12)

При равномерном облучении всего тела некоторой эквивалентной дозой H_E суммарный риск

$$R_2 = \sum_{i=1}^{N} r_{i,H} H_E = H_E \sum_{i=1}^{N} r_{i,H} = H_E r_{\Sigma,H}$$
 (2.13)

где $r_{\sum,H} = \sum_{i}^{N} r_{i,H}$ — сумма ко- эффициентов риска для всех органов и тканей.

При совпадении риска в случае равномерного R_1 и неравномерного облучения R_2 можно записать:

$$r_{\sum,H}H_E = \sum_{i=1}^{N} r_{i,H}H_i \Rightarrow H_E = \sum_{i=1}^{N} \frac{r_{i,H}}{r_{\sum,H}}H_i$$
 (2.14)

либо

$$H_E = \sum_{i=1}^{N} \omega_i H_i;$$
 $\sum_{i=1}^{N} \omega_i = 1$ (2.15)

Величина H_E называется эффективной эквивалентной дозой и используется в радиационной безопасности в качестве меры определения степени риска при облучения человека малыми дозами. Коэффициент ω_i — это взвешивающий фактор (весовой коэффициент), характеризующий по определению отношение риска при облучении только одного органа или ткани к суммарному риску при равномерном облучении тела. Взвешивающий фактор ω_i определяет весовой вклад данного органа или ткани в риск неблагоприятных последствий при равномерном облучении организма. Это означает, что при облучении всего организма дозой 1 3e или облучении только красного костного мозга дозой 0, 12 3e степень риска его повреждения одинакова.

Эффективная эквивалентная доза при неравномерном облучении органов или тканей равна такой эквивалентной дозе при равномерном облучении всего организма, при которой риск неблагоприятных последствий будет таким же, как и при данном неравномерном облучении. Единицы измерения эффективной эквивалентной дозы совпадают с единицами измерения эквивалентной дозы

$$1\ 36 = 100\ 69p;\ 1\ 69p = 10^{-2}\ 36$$

В табл. 2 приведены рекомендованные *МКРЗ* значения взвешивающих факторов и коэффициентов риска смерти от рака и наследственных дефектов, применяемые для задач радиационной защиты. Они могут быть использованы для лиц всех возрастов и обоих полов. Приведенные величины для гонад учитывают серьезные наследственные эффекты, проявляющиеся в первых двух поколениях (т.е. дети и внуки подвергшихся облучению лиц). На практике за "другие" органы и ткани, не перечисленные в таблице, принимают пять, получивших самые высокие эквивалентные дозы: для них берется $\omega_i = 0.06$. В действительности значение $r_{i,H}$ зависит от многих факторов (возраста, пола, состояния организма в момент облучения и т.д.). Поэтому их следует рассматривать как ориентировочные.

Таблица 2 Взвешивающие факторы и коэффициенты риска смерти от рака и наследственных дефектов

Орган или ткань	Заболевание	$r_{i,H} 10^{-2}$, $3e^{-1}$	ω_i
Гонады	Наследственные дефекты	0,40	0,20
Молочная железа	Рак	0,25	0,05
Красный костный мозг	Лейкемия	0,20	0,12
Легкие	Рак	0,20	0,12
Щитовидная железа	Рак	0,05	0,05
Костная ткань	Злокачественные опухоли	0,05	0,03
Все другие органы и ткани	То же	0,5	0,43
Весь организм		1,65	1,00

Порядок выполнения работы

- 1. Оценка радиационной обстановки местности.
- 1.1. Произвести 20 измерений мощности экспозиционной дозы естественного радиационного фона (ЕРФ) N_{Φ} с помощью дозиметра, результаты занести в таблицу.
 - 1.2. Вычислить среднее значение ЕРФ.

$$\overline{N}_{\phi} = \frac{\sum_{i=1}^{20} N_i}{20}$$

результат $\overline{N_{\phi}}$ занести в таблицу 3 (мощность экспозиционной дозы, внесистемная единица измерений).

- 1.3. Перевести полученное среднее значение мощности экспозиционной дозы $\overline{N_{\phi}}$ из внесистемных единиц ($m\kappa P/u$) в единицы международной системы СИ ($A/\kappa z$), выражение (2.4).
- 1.4. Согласно (2.2) оценить среднегодовую экспозиционную дозу в P и $K_{\Lambda}/\kappa_{\mathcal{E}}$, приняв промежуток времени Δt равному один год (в часах).
- 1.5. Оценить среднегодовую поглощенную дозу с учетом эмпирических коэффициентов <u>для биологической ткани</u> (в Pad и Γp), выражение (2.7).
- 1.6. В соответствии с (2.9) оценить среднегодовую эквивалентную дозу для **рентгеновского и у-излучения** (в δ эp и 3e).
- 1.7. Согласно (2.15) оценить среднегодовую эффективную дозу (в бэр и 3в) при условии облучения всего организма.
 - 1.8. Результаты расчетов в отчете представить в виде таблицы 3.

Величина	Международная	Внесистемная еди-		
Величина	система единиц	ница измерений		
X (Мощность экспозиционной дозы)				
Х (Экспозиционная доза)				
D (Поглощенная доза)				
Н (Эквивалентная доза)				
$H_{\mathfrak{I}}$ (Эффективная эквивалентная доза)				

- 2. Оценка обстановки на загрязненной территории.
- 2.1. Получить у преподавателя пробу слаборадиоактивного вещества.
- 2.2. Произвести 20 измерений мощности экспозиционной дозы γ -излучения согласно п. 2.3.1 2.3.5 Основных правил работы с дозиметрами. Результаты измерений представить в виде таблицы. Вычислить среднее значение $\overline{N_{\gamma}}$.
- 2.3. Согласно пунктам 1.4 1.7 рассчитать среднегодовые поглощенные, эквивалентную и эффективную эквивалентную дозы. Результаты представить в виде таблицы 3.
 - 3. Сделать вывод о радиационной обстановке в лаборатории.
- 4. Сделать вывод о радиационной обстановке местности, если бы результаты, полученные в п. 2 были бы получены на этой местности.

Контрольные вопросы

- 1. Какая величина называется экспозиционной дозой, мощностью экспозиционной дозы? В каких единицах они измеряются? Какая связь между различными единицами экспозиционной дозы?
- 2. По каким причинам является оправданным использование в дозиметрии экспозиционной дозы излучения, которая не характеризует поглощение энергии веществом
- 3. Какая величина называется поглощенной дозой, мощностью поглощенной дозы? В каких единицах они измеряются? Какая связь между различными единицами поглощенной дозы?
- 4. В чем заключается условие электронного равновесия для системы воздух-излучение? Какие эмпирические соответствия установлены между экспозиционной и поглощенной дозами на основании этого условия?
- 5. Что характеризует величина, называемая коэффициентом качества? Какая величина называется эквивалентной дозой, в каких единицах она измеряется? Как определить эквивалентную дозу, если излучение имеет сложный состав?
- 6. Что характеризует величина, называемая взвешивающим фактором? Для чего используется понятие коэффициент риска?

Лабораторная работа №3

«Идентификация бета- и гамма-радиоактивных веществ с помощью бытового дозиметра»

Цель работы: изучить основные свойства α -, β -, γ -излучений. Провести измерения образцов и научиться идентифицировать слабо радиоактивные вещества по типу излучений.

Краткие теоретические сведения.

Исследования показали, что излучение, испускаемое при радиоактивном распаде, имеет сложный состав. В процессе распада данного радионуклида происходит излучение только одного вида заряженных частиц: положительных — α -излучение и отрицательных — электронов (гораздо реже положительных — позитронов) — β -излучение. Излучение этих частиц обычно сопровождается испусканием γ -квантов. Опытным путем установлены некоторые общие свойства излучений, возникающих в процессе радиоактивного распада:

- 1. Излучения вызывают ионизацию атомов и молекул. В связи с этим излучения называются ионизирующими. В результате взаимодействия нейтрального атома с излучением образуется положительно заряженный ион и свободный электрон. Это свойство излучения является основной причиной поражения организма человека излучением, возникающим в процессе радиоактивного превращения.
- 2. Излучения обнаруживают химическое действие. Это означает, что в результате их воздействия могут происходить некоторые химические реакции. Данное явление имеет место как для веществ неживой природы (например, образование дефектов металлических конструкций при длительном облучении), так и, что особенно важно, для живых объектов. Данное свойство на практике применяется для обнаружения и регистрации излучений. Химическое действие может быть обусловлено ионизацией атомов и молекул вещества.
- 3. Излучения обладают проникающей способностью. Поскольку испускаемые частицы и электромагнитное излучение обладают энергией и импульсом, то они способны взаимодействовать с веществом и проникать вглубь любого объекта на определенную глубину. Это свойство также определяет степень опасности того или иного вида излучения.
- 4. Излучение вызывает свечение (флуоресценцию) некоторых твердых и жидких веществ. Это свойство широко используется для регистрации ионизирующих излучений.
- 5. Излучение изменяет физико-химические свойства веществ. Вообще говоря, это свойство является следствием совокупного химического и ионизирующего действия радиоактивных излучений. Однако ввиду

его особой значимости можно выде- лить его в отдельное свойство. Например, растворимость белков в воде в значительной степени предопределяет пространственную конфигурацию данного белка, а значит и его биологические функции (например, способность гемоглобина связывать молекулу кислорода). Нарушение пространственной конфигурации белка вследствие воздействия радиации может приводить к утрате данной биологической функции.

Помимо общих свойств каждому виду радиоактивного излучения присущи свои особенности. Рассмотрим свойства α -, β -, γ -излучений в отдельности.

 α -излучение возникает в результате α -распада, при котором из атомного ядра радионуклида (материнское ядро $-\frac{A}{Z}X$) отщепляется частица ядерного вещества, которая состоит из 2-х протонов и 2-х нейтронов, т.е. ядро атома гелия $\frac{4}{2}He$. При α -распаде выполняются правила смещения — следствия законов сохранения массы вещества и электрического заряда:

$$_{Z}^{A}X \Rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He$$

Дочернее ядро $^{A-4}_{Z-2}Y$ вследствие α -распада имеет зарядовое число на 2 единицы, а массовое число на 4 единицы меньше, чем у материнского ядра. Источником α -частицы являются ядра тяжелых радиоактивных элементов, которые имеют порядковый номер более 80 и расположены в конце таблицы Д.И. Менделеева. Примером возникновения α -частицы может быть превращение радия $^{226}_{88}Ra$ в изотоп радона $^{222}_{86}Rn$

$$^{226}_{88}Ra \Rightarrow ^{222}_{86}Rn + ^{4}_{2}He$$

lpha-излучение обладает рядом отличительных свойств:

- скорость вылетающих из ядра α -частиц достигает 10000 25000 км/с;
- данный радионуклид испускает α -частицы с одной и той же энергией, т.е. энергетический спектр α -частиц дискретный что используется при идентификации распадающегося радионуклида;
- проходя через слой вещества, α -частица производит на своем пути ионизацию атомов и постепенно теряет энергию, α -частицы обладают высокой ионизирующей способностью: в воздухе на длине пробега в 1 см образуется от 100 000 до 300 000 пар ионов, траектория движения α -частицы, как правило представляет собой прямую линию;
 - α -распад всегда сопровождается γ -излучением.

 β -излучение представляет собой поток электронов или позитронов (частица, обладающая массой, равной массе электрона, но имеющая положительный заряд). В первом случае говорят об электронном β -распаде, в другом — позитронном β +-распаде. Электронов и позитронов нет в ядре, они образуются в распадающемся ядре в момент распада. Схематично эти процессы представляют следующим образом:

 β -pacnad:

 ${}^1_0 n \to {}^1_1 p + {}^0_{-1} e + \tilde{\nu}$ — превраще- ние нейтрона в протон в ядре, которое сопровождается испусканием антинейтрино $\tilde{\nu}$

 $_{Z}^{A}X \rightarrow _{Z+1}^{A}Y + _{-1}^{0}e + \tilde{v}$ – правила смещения для eta-распада;

 $^{209}_{83} Bi o ^{209}_{84} Po + ^{0}_{-1} e + \tilde{v} -$ пример β -- превращения висмута в полоний.

 β^+ – pacnad:

 $^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{+1}e + \nu -$ превращение нейтрона в протон в ядре, которое сопровождается испусканием нейтрино ν ;

 $_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + _{+1}^{0}e + \nu -$ правила смещения для eta^{+} -распада;

 $^{30}_{15}P \rightarrow ^{30}_{14}Si + ^{0}_{+1}e + \nu -$ пример β^{+} -превращения фосфора в кремний.

β-излучение характеризуется рядом особенностей:

- энергия β -частиц может быть любой в интервале от 0 до E_{max} (E_{max} верхняя энергетическая граница β -спектра, которая является характеристикой ядра). Причиной непрерывности энергетического спектра β -излучения является наличие дополнительной частицы ν или $\tilde{\nu}$ (нейтрино или антинейтрино). В результате избыточная энергия, которая выделяется при β -распаде, произвольным образом распределяется между электроном (позитроном) и антинейтрино (нейтрино);
- средняя энергия образующихся β -частиц соответствует скорости 10000-25000 км/с;
 - β -распад обычно сопровождается γ -излучением.

у-излучение представляет собой поток коротких $(10^{-13}-10^{-19}\text{м})$ электромагнитных волн (квантов), которые испускаются в процессе радиоактивного распада при изменении энергетического состояния, образующихся в результате радиоактивного распада атомных ядер. Как самостоятельный вид излучения *у-*излучение не встречается, оно всегда сопровождается α -или β -излучением. *у-*излучение обладает рядом отличительных свойств:

- γ -излучение распространяется со скоростью света $3 \cdot 10^8$ м/с;
- *γ*-излучение может вызывать ионизацию атомов непосредственно (фотоэффект, эффект Комптона), или передавая энергию электронам, которые затем уже вызывают ионизацию атомов;
- энергетический спектр у-излучения дискретен. Это означает, что при распаде радионуклида данного типа всегда излучается у-квант с конкретным значением энергии.
- интенсивность *у*-излучения при прохождении через слой вещества уменьшается по экспоненциальному закону:

$$I = I_0 e^{-\mu x}$$

где x — толщина слоя вещества

I — интенсивность излучения после прохождения слоя толщиной x

 I_0 – интенсивность излучения в начальный момент

 μ – линейный коэффициент ослабления (поглощения).

Длина пробега — это толщина слоя вещества, которую может пройти частица до полной остановки. Длина пробега или глубина проникновения

характеризует проникающую спо-собность данного излучения. Она зависит от рода частицы, энергии и плотности вещества, сквозь которое проходит излучение. Длина пробега α -частиц в воздухе в зависимости от энергии не превышает 8 см, тогда как для β -частиц в воздухе она может достигать

20 м. В сравнении с α - и β -частицами проникающая способность γ -излучения в воздухе может достигать сотен и тысяч метров. В более плотных средах длина пробега ионизирующих излучений существенно меньше, однако соотношение между длиной пробега α - и β -частиц и γ -излучения сохраняется. α -частицы задерживаются листом бумаги β -частицы задерживаются одеждой и верхним слоем кожи, поэтому на открытой местности серьезной опасности α - и β -излучения не представляют. Однако, вследствие большой ионизирующей способности попадание α - и β -радиоактивного вещества с пищей или с воздухом в организм человека может нанести непоправимый вред здоровью человека. В сравнение с ними γ -излучение обладает огромной проникающей способностью и может существенно ослабляться лишь многометровым слоем бетона или пластиной из свинца толщиной в несколько сантиметров.

Порядок выполнения работы

- 1. Получить у преподавателя исследуемые образцы слаборадиоактивных веществ помещенных в кюветы.
- 2. Измерить 20 раз величину естественного радиационного фона на рабочем месте.
 - 3. Вычислить среднее значение ЕРФ $\overline{N_\phi}$.
- 4. Измерить 20 раз мощность экспозиционной дозы γ -излучения N_{γ} первого образца. (Измерения проводить с закрытой задней крышкой дозиметра)
 - 5. По результатам 20 измерений вычислить среднее значение $\overline{N_{\scriptscriptstyle\gamma}}$.
- 6. Провести 20 измерений мощность экспозиционной дозы $\gamma+\beta$ излучения $N_{\gamma+\beta}$ первого образца. (Измерения проводить с открытой задней крышкой дозиметра)
 - 7. По результатам 20 измерений вычислить среднее значение $N_{\gamma+\beta}$.
 - 8. Повторить измерения для второго образца п.п. 4–7.
- 9. Произвести сравнение полученных результатов каждого образца с ЕРФ и идентифицировать образцы по виду излучения используя следующие критерии:

Если $\overline{N_{\phi}} \approx \overline{N_{\gamma}} \approx \overline{N_{\gamma+\beta}}$, то вещество **не радиоактивно** (т.е. его радиоактивность не превышает уровня естественного радиационного фона).

Если $\overline{N_{\phi}} \ll \overline{N_{\gamma}}$, $a \ \overline{N_{\gamma}} \approx \overline{N_{\gamma+\beta}}$, то вещество радиоактивное, причем можно утверждать что вещество обладает повышенной $\underline{\gamma}-$ активностью.

Если $\overline{N_{\phi}} \approx \overline{N_{\gamma}}$, $a \ \overline{N_{\phi}} \ll \overline{N_{\gamma+\beta}}$, то вещество радиоактивное, причем можно утверждать что вещество обладает повышенной β – активностью.

Контрольные вопросы

- 1. Какие общие свойства излучений, возникающих в процессе радиоактивного распада вы знаете?
- 2. Что собой представляет α -излучение? Какие его отличительные свойства?
- 3. Что собой представляет β -излучение? Какие его отличительные свойства?
- 4. Что собой представляет γ -излучение? Какие его отличительные свойства?
- 5. Какова длина пробега α -, β и γ -лучей?
- 6. В чем заключается методика эксперимента в данной лабораторной работе?
- 7. Указать критерии идентификации β и γ излучения с помощью дозиметра.

Лабораторная работа №4

«Измерение объемной активности вещества с помощью бытового дозиметра»

Цель работы: изучить основные положения теории радиоактивного распада, освоить метод измерения объемной активности вещества с помощью бытового дозиметра.

Краткие теоретические сведения

Радиоактивный распад — это статистический процесс. Это означает, что если мы имеем дело с одним единственным ядром, совершенно невозможно предсказать, когда произойдет распад — сию минуту, через сутки или через тысячу лет. Другое дело, если радионуклидов много. Опыт показал, что при радиоактивном распаде выполняются следующие правила:

- за больший промежуток времени распадается большее число ядер;
- за данный промежуток времени распадается тем больше ядер, чем больше их было вначале.

Эти правила выражают закон радиоактивного распада, который отражает связь количества не распавшихся ядер данного радионуклида и времени. Этот закон справедлив для всех радионуклидов, независимо от природы радиоактивности. Математическая запись закона радиоактивного распада имеет вид:

$$N(t) = N_o e^{-\lambda t},$$

где N_0 — число не распавшихся ядер в начальный момент времени, N(t) — число не распавшихся к данному моменту времени t ядер, λ — постоянная распада.

Коэффициент пропорциональности λ , входящий в закон, называется постоянной распада или радиоактивной постоянной для данного вида ядер. Так как распад относится к статистическим процессам, то λ вероятность распада. Постоянная распада λ характеризует скорость распада, и позволяет сравнить степень радиоактивности ядер различных типов. Чем больше вероятность распада, тем быстрее распадается данный изотоп и тем выше интенсивность ионизирующих излучений. Поэтому при одинаковом начальном количестве N_0 не распавшихся ядер, к некоторому моменту времени t_0 больше останется ядер того радионуклида, для которого вероятность распада ниже (рис. 4.1). Постоянная распада имеет размерность с⁻¹.

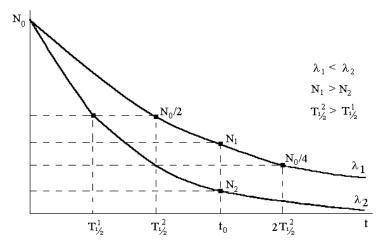


Рис.4.1 к понятию постоянной распада

Скорость уменьшения числа не распавшихся ядер данного вида можно охарактеризовать также периодом полураспада $T_{\frac{1}{2}}$. Это время, за которое распадается половина первоначального количества ядер данного вида

(рис. 4.2).

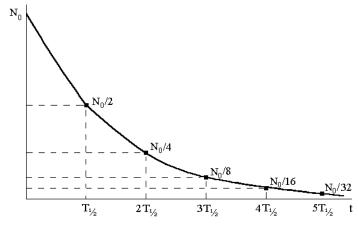


Рис.4.2 к определению периода полураспада

Как следует из закона радиоактивного распада, постоянная распада и период полураспада соотносятся как

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

Периоды полураспада радиоактивных элементов изменяются в широких пределах: от миллионных долей секунды до миллиардов лет: $T_{1/2}({}^{238}_{92}U)$ =4,49 млрд. лет; $T_{1/2}({}^{226}_{88}Ra)$ =1600 лет; $T_{1/2}({}^{222}_{86}Rn)$ = 3,825 суток; $T_{1/2}({}^{216}_{84}Po)$ = 3,05 мин.; $T_{1/2}({}^{49}_{15}P)$ = 4,5 сек. Периоды полураспада радионуклидов, вызвавших основное загрязнение местности после аварии на Чернобыльской АЭС равны: $T_{1/2}({}^{131}_{53}I)$ = 8.05 суток; $T_{1/2}({}^{137}_{55}Cs)$ = 28 лет; $T_{1/2}({}^{90}_{38}Sr)$ = 29 лет.

Чем меньше период полураспада, тем больше радиоактивность этого изотопа, тем более он опасен, поскольку в единицу времени распадается

большее число ядер. Если мы будем последовательно рассматривать ситуацию через промежуток времени, равный периоду полураспада $(T_{1/2}, 2T_{1/2}, 3T_{1/2}, 4T_{1/2}$ и т.д.), то число не распавшихся ядер будет изменяться как $N_o/2$, $N_o/4$, $N_o/8$, $N_o/16$ и т.д. (рис. 4.2). В соответствии с этим при оценке радиационной обстановки считают, что через десять периодов полураспада $(10T_{1/2})$ число ядер данного радионуклида уменьшается настолько (в 1024 раза), что радиоактивностью изотопа данного типа можно пренебречь. По этой причине весь период после аварии на ЧАЭС условно разделяют на два этапа: период "йодной" опасности продолжительностью 2-3 месяца (80 суток) и период "цезиево—стронциевой" опасности продолжительностью около 300 лет.

Каждое радиоактивное вещество распадается со своей определенной скоростью, которая определяется вероятностью распада λ. Однако закон радиоактивного распада описывает только изменение числа не распавшихся ядер со временем. Поэтому для количественной характеристики радиоактивного распада вводится понятие активности. Под активностью понимают количество ядер, которые распадаются в единицу времени:

$$A = \frac{\Delta N}{\Delta t} = \lambda N$$

т.е. активность препарата равна произведению постоянной распада на число не распавшихся ядер данного радионуклида, содержащихся в этом препарате.

В качестве единицы активности выбрано число распадов в единицу времени. В системе СИ за единицу активности принят Беккерель ($E\kappa$). Такую активность имеет вещество, у которого за каждую секунду распадается одно ядро: $1E\kappa = 1pacnad/ce\kappa$. Внесистемной единицей является Кюри (Ku). Такую активность имеет 1Γ $\frac{226}{88}Ra$:

$$1 Ku=3.7 \cdot 10^{10} \, pacnados/ce\kappa = 3.7 \cdot 10^{10} \, \mathrm{Б}\kappa.$$

Однако определение активности препарата не дает возможности сравнивать исследуемые объекты по степени загрязненности радионуклидами и делать вывод о степени их опасности, поскольку, например, объекты одинаковой массы или объема могут обладать различной активностью, как вследствие содержания различных радионуклидов, так и изменения их концентрации. Так, одинаковую активность в 1Ku имеют: 3 тонны $^{238}_{92}U$ ($T_{1/2}$ =4,5 млрд. лет), 1Γ $^{226}_{88}Ra$ ($T_{1/2}$ =1600 лет) и 0.08 мг $^{131}_{53}I$ ($T_{1/2}$ =8 суток). Поэтому применяют производные от активности величины (в скобках указаны внесистемные единицы измерения):

- удельная массовая активность, характеризующая активность единицы массы радиоактивного препарата: $A_m = \frac{A}{\Delta m}$, $E\kappa/\kappa z$ ($Ku/\kappa z$);
- объемная активность, определяющая активность единицы объема радиоактивного препарата: $A_V = \frac{A}{\Lambda V}$, $E\kappa/M^3$ ($E\kappa/\Lambda$, Ku/Λ);

- поверхностная актив- ность, характеризующая активность единицы поверхности: $A_S = \frac{A}{\Lambda S}$, $E\kappa/M^2$ ($Ku/\kappa M^2$).

Объемная активность применяется при оценках степени загрязнения радионуклидами жидких веществ, в частности, воды, молока и т.д. Поверхностная активность позволяет определить степень загрязнения местности. Так, согласно действующему законодательству территория с уровнем загрязнения более $40~Ku/\kappa m^2$ – зона вынужденного переселения (эвакуации); $15-40~Ku/\kappa m^2$ – зона последующего отселения; $5-15~Ku/\kappa m^2$ – зона с правом на отселение.

Порядок выполнения работы

- 1. Получите у преподавателя исследуемое вещество и кювету с водой.
- 2. Откройте заднюю крышку дозиметра и установите его на кювету с водой, переключатель режима работы переведите в положение "Т" и включите прибор.
- 3. Начните измерение, нажав на кнопку ПУСК, через 10 минут нажмите кнопку СТОП.
 - 4. Запишите показание прибора (N_{3T}) .
 - 5. Возьмите кювету исследуемым веществом.
- 6. Установите прибор на кювету и выполните аналогичное измерение исследуемого вещества (N_{OBP}) в течении 10 минут.
- 7. Оцените величины объемной активности в Кюри на литр (Ки/л) радионуклидов производится по формуле:

$$A_{V} = K_{II} \left(\frac{N_{OBP}}{t_{2}} - \frac{N_{\Im T}}{t_{1}} \right)$$

где $N_{\text{ЭТ}}$ — показание прибора при замере с кюветой, заполненной водой (импульсов);

 $N_{\text{ОБР}}$ — показание прибора при замере с исследуемым веществом, импульсов;

 t_1 — время замера с кюветой, заполненной водой, минут, (t_1 = 10 мин);

 t_2 — время замера с исследуемым веществом, минут, (t_2 = 10 мин);

 K_{Π} — коэффициент прибора (Ku-мин/ π -импульс). (указан на задней крышке прибора).

- 8. Если в результате замеров и расчета получится величина, меньшая чем 10^{-7} Ku/л, что соответствует разности показаний прибора при двух измерениях (N_{OBP} – $N_{\rm ЭT}$)<250 импульсов, то необходимо повторить измерение исследуемого вещества, увеличив время замера t_2 до 30 мин и повторить вычисления.
- 9. Если в результате повторных измерений и расчетов получилась величина меньшая, чем $5\cdot10^{-8}$ Кu/л $(1,85\cdot10^3$ Бк/л), то оценить объемную радиоактивность невозможно, можно лишь считать, что $A_V < 5\cdot10^{-8}$ Кu/л $(1,85\cdot10^3$ Бк/л).

Контрольные вопросы

- 1. В чем заключается радиоактивный распад?
- 2. Запишите закон радиоактивного распада. Какой физический смысл имеет этот закон и как он изображается на графике?
 - 3. Какая физическая величина называется постоянной распада?
- 4. Какая физическая величина называется периодом полураспада? Выведите формулу, связывающую период полураспада с постоянной распада.
- 5. Что называется активностью радиоактивного вещества, по какой формуле она определяется и в каких единицах измеряется?
- 6. Какие физические величины называются удельной массовой, объемной и поверхностной активностью? В каких единицах они измеряются и для чего применяются?
- 7. Какова методика определения объемной активности вещества с помощью бытового дозиметра?

Лабораторная работа №5

«Изучение взаимодействия ионизирующего излучения с веществом»

Цель работы: ознакомиться с основными особенностями взаимодействия ионизирующих излучений с веществом. Найти зависимость интенсивности ионизирующего излучения от толщины поглощающего вещества (бумага). Оценить толщину поглощающего вещества, при котором интенсивность излучения уменьшиться на половину и определить коэффициент поглощения ионизирующего излучения веществом.

Краткие теоретические сведения.

Как известно, атом является электрически нейтральным, поскольку положительный заряд протонов, находящихся в ядре компенсируется отрицательным зарядом электронов, образующих электронную оболочку. В результате ряда процессов один из внешних атомных электронов может быть удален из атома. При этом атом превращается в положительный ион и образуется свободный электрон. В результате присоединения свободного электрона к нейтральному атому возникает отрицательный ион. Процесс образования ионов различных знаков называется ионизацией. Ионизирующим излучением называют излучение, взаимодействие которого с веществом приводит к образованию в этом веществе ионов разного знака. Название "ионизирующее излучение" объединяет все виды излучений, которые в повседневной жизни обозначают общим словом "радиация". К ионизирующим излучениям относятся пучки элементарных частиц, ядер, ионов, а также электромагнитные излучения: рентгеновское, у-излучение радиоактивных элементов и тормозное излучение, возникающее при прохождении через вещество заряженных частиц. Большинство из них имеют заряд: β -частицы (электроны, позитроны), протоны (ядра атома водорода), α -частицы (ядро атома гелия), а также различные ионы. Но есть и нейтральные частицы – нейтроны. Они не могут участвовать в процессах, зависящих от электрического заряда. Однако нейтроны, взаимодействующие с ядрами, вызывают испускание протонов и у-квантов. Поскольку нейтроны и электромагнитные излучения не участвуют непосредственно в ионизации атомов и молекул, то их называют косвенно ионизирующими.

При прохождении через вещество заряженные частицы теряют свою энергию, вызывая возбуждение и ионизацию встречающихся на их пути атомов. Этот процесс продолжается до тех пор, пока общий запас энергии частиц не становится настолько малым, что она утрачивает свою ионизационную способность. Если это электрон, то он захватывается каким-либо атомом с образованием отрицательного иона. Кроме этого в поле положительно заряженного ядра β -частица резко тормозится и теряет

при этом часть своей энергии. Эта энергия излучается в виде тормозного рентгеновского излучения.

Рентгеновское излучение, *у*-излучение радиоактивных элементов и тормозное излучение отличаются друг от друга происхождением и имеют свой диапазон энергии, хотя границы этих диапазонов точно не определены. Поэтому деление электромагнитных излучений на диапазоны весьма условно.

Основными процессами, сопровождающими прохождение фотонного излучения через вещество (рис. 5.1), являются фотоэффект (взаимодействие с веществом электромагнитного излучения с малой энергией), комптон-эффект (взаимодействие с веществом электромагнитного излучения со средней энергией) и образование электрон-позитронных пар (взаимодействие с веществом высокоэнергетичного электромагнитного излучения).

Рассмотрим более подробно эти явления.

Фотоэффект, это явление (рис. 5.1 а), при котором атом полностью поглощает

 γ -квант с энергией $h \nu$ и испускает электрон с кинетической энергией E_e ,

равной $E_e = hv - U_i$, $(U_i -)$ нергия связи электрона на i-ой оболочке).

Комптон—эффект это такое явление (рис. 5.1~б), при котором

 γ -квант, взаимодействуя с электроном, передает ему часть своей энергии и рассеивается под некоторым углом, а электрон покидает атом с кинетической энергией E_e .

 Рождение
 позитрон—

 электронной пары
 − явление,

 при
 котором

 у-квант вблизи ядра превращается в пару частиц − электрон и

 позитрон (рис. 5.1 в), которые

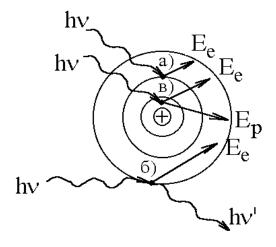


Рис. 5.1. Схема процессов, сопровождающих прохождение фотонного излучения через вещество. а) фотоэффект; б) комптон-эффект; в) образование электрон—позитронных пар

приобретают соответствующие кинетические энергии E_e и E_p .

Таким образом, при прохождении ионизирующих излучений через вещество происходит ионизация или возбуждение (на один акт ионизации приходится несколько актов возбуждения) атомов и молекул вещества либо непосредственно заряженными частицами (α , β , протоны), либо опосредованно, через взаимодействие атомов вещества с вторичными заряженными частицами, возникающими вследствие различных процессов (фотоэффект, комптон-эффект и т.д.). При этом заряженные частицы теряют свою энергию и поглощаются веществом. Поглощение излучения приближенно определяется по формуле.

$$I = I_0 e^{-\mu x} \tag{5.1}$$

где x — толщина пройденного слоя вещества

I – интенсивность излучения после прохождения слоя толщиной x

 I_0 – интенсивность излучения в начальный момент

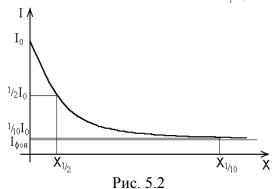
 μ – линейный коэффициент ослабления (поглощения).

Каждому из процессов (фотоэффект, эффект Комптона и рождение электронно-позитронных пар в электрическом поле атомного ядра), обуславливающих поглощение ионизирующего излучения, соответствует свой коэффициент ослабления, поэтому полный коэффициент равен сумме коэффициентов ослабления каждого из этих эффектов.

$$\mu = \mu_d + \mu_\kappa + \mu_n \tag{5.2}$$

Часто, вместо коэффициента поглощения μ используется толщина $X_{1/2}$ слоя половинного поглощения, в котором происходит ослабление первоначальной интенсивности излучения в два раза. Толщина слоя половинного поглощения — $X_{1/2}$, и коэффициент линейного ослабления — μ , являются характеристиками вещества и зависят от его состава (плотности) Зная толщину слоя половинного поглощения, преобразовав выражение (5.1) можно найти коэффициента поглощения μ :

$$\frac{I}{I_0} = e^{-\mu x} \tag{5.3}$$


т. к. при $x = X_{1/2}$ $I = \frac{1}{2}I_0$ то, прологарифмировав обе части выражения (5.3) получим:

$$\ln(0.5) = \ln(e^{-\mu X_{1/2}}) = -\mu X_{1/2}$$
 (5.4)

откуда

$$\mu = -\frac{\ln 0.5}{X_{1/2}} \approx \frac{0.693}{X_{1/2}} \tag{5.5}$$

Толщину $X_{1/2}$ слоя половинного поглощения можно определить по графику зависимости интенсивности излучения от толщины поглощающего слоя (рис 5.1). На практике используют также величину $X_{1/10}$, которая характеризует толщину вещества, при которой интенсивность излучения уменьшается в 10 раз. На практике толщину укрытий для защиты от ионизирующих излучений выбирают равной толщине $X_{1/10}$.

Согласно выражениям (5.1) и (5.5) величину $X_{1/10}$ можно рассчитать по формуле

$$X_{1/10} = \frac{1}{\mu} \ln 10 = \frac{\ln 10}{\ln 2} X_{1/2} \approx 3.332 X_{1/2}$$
 (5.6)

Порядок выполнения работы

- 1. Получить у преподавателя исследуемый образец слаборадиоактивного вещества.
- 2. Измерить 20 раз мощность экспозиционной дозы естественного радиационного фона на рабочем месте, вычислить ее среднее значение $\overline{N_b}$.
- 3. Провести 10 измерений мощности экспозиционной дозы образца с открытой задней крышкой дозиметра $N_{\gamma+\beta}$
 - 4. Вычислить среднее значение $\overline{N^0_{\gamma+\beta}}$.
- 5. Поместить между дозиметром и кюветой пять листов тонкой бумаги (поглощающий материал), и измерить интенсивность прошедшего сквозь бумагу излучения. По результатам 10 измерений определить среднее значение $\overline{N_{\gamma+\beta}^5}$.
- 6. Помещая между дозиметром и кюветой 10, 15, 20 и т. д. листов бумаги по результатам 10 измерений (аналогично п. 3) вычислить средние значения $\overline{N_{\gamma+\beta}^{10}}$, $\overline{N_{\gamma+\beta}^{15}}$, $\overline{N_{\gamma+\beta}^{20}}$ т. д.
- 7. Измерения производить до тех пор, пока среднее показание дозиметра не приблизится к значению $\overline{N_b} \approx (12-18)~ \text{мкP/u}$.

Внимание!

Во-первых, в случае если последующее измерение окажется больше предыдущего (например, если окажется, что $\overline{N_{\gamma+\beta}^{10}} < \overline{N_{\gamma+\beta}^{15}}$), то расчет предыдущего значения (т.е. $\overline{N_{\gamma+\beta}^{10}}$) необходимо повторить, заменив крайние значения (минимальное и максимальное) двумя повторно измеренными, поскольку количество измерений (n=10) недостаточно для качественной оценки.

Во-вторых, средние показания дозиметра считать приближенными к значению $\overline{N_\phi}$, если они отличаются на 3-4 единицы.

- 8. Построить график зависимости интенсивности излучения исследуемого вещества от толщины поглощающего материала (толщины бумаги) I(X)=X, приняв толщину одного листа равной 0.1 мм.
- 9. Определить по построенному графику толщину материала $X_{1/2}$ при которой интенсивность излучения I уменьшается в 2 раза $I_{1/2}$

Для этого принять за нулевое значение интенсивности излучения I_{ϕ} величину, полученную в п.7. и зная максимальную интенсивность излуче-

ния (п. 4) найти значение интенсив- ности излучения, уменьшенное в 2 раза $I_{1/2}$

$$I_{1/2} = I_{max} - \left(\frac{I_{max} - I_{\phi}}{2}\right)$$

Отложить значение $I_{1/2}$ на графике, из полученной точки провести линию параллельную оси абсцисс до пересечения с кривой, затем провести линию параллельную оси ординат до пересечения с осью координат и отметить полученное значение $X_{1/2}$ – это и будет искомая величина.

10. В данной работе, количество зарегистрированных частиц пропорционально интенсивности излучения вещества ($I\sim N$), поэтому выражение (5.1) имеет вид:

$$N = N_0 e^{-\mu x} \tag{5.1}$$

где x — толщина пройденного слоя вещества

N – интенсивность излучения после прохождения слоя толщиной x

 N_0 – интенсивность излучения в начальный момент

 μ – линейный коэффициент ослабления (поглощения).

Преобразуйте это выражение к виду (5.5) и вычислите коэффициент поглощения μ .

- 11. Согласно формуле (5.6) вычислите толщину слоя десятикратного ослабления $X_{1/10}$.
- 12. Оформить отчет о проделанной работе, в котором представить проделанные измерения и вычисления, график зависимости интенсивности излучения исследуемого вещества от толщины поглощающего слоя, коэффициент ослабления μ .

Контрольные вопросы

- 1. Какой физический процесс называется ионизацией?
- 2. Что такое ионизирующее излучение, какие виды излучений относят к ионизирующим?
- 3. Как изменяется интенсивность ионизирующего излучения при прохождении вещества?
- 4. Какие физические процессы сопровождают прохождение ионизирующего излучения через вещество?
 - 5. Какой физический смысл имеют величины μ , $X_{1/2}$, $X_{1/10}$?
 - 6. В чем заключается методика эксперимента в данной работе?

Лабораторная работа № 6

«Энергия связи ядер»

Цель работы: исследование с помощью компьютерной модели устойчивости атомных ядер и определение удельной энергии связи.

Краткие теоретические сведения

Ядра всех атомов состоят из протонов и нейтронов, общее название частиц ядра - нуклоны. Массы ядер принято измерять в атомных единицах массы (а.е.м.), учитывая, что

1 а.е.м. =
$$1.66-10^{-27}$$
 кг.

Протон - стабильная частица, имеющая положительный заряд, равный по величине заряду электрона. Масса протона $m_p = 1,00728$ а.е.м, спин* протона s = 1/2.

Нейтрон - нестабильная частица, заряд которой равен нулю. Масса нейтрона $m_n = 1,00867$ а.е.м, спин нейтрона s = 1/2.

Число протонов Z равно порядковому номеру элемента в таблице Менделеева. Число нейтронов в ядре обозначается N. Общее число протонов и нейтронов в ядре A — называется массовым числом

$$A = Z + N. (6.1)$$

Ядра с одинаковым числом протонов, но различным числом нейтронов являются ядрами различных изотопов химического элемента. Изотопы обозначаются символом химического элемента с указанием вверху массового числа A и внизу числа протонов Z

$$_{Z}^{A}X$$
 , или $_{Z}X^{A}$

Ядра атомов не имеют четко выраженной границы. Приближенная формула для расчета радиуса ядра имеет вид

$$r_{\rm g} \cong 1.3 \cdot 10^{-15} \,\mathrm{A}^{1/3} \,\mathrm{[M]}$$

Коэффициент $1,3\cdot 10^{-15}$ является приближенным, он может принимать и большие значения.

Из этого соотношения следует, что объем ядра прямо пропорционален числу нуклонов A, а, следовательно, концентрация нуклонов в ядре примерно постоянна для всех ядер.

Из опыта известно, что масса атомного ядра $m_{\it 9dpa}$ всегда меньше суммы масс отдельных нуклонов, входящих в состав ядра. Разность между массой исходных частиц и массой ядра называется дефектом массы

$$\Delta m = Zm_p + (A - Z)m_n - m_{g\partial pa} \tag{6.2}$$

Поскольку обычно мы знаем не массы ядер, а массы нейтральных атомов, можно пользоваться приближенной формулой

$$\Delta m = Zm_H + (A - Z)m_n - m_{_{\mathcal{H}\partial\mathcal{P}a}} \tag{6.3}$$

где $m_H = 1,00783$ а.е.м.

Важнейшую роль в ядерной физике играет понятие энергии связи ядра. Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные частицы. Она равна той энергии, которая выделяется при преобразовании ядра из отдельных частиц.

Энергию связи определяют на основе соотношения Эйнштейна между массой и энергией

$$E_{ce} = \Delta mc^2$$

Если массу частиц и ядра измерять в атомных единицах массы (а.е.м.), а энергию - в мегаэлектронвольтах (МэВ), то соотношение можно представить в виде

$$E_{cs} = 931,5\Delta m$$

Тогда можно записать

$$E_{cs}(M \ni B) = 931, 5 \cdot \left[Z \cdot m_H + (A - Z) \cdot m_n - m_{amoma} \right]$$
 (6.4)

где $m_p = 1,00728$ а.е.м., $m_H = 1,00783$ а.е.м.

Отношение энергии связи ядра E_{cs} к числу нуклонов A в ядре называется удельной энергией связи нуклонов в ядре

$$E_{cs}^{y\partial} = \frac{E_{cs}}{A} \tag{6.5}$$

Удельная энергия связи нуклонов в разных атомных ядрах неодинакова и позволяет судить об устойчивости ядер: чем больше удельная энергия связи, тем более устойчиво ядро изотопов.

Зависимость удельной энергии связи от массового числа A исследована экспериментально для всех стабильных ядер и представлена на рис.6.1.

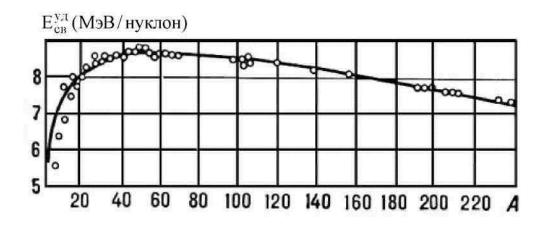


Рис. 6.1

Как видно из рис.6.1, наибольшей устойчивостью обладают элементы с массовым числом от 50 до 60. Для них удельная энергия связи достигает величины

$$E_{ce}^{yo} = 8,75 \frac{M \ni B}{\kappa y \pi o H}$$

Наличие энергии связи ядра указывает на то, что между нуклонами ядра действуют ядерные силы притяжения. Это взаимодействие между нуклонами получило название сильного взаимодействия.

Перечислим основные особенности ядерных сил:

- 1. Им присуще свойство зарядовой независимости: силы, действующие между нейтроном и протоном, двумя нейтронами или двумя протонам имеют одинаковую величину.
- 2. Ядерные силы являются короткодействующими, их радиус действия составляет порядка 10^{-15} м.
- 3. Ядерные силы обладают свойством насыщения: каждый нуклон взаимодействует только с ограниченным числом соседних нуклонов.
- 4. Ядерные силы носят обменный характер. Переносчиком ядерного взаимодействия являются частицы π -мезоны.
- 5. Ядерные силы зависят от взаимной ориентации спинов нуклонов.

Например, в тяжелом водороде - дейтроне $\binom{2}{1}H$) - нейтрон и протон удерживаются вместе, только если их спины параллельны друг другу.

Ядра стабильных изотопов образуются только при определенном соотношении чисел протонов и нейтронов. Для легких ядер число нейтронов приблизительно равно числу протонов, но с увеличением массового числа А число нейтронов N становится больше, чем число протонов Z ядра.

Описание компьютерной модели

В данной работе исследуется устойчивость различных изотопов элементов и определяется наиболее устойчивый изотоп для каждого из заданных преподавателем химических элементов.

На рис. 6.2 представлено изображение экрана компьютера, на котором даны результаты экспериментальных исследований устойчивости ядер и удельной энергии связи нуклонов в ядре в зависимости от состава ядра.

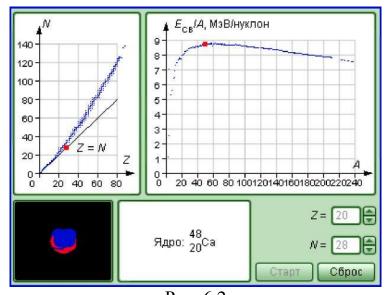


Рис. 6.2

На левом графике представлена совокупность точек, соответствующих составу ядер (Z и N) всех химических элементов, встречающихся в природе (включая изотопы).

Фиксируя количество протонов Z, входящих в состав ядра, мы задаем химические свойства вещества, состоящего из атомов с такими ядрами. Изменяя количество нейтронов N при фиксированном количестве протонов, получаем изотопы данного химического элемента. Ядра полученного изотопа могут быть как стабильными, так и нестабильными. Это свойство ядер можно наблюдать на изображении, помещенном в левом нижнем углу модели.

Каждый стабильный изотоп при наведении маркера мыши изображается в виде красной точки.

При исследованиях на данной компьютерной модели требуется определить количество стабильных изотопов для химических элементов, заданных для каждого варианта.

ЗАМЕЧАНИЕ: по графику, приведенному сверху справа на рис. 6.2, вы можете наблюдать, как зависит удельная энергия связи нуклонов в ядре E_{CB} от его состава (количества нуклонов A).

Порядок выполнения работы

Запустить программу через «Пуск», «Физикон», «Открытая физика.1.1». Выбрать раздел «Квантовая физика» в нем «Энергия связи ядер».

Рассмотреть внимательно рисунок и, подведя маркер мыши к любому рычажку, несколько раз изменить характеристики Z и N и, нажимая на кнопку «Старт», наблюдать, будет ли ядро устойчивым или распадется.

Таблица 6.1

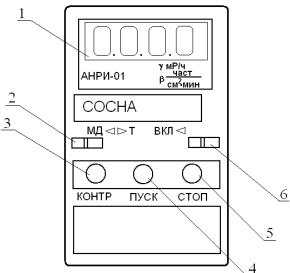
№ варианта		Количество протонов в ядре - Z										
1	14	15	16	17	18	19	20	21	22	23	24	25
2	58	57	56	55	54	53	52	51	50	49	48	47
3	46	47	48	49	50	51	52	53	54	55	56	57
4	26	25	24	23	22	21	20	19	18	17	16	15

- 1. С помощью регулировки установить значение Z для первого элемента, заданного вашему варианту (таб. 6.1).
- 2. Меняя N, начиная примерно с N = Z и затем, увеличивая N на 1, определить, при каких значениях числа нейтронов ядро будет устойчивым (не будет распадаться).
- 3. Записать в таб.6.2 (пример) результаты наблюдений, при которых ядро остается стабильным (для разных элементов число стабильных изотопов в таблице может изменяться от 2 до 7)
- 4. По формуле (6.1) подсчитать массовое число A для каждого изотопа.
- 5. Из «Приложения», выписать в таб. 6.2 массы нейтральных атомов для найденных стабильных изотопов.

- 6. По формуле (6.4) определить энергию связи ядер в мега электрон вольтах.
- 7. Рассчитать удельную энергию связи по формуле (6.5)
- 8. Повторить измерения для других элементов.

Таблица 6.2

Название	Z	N	A	m _{атома}	Е _{св} МэВ	$E_{ce}^{y\partial}$
элемента				а.е.м.	МэВ	$E_{cs}^{y\partial}$ МэВ/нуклон


- 1. Подсчитайте количество изотопов для каждого химического элемента и внести в последний столбец табл.2.
- 2. Сделайте вывод по количеству изотопов химических элементов в заданном диапазоне порядковых номеров. Объяснить причину такого количества.
- 3. Постройте график зависимости количества изотопов N_{U3} от количества протонов Z только для четных Z.
- 4. Сделайте вывод по форме графика $N_{U3}(Z)$.
- 5. По положению максимума на графике оцените значение магического числа.
- 6. Сравните значение магического числа, полученное экспериментально, с теоретическим значением числа, расположенным в данном диапазоне изменения Z.

Контрольные вопросы

- 1. Из каких частиц состоят ядра химических элементов?
- 2. Что означает понятие «спин» элементарной частицы?
- 3. Как обозначаются ядра химических элементов, какими числами они характеризуются?
- 4. Что такое изотопы химического элемента?
- 5. Что называется дефектом массы ядра? Как он определяется?
- 6. Что называется энергией связи ядра?
- 7. Как определяется удельная энергия связи ядра?
- 8. Какая величина определяет устойчивость атомных ядер?
- 9. К какому виду взаимодействия относятся ядерные силы?
- 10. Перечислите основные свойства ядерных сил.

Основные правила работы с радиометрами-дозиметрами типа «Анри-01. Сосна», «Белрад 04»

Внешний вид бытового радиометра-дозиметра (далее – дозиметра) представлен на рис.1. Блок детектирования и измерительный блок смонтированы в едином пластмассовом корпусе. Детектирование излучения осуществляется с помощью двух или четырех (в дозиметрах типа «Белрад 04») газоразрядных счетчиков Гейгера-Мюллера, размещенного за задней крышкой.

Для индикации измерений в приборе используется жидкокристаллический цифровой индикатор 1. Управление прибором осуществляется переключателем режимов работы 2, кнопками 3 - KOHTP, $4 - \Pi VCK$, $5 - CTO\Pi$, выключателем 6. Для измерений с открытой задней крышкой прибора необходимо повернуть фиксатор на задней панели и открыть заднюю крышку. **Внимание!** При замерах с открытой задней крышкой необходимо соблюдать осторожность, чтобы не повредить тонкую защитную пленку, закрывающую счетчики прибора.

1. Проверка работоспособности прибора.

- 1.1. Включите прибор, для чего выключатель 6 переведите в положение "вкл." Включение прибора должно сопровождаться коротким звуковым сигналом. Если переключатель режима работы 2 находится в положении " $M\mathcal{I}$ " (крайнее левое положение), то на цифровом табло должно индицироваться "0.000", если переключатель находится в положении "T" (крайнее правое положение), то на цифровом табло должно индицироваться "0.000".
- 1.2. Если прибор после включения издает постоянный звуковой сигнал, то необходимо обратится к преподавателю.
- 1.3. Для того, чтобы убедиться в исправности электронной пересчетной схемы и таймера прибора, переведите переключатель режима работы в положение "МД" (крайнее левое положение), нажмите кнопку 3 (КОНТР)

и удерживая ее в нажатом состоянии до конца проведения контрольной проверки, кратковременно нажмите кнопку 4 (ПУСК). На цифровом табло должны появиться три точки между цифровыми знаками и начаться отсчет чисел. Через 20 с отсчет чисел должен прекратиться, окончание отсчета должно сопровождаться коротким звуковым сигналом, а на табло должно индицироваться число "1024". После окончания отсчета отпустите кнопку 3 (КОНТР).

- 1.4. Если при проведении контрольного теста полученное число отличается от указанного выше, то следует обратиться к преподавателю.
- 1.5. Для проверки работоспособности преобразователя напряжения и счетчиков необходимо установить переключатель режима работы в положение "МД" (крайнее левое положение) и нажать кнопку 4 (ПУСК). После окончания измерения на табло должно индицироваться число, близкое к естественному фону гамма-излучения (смотрите лабораторную работу 1). Если после измерения на табло индикатора зафиксировалось число "0.000" или число меньшее "0.005", то следует считать данное измерение ошибочными не учитывать его в расчетах.

Внимание! Пункты 1.3 - 1.5 выполняются по желанию или по указанию преподавателя.

2. Режимы работы.

Дозиметры рассматриваемых типов имеют следующие режимы работать:

- 1. поиск;
- 2. измерение мощности экспозиционной дозы;
- 3. измерение плотности потока бета-излучения с загрязненных поверхностей;
- 4. оценка объемной (удельной) активности радионуклидов в пробах вещества.

Рассмотрим подробно порядок работы в каждом из режимов.

2.1. Работа в режиме "Поиск"

В режиме «поиск» прибор служит для грубой оценки радиационной обстановки по частоте следования звуковых сигналов. В этом режиме прибор ведет счет импульсов от счетчиков прибора, и подает короткий звуковой сигнал через каждые десять импульсов. Порядок работы следующий:

- 2.1.1. Проверьте, закрыта ли задняя крышка прибора, при необходимости плотно закройте ее и зафиксируйте фиксатором.
- 2.1.2. Переведите переключатель режима работы 2 в положение "T" (крайнее правое положение).
- 2.1.3. Подключите прибор к блоку питания на рабочем столе и включите блок питания.
- 2.1.4. Включите прибор переключателем 6 и нажмите кратковременно кнопку 4 (ПУСК). При этом на цифровом табло должны появиться точ-

ки после каждого разряда "0.0.0.0" и начаться счет импульсов. В данном режиме на табло 1 индицируются каждый десяток импульсов. Нормой, для нашей местности, в этом режиме принято считать, если за каждые десять секунд регистрируется один десяток импульсов.

- 2.1.5. После проведения измерений выключите прибор переключателем 6, отсоедините его от блока питания и выключите блок питания.
- 2.2. Работа в режиме измерения мощности экспозиционной дозы гамма-излучения.

В режиме измерения мощности экспозиционной дозы прибор ведет в течение 20 секунд счет импульсов от счетчиков прибора. По окончанию счета, время которого задается внутренним таймерам прибора, на цифровом табло появляется число, соответствующее мощности экспозиционной дозы гамма-излучения. Порядок работы следующий:

- 2.2.1. Проверьте, закрыта ли задняя крышка прибора, при необходимости плотно закройте ее и зафиксируйте фиксатором.
- 2.2.2. Переведите переключатель режима работы 2 в положение "MД" (крайнее левое положение).
- 2.2.3. Подключите прибор к блоку питания на рабочем столе и включите блок питания.
- 2.2.4. Включите прибор переключателем 6 и нажмите кратковременно кнопку 4 (ПУСК). При этом на цифровом табло должны появиться точки после каждого разряда "0.0.0.0" и начаться счет импульсов.
- 2.2.5. Через 20 с измерение закончится, это будет сопровождаться звуковым сигналом, а на цифровом табло зафиксируется число с одной точкой, например "0.012". Такое показание прибора будет соответствовать мощности экспозиционной дозы гамма-излучения, измеренной в миллирентенах в час (MP/u). Для упрощения формы записи и обработки результатов удобно записывать мощность экспозиционной дозы гамма-излучения в микрорентгенах в час (MkP/u), этой величине соответствуют последние две цифры на табло дозиметра. Т.е. показание "0.012" соответствует мощности экспозиционной дозы гамма-излучения 0.012 MP/u, или мощности экспозиционной дозы гамма-излучения 12 MkP/u.
- 2.2.6. Показание на цифровом табло сохранится до повторного нажатия на кнопку 4 (ПУСК) или выключения прибора.
- 2.2.7. Для выполнения повторного замера достаточно, не выключая прибор, вновь кратковременно нажать кнопку 4 (ПУСК).
- 2.2.8. После проведения измерений выключите прибор переключателем 6, отсоедините его от блока питания и выключите блок питания.
- 2.3. Работа в режиме измерения плотности потока бета-излучения с загрязненных поверхностей.

В режиме измерения плотности потока бета-излучения с загрязненных поверхностей необходимо проведение двух измерений исследуемой

поверхности: с закрытой и открытой задней крышкой прибора. Время измерений в обоих случаях задается внутренним таймером прибора. Порядок работы следующий:

- 2.3.1. Получите у преподавателя исследуемое вещество.
- 2.3.2. Проверьте, закрыта ли задняя крышка прибора, при необходимости плотно закройте ее и зафиксируйте фиксатором.
- 2.3.3. Переведите переключатель режима работы 2 в положение " $M\!Z$ " (крайнее левое положение).
- 2.3.4. Подключите прибор к блоку питания на рабочем столе и включите блок питания.
- 2.3.5. Включите прибор переключателем 6. Поднесите прибор плоскостью задней крышки к исследуемой поверхности на расстояние 0,5-1 см и нажмите кратковременно кнопку 4 (ПУСК). Выполните измерение и запишите показания прибора. Измеренная величина соответствует мощности экспозиционной дозы гамма-излучения исследуемой поверхности (N_{γ}).
 - 2.3.6. Откройте заднюю крышку прибора.
- 2.3.7. Выполните измерение с открытой задней крышкой аналогично п. 2.3.5. Запишите показания прибора. Измеренная величина соответствует мощности гамма- и бета-излучения исследуемой поверхности $(N_{\gamma+\beta})$.
- 2.3.8. Закройте заднюю крышку прибора, выключите прибор переключателем 6, отсоедините его от блока питания и выключите блок питания.
- 2.3.9. Величину плотности потока бета-излучения ($ua-cmuu/cm^2 \cdot munymy$) с поверхности можно вычислить по формуле:

$$q = K_S \left(N_{\gamma + \beta} - N_{\gamma} \right), \tag{1}$$

где N_{γ} — показание прибора с закрытой задней крышкой без учета запятой на табло (импульсов);

 $N_{\gamma+\beta}$ — показание прибора с открытой задней крышкой без учета запятой на табло импульсов;

 K_S — коэффициент счета прибора (частиц/см²·мин·импульс), составляет 0.5 частиц/см²·мин·импульс.

Расчетная формула и значение коэффициента K_S указаны на задней крышке прибора.

- 2.3.10. По окончании работы сдайте полученные пробы преподавателю и уберите свое рабочее место.
- 2.4. Работа в режиме оценки объемной (удельной) активности радионуклидов в пробах вещества.

В режиме оценки объемной активности радионуклидов в пробах необходимо проведение двух измерений. Оба измерения проводятся с закрытой задней крышкой, а прибор устанавливается на кювету. Первое измерение проводится с кюветой, заполненной чистой питьевой водой, второе измерение – с кюветой, заполненной исследуемым веществом. Время измерения контролируется по секундомеру или часам. Оценка объемной

(удельной) радиоактивности проб является наиболее сложной операцией при работе с прибором. Правильность оценки зависит от многих факторов, в том числе от физических свойств оцениваемого вещества, времени измерения, уровней мощности дозы гамма-излучения, приготовления пробы и др. Оценку объемной (удельной) радиоактивности проб желательно проводить в местах с малыми уровнями фоновых значений гамма-излучения (менее $20~m\kappa P/v$). Чем меньше фоновые значения гамма-излучения, тем точнее можно оценить объемную (удельную) радиоактивность проб. Порядок работы следующий.

- 2.4.1. Возьмите чисто вымытую, сухую кювету и заполните ее чистой питьевой водой.
- 2.4.2. Подключите прибор к блоку питания на рабочем столе и включите блок питания.
- 2.4.3. Откройте заднюю крышку прибора и установите его на кювету. Установите переключатель режима работы 2 в положение "T" и включите прибор переключателем 6.
- 2.4.4. Подготовьте ручные часы или секундомер для фиксации времени измерения. Зафиксируйте время начала замера и кратковременно нажмите кнопку 4 (ПУСК). Через 10 мин нажмите кнопку 5 (СТОП). Запишите показание прибора (N_{3T}) .
- 2.4.5. Заполните кювету исследуемым веществом. Твердые вещества необходимо измельчить и укладывать в кювету плотным, ровным слоем
- 2.4.6. Установите прибор на кювету и выполните измерение исследуемого вещества аналогично п.2.4.4. Запишите показание прибора (N_{OEP}).
- 2.4.7. Выключите прибор, отключите блок питания, снимите дозиметр с кюветы, закройте заднюю крышку и отсоедините его от блока питания.
- 2.4.8. Оценка величины объемной активности в Кюри на литр (Ku/n) радионуклидов производится по формуле:

$$A_{V} = K_{II} \left(\frac{N_{OBP}}{t_2} - \frac{N_{T}}{t_1} \right) \tag{2}$$

где $N_{\Im T}$ — показание прибора при замере с кюветой, заполненной водой (импульсов);

 $N_{\it OEP}$ — показание прибора при замере с исследуемым веществом, импульсов;

 t_{I} — время замера с кюветой, заполненной водой, минут, ($t_{I}=10$ мин);

 t_2 — время замера с исследуемым веществом, минут, (t_2 = 10 мин);

 K_{II} — коэффициент прибора (Ku-мин/n-импульс).

Значение коэффициента и расчетная формула указаны на задней крышке прибора.

2.4.9. Если в результате замеров и расчета получится величина, меньшая чем $10^{-7} \ Ku/n$, что соответствует разности показаний прибора при двух измерениях $(N_{OBP}-N_{\ni T})<250$ импульсов, то необходимо повторить из-

мерение исследуемого вещества, увеличив время замера t_2 до 30 мин и повторить вычисления.

- 2.4.10. Если в результате повторных измерений и расчетов получилась величина меньшая, чем $5\cdot 10^{-8}~Ku/\pi~(1,85\cdot 10^3~E\kappa/\pi)$, то оценить объемную радиоактивность невозможно, можно лишь считать, что $A_V < 5\cdot 10^{-8}~Ku/\pi~(1,85\cdot 10^3~E\kappa/\pi)$.
- 2.4.11. По окончании работы сдайте полученные пробы преподавателю и уберите свое рабочее место.

Список рекомендуемой литературы

- 1. Опарина Н.А., Петрович О.Н. Радиационная безопасность. Конспект лекций для студентов технических специальностей. Новополоцк УО «ПГУ», 2003.
- 2. Кужир П.Г., Сатиков И.А., Трофименко Е.Е. Радиационная безопасность. Минск "Пион", 1999 г.
- 3. Савастенко В.А. Практикум по ядерной физике и радиационной безопасности: Учебное пособие для втузов. Мн.: ДизайнПРО, 1998.
- 4. Постник М.И. Экологическая и радиационная безопасность: Учебное пособие для вузов. Мн.: Институт современных знаний, 1998.

ПРИЛОЖЕНИЕ

Изото	ОП	а.е.м.	Состав	Стандартный атомный вес	Прим
1 H	1	1.007 825 032 07(10)	0.999 885(70)	1.007 94(7)	g,m,r,b,w
D	2	2.014 101 777 8(4)	0.000 115(70)		
T	3	3.016 049 2777(25)			
2 He	3	3.016 029 3191(26)	0.000 001 34(3)	4.002 602(2)	g,r,a
	4	4.002 603 254 15(6)	0.999 998 66(3)		
3 Li	6	6.015 122 795(16)	0.0759(4)	6.941(2)	g,m,r,c,i
	7	7.016 004 55(8)	0.9241(4)		
4 Be	9	9.012 182 2(4)	1.0000	9.012 182(3)	
5 B	10	10.012 937 0(4)	0.199(7)	10.811(7)	g,m,r
	11	11.009 305 4(4)	0.801(7)		
6 C	12	12.000 000 0(0)	0.9893(8)	12.0107(8)	g,r
	13	13.003 354 8378(10)	0.0107(8)		
	14	14.003 241 989(4)			
7 N	14	14.003 074 004 8(6)	0.996 36(20)	14.0067(2)	g,r,a,d
	15	15.000 108 898 2(7)	0.003 64(20)		
8 O	16	15.994 914 619 56(16)	0.997 57(16)	15.9994(3)	g,r,e,w
	17	16.999 131 70(12)	0.000 38(1)		
	18	17.999 161 0(7)	0.002 05(14)		
9 F	19	18.998 403 22(7)	1.0000	18.998 403 2(5)	
10 Ne	20	19.992 440 1754(19)	0.9048(3)	20.1797(6)	g,m,a
	21	20.993 846 68(4)	0.0027(1)		
	22	21.991 385 114(19)	0.0925(3)		
11 Na	23	22.989 769 2809(29)	1.0000	22.989 769 28(2))
12 Mg	24	23.985 041 700(14)	0.7899(4)	24.3050(6)	
	25	24.985 836 92(3)	0.1000(1)		
	26	25.982 592 929(30)	0.1101(3)		

Изотоп		а.е.м.	Состав	Стандартный атомный вес	Прим
13 Al	27	26.981 538 63(12)	1.0000	26.981 538 6(8)	
14 Si	28	27.976 926 5325(19)	0.922 23(19)	28.0855(3)	r
	29	28.976 494 700(22)	0.046 85(8)		
	30	29.973 770 17(3)	0.030 92(11)		
15 P	31	30.973 761 63(20)	1.0000	30.973 762(2)	
16 S	32	31.972 071 00(15)	0.9499(26)	32.065(5)	g,r
	33	32.971 458 76(15)	0.0075(2)		
	34	33.967 866 90(12)	0.0425(24)		
	36	35.967 080 76(20)	0.0001(1)		
17 Cl	35	34.968 852 68(4)	0.7576(10)	35.453(2)	m
	37	36.965 902 59(5)	0.2424(10)		
18 Ar	36	35.967 545 106(29)	0.003 365(30)	39.948(1)	g,r,a
	38	37.962 732 4(4)	0.000 632(5)		
	40	39.962 383 1225(29)	0.996 003(30)		
19 K	39	38.963 706 68(20)	0.932 581(44)	39.0983(1)	g
	40	39.963 998 48(21)	0.000 117(1)		
	41	40.961 825 76(21)	0.067 302(44)		
20 Ca	40	39.962 590 98(22)	0.969 41(156)	40.078(4)	g,f
	42	41.958 618 01(27)	0.006 47(23)		
	43	42.958 766 6(3)	0.001 35(10)		
	44	43.955 481 8(4)	0.020 86(110)		
	46	45.953 6926(24)	0.000 04(3)		
	48	47.952 534(4)	0.001 87(21)		
21 Sc	45	44.955 911 9(9)	1.0000	44.955 912(6)	
22 Ti	46	45.952 631 6(9)	0.0825(3)	47.867(1)	
	47	46.951 763 1(9)	0.0744(2)		
	48	47.947 946 3(9)	0.7372(3)		
	49	48.947 870 0(9)	0.0541(2)		
	50	49.944 791 2(9)	0.0518(2)		
23 V	50	49.947 1585(11)	0.002 50(4)	50.9415(1)	
	51	50.943 9595(11)	0.997 50(4)		
24 Cr	50	49.946 0442(11)	0.043 45(13)	51.9961(6)	
	52	51.940 507 5(8)	0.837 89(18)		
	53	52.940 649 4(8)	0.095 01(17)		

Изотоп		а.е.м.	Состав	Стандартный атомный вес Прим
	54	53.938 880 4(8)	0.023 65(7)	
25 Mn	55	54.938 045 1(7)	1.0000	54.938 045(5)
26 Fe	54	53.939 610 5(7)	0.058 45(35)	55.845(2)
	56	55.934 937 5(7)	0.917 54(36)	
	57	56.935 394 0(7)	0.021 19(10)	
	58	57.933 275 6(8)	0.002 82(4)	
27 Co	59	58.933 195 0(7)	1.0000	58.933 195(5)
28 Ni	58	57.935 342 9(7)	0.680 769(89)	58.6934(4)
	60	59.930 786 4(7)	0.262 231(77)	
	61	60.931 056 0(7)	0.011 399(6)	
	62	61.928 345 1(6)	0.036 345(17)	
	64	63.927 966 0(7)	0.009 256(9)	
29 Cu	63	62.929 597 5(6)	0.6915(15)	63.546(3) r
	65	64.927 789 5(7)	0.3085(15)	
30 Zn	64	63.929 142 2(7)	0.482 68(321)	65.38(2)
	66	65.926 0334(10)	0.279 75(77)	
	67	66.927 1273(10)	0.041 02(21)	
	68	67.924 8442(10)	0.190 24(123)	
	70	69.925 3193(21)	0.006 31(9)	
31 Ga	69	68.925 5736(13)	0.601 08(9)	69.723(1)
	71	70.924 7013(11)	0.398 92(9)	
32 Ge	70	69.924 2474(11)	0.2038(18)	72.64(1)
	72	71.922 0758(18)	0.2731(26)	
	73	72.923 4589(18)	0.0776(8)	
	74	73.921 1778(18)	0.3672(15)	
	76	75.921 4026(18)	0.0783(7)	
33 As	75	74.921 5965(20)	1.0000	74.921 60(2)
34 Se	74	73.922 4764(18)	0.0089(4)	78.96(3)
	76	75.919 2136(18)	0.0937(29)	
	77	76.919 9140(18)	0.0763(16)	
	78	77.917 3091(18)	0.2377(28)	
	80	79.916 5213(21)	0.4961(41)	
	82	81.916 6994(22)	0.0873(22)	
35 Br	79	78.918 3371(22)	0.5069(7)	79.904(1)

Изотоп		а.е.м.	Состав	Стандартный атомный вес	Прим
	81	80.916 2906(21)	0.4931(7)		
36 Kr	78	77.920 3648(12)	0.003 55(3)	83.798(2)	g,m,a
	80	79.916 3790(16)	0.022 86(10)		
	82	81.913 4836(19)	0.115 93(31)		
	83	82.914 136(3)	0.115 00(19)		
	84	83.911 507(3)	0.569 87(15)		
	86	85.910 610 73(11)	0.172 79(41)		
37 Rb	85	84.911 789 738(12)	0.7217(2)	85.4678(3)	g
	87	86.909 180 527(13)	0.2783(2)		
38 Sr	84	83.913 425(3)	0.0056(1)	87.62(1)	g,r,f
	86	85.909 2602(12)	0.0986(1)		
	87	86.908 8771(12)	0.0700(1)		
	88	87.905 6121(12)	0.8258(1)		
39 Y	89	88.905 8483(27)	1.0000	88.905 85(2)	
40 Zr	90	89.904 7044(25)	0.5145(40)	91.224(2)	g
	91	90.905 6458(25)	0.1122(5)		
	92	91.905 0408(25)	0.1715(8)		
	94	93.906 3152(26)	0.1738(28)		
	96	95.908 2734(30)	0.0280(9)		
41 Nb	93	92.906 3781(26)	1.0000	92.906 38(2)	
42 Mo	92	91.906 811(4)	0.1477(31)	95.96(2)	g
	94	93.905 0883(21)	0.0923(10)		
	95	94.905 8421(21)	0.1590(9)		
	96	95.904 6795(21)	0.1668(1)		
	97	96.906 0215(21)	0.0956(5)		
	98	97.905 4082(21)	0.2419(26)		
	100	99.907 477(6)	0.0967(20)		
43 Tc	97	96.906 365(5)		[98]	
	98	97.907 216(4)			
	99	98.906 2547(21)			
44 Ru	96	95.907 598(8)	0.0554(14)	101.07(2)	g
	98	97.905 287(7)	0.0187(3)		
	99	98.905 9393(22)	0.1276(14)		
	100	99.904 2195(22)	0.1260(7)		
	101	100.905 5821(22)	0.1706(2)		
	102	101.904 3493(22)	0.3155(14)		
	104	103.905 433(3)	0.1862(27)		
			47		

Изотоп	а.е.м.	Состав	Стандартный атомный вес	Прим
45 Rh 103	102.905 504(3)	1.0000	102.905 50(2)	
46 Pd 102	101.905 609(3)	0.0102(1)	106.42(1)	g
104	103.904 036(4)	0.1114(8)		
105	104.905 085(4)	0.2233(8)		
106	105.903 486(4)	0.2733(3)		
108	107.903 892(4)	0.2646(9)		
110	109.905 153(12)	0.1172(9)		
47 Ag 107	106.905 097(5)	0.518 39(8)	107.8682(2)	g
109	108.904 752(3)	0.481 61(8)		
48 Cd 106	105.906 459(6)	0.0125(6)	112.411(8)	g
108	107.904 184(6)	0.0089(3)		
110	109.903 0021(29)	0.1249(18)		
111	110.904 1781(29)	0.1280(12)		
112	111.902 7578(29)	0.2413(21)		
113	112.904 4017(29)	0.1222(12)		
114	113.903 3585(29)	0.2873(42)		
116	115.904 756(3)	0.0749(18)		
49 In 113	112.904 058(3)	0.0429(5)	114.818(3)	
115	114.903 878(5)	0.9571(5)		
50 Sn 112	111.904 818(5)	0.0097(1)	118.710(7)	g,e
114	113.902 779(3)	0.0066(1)		
115	114.903 342(3)	0.0034(1)		
116	115.901 741(3)	0.1454(9)		
117	116.902 952(3)	0.0768(7)		
118	117.901 603(3)	0.2422(9)		
119	118.903 308(3)	0.0859(4)		
120	119.902 1947(27)	0.3258(9)		
122	121.903 4390(29)	0.0463(3)		
124	123.905 2739(15)	0.0579(5)		
51 Sb 121	120.903 8157(24)	0.5721(5)	121.760(1)	g
123	122.904 2140(22)	0.4279(5)		
52 Te 120	119.904 020(10)	0.0009(1)	127.60(3)	g,h
122	121.903 0439(16)	0.0255(12)		
123	122.904 2700(16)	0.0089(3)		
124	123.902 8179(16)	0.0474(14)		
125	124.904 4307(16)	0.0707(15)		
126	125.903 3117(16)	0.1884(25)		
128	127.904 4631(19)	0.3174(8)		

Изотоп	а.е.м.	Состав	Стандартный атомный вес	Прим
130	129.906 2244(21)	0.3408(62)		
53 I 127	126.904 473(4)	1.0000	126.904 47(3)	
54 Xe 124	123.905 8930(20)	0.000 952(3)	131.293(6)	g,m,a
126	125.904 274(7)	0.000 890(2)		
128	127.903 5313(15)	0.019 102(8)		
129	128.904 779 4(8)	0.264 006(82)		
130	129.903 508 0(8)	0.040 710(13)		
131	130.905 0824(10)	0.212 324(30)		
132	131.904 1535(10)	0.269 086(33)		
134	133.905 394 5(9)	0.104 357(21)		
136	135.907 219(8)	0.088 573(44)		
55 Cs 133	132.905 451 933(24)	1.0000	132.905 451 9(2)	
56 Ba 130	129.906 3208(30)	0.001 06(1)	137.327(7)	
132	131.905 0613(11)	0.001 01(1)		
134	133.904 508 4(4)	0.024 17(18)		
135	134.905 688 6(4)	0.065 92(12)		
136		0.078 54(24)		
137	136.905 827 4(5)	0.112 32(24)		
138	137.905 247 2(5)	0.716 98(42)		
57 La 138	137.907 112(4)	0.000 90(1)	138.905 47(7)	g
139	138.906 3533(26)	0.999 10(1)		
58 Ce 136	135.907 172(14)	0.001 85(2)	140.116(1)	g,f
138	137.905 991(11)	0.002 51(2)		
140	139.905 4387(26)	0.884 50(51)		
142	141.909 244(3)	0.111 14(51)		
59 Pr 141	140.907 6528(26)	1.0000	140.907 65(2)	
60 Nd 142	141.907 7233(25)	0.272(5)	144.242(3)	g,f
143	142.909 8143(25)	0.122(2)		
144	143.910 0873(25)	0.238(3)		
145	144.912 5736(25)	0.083(1)		
146	145.913 1169(25)	0.172(3)		
148	147.916 893(3)	0.057(1)		
150	149.920 891(3)	0.056(2)		
61 Pm 145	144.912 749(3)		[145]	
147	146.915 1385(26)			
62 Sm 144	143.911 999(3)	0.0307(7)	150.36(2)	g
		40		

Изатат		Common	Стандартный	Пини
Изотоп	а.е.м.	Состав	атомный вес	Прим
147	146.914 8979(26)	0.1499(18)		
148	147.914 8227(26)	0.1124(10)		
149	148.917 1847(26)	0.1382(7)		
150	149.917 2755(26)	0.0738(1)		
152	151.919 7324(27)	0.2675(16)		
154	153.922 2093(27)	0.2275(29)		
63 Eu 151	150.919 8502(26)	0.4781(6)	151.964(1)	g
153	152.921 2303(26)	0.5219(6)		
64 Gd 152	151.919 7910(27)	0.0020(1)	157.25(3)	g
154	153.920 8656(27)	0.0218(3)	` ,	C
155	154.922 6220(27)	0.1480(12)		
156	155.922 1227(27)	0.2047(9)		
157	156.923 9601(27)	0.1565(2)		
158	157.924 1039(27)	0.2484(7)		
160	159.927 0541(27)	0.2186(19)		
65 Tb 159	158.925 3468(27)	1.0000	158.925 35(2)	
66 Dy 156	155.924 283(7)	0.000 56(3)	162.500(1)	g
158	157.924 409(4)	0.000 95(3)		
160	159.925 1975(27)	0.023 29(18)		
161	160.926 9334(27)	0.188 89(42)		
162	161.926 7984(27)	0.254 75(36)		
163	162.928 7312(27)	0.248 96(42)		
164	163.929 1748(27)	0.282 60(54)		
67 Ho 165	164.930 3221(27)	1.0000	164.930 32(2)	
68 Er 162	161.928 778(4)	0.001 39(5)	167.259(3)	g
164	163.929 200(3)	0.016 01(3)		
166	165.930 2931(27)	0.335 03(36)		
167	166.932 0482(27)	0.228 69(9)		
168	167.932 3702(27)	0.269 78(18)		
170	169.935 4643(30)	0.149 10(36)		
69 Tm 169	168.934 2133(27)	1.0000	168.934 21(2)	
70 Yb 168	167.933 897(5)	0.0013(1)	173.054(5)	g
170	169.934 7618(26)	0.0304(15)		
171	170.936 3258(26)	0.1428(57)		
172	171.936 3815(26)	0.2183(67)		
173	172.938 2108(26)	0.1613(27)		
174	173.938 8621(26)	0.3183(92)		
176	175.942 5717(28)	0.1276(41)		
		50		

Изотог	п	а.е.м.	Состав	Стандартный атомный вес	Прим
71 Lu 1'	75	174.940 7718(23)	0.9741(2)	174.9668(1)	g
1′	76	175.942 6863(23)	0.0259(2)		
72 Hf 1	74	173.940 046(3)	0.0016(1)	178.49(2)	f
1	76	175.941 4086(24)	0.0526(7)		
1	77	176.943 2207(23)	0.1860(9)		
1	78	177.943 6988(23)	0.2728(7)		
1	79	178.945 8161(23)	0.1362(2)		
1	80	179.946 5500(23)	0.3508(16)		
73 Ta 1	80	179.947 4648(24)	0.000 12(2)	180.947 88(2)	
13	81	180.947 9958(19)	0.999 88(2)		
74 W 1	80	179.946 704(4)	0.0012(1)	183.84(1)	
13	82	181.948 204 2(9)	0.2650(16)		
13	83	182.950 223 0(9)	0.1431(4)		
13	84	183.950 931 2(9)	0.3064(2)		
1	86	185.954 3641(19)	0.2843(19)		
75 Re 1	85	184.952 9550(13)	0.3740(2)	186.207(1)	
1	87	186.955 7531(15)	0.6260(2)		
76 Os 1	84	183.952 4891(14)	0.0002(1)	190.23(3)	g,f
13	86	185.953 8382(15)	0.0159(3)		
13	87	186.955 7505(15)	0.0196(2)		
13	88	187.955 8382(15)	0.1324(8)		
13	89	188.958 1475(16)	0.1615(5)		
19	90	189.958 4470(16)	0.2626(2)		
19	92	191.961 4807(27)	0.4078(19)		
77 Ir 19	91	190.960 5940(18)	0.373(2)	192.217(3)	
19	93	192.962 9264(18)	0.627(2)		
78 Pt 19	90	189.959 932(6)	0.000 14(1)	195.084(9)	
19	92	191.961 0380(27)	0.007 82(7)		
19	94	193.962 680 3(9)	0.329 67(99)		
19	95	194.964 791 1(9)	0.338 32(10)		
19	96	195.964 951 5(9)	0.252 42(41)		
19	98	197.967 893(3)	0.071 63(55)		
79 Au 19	97	196.966 568 7(6)	1.0000	196.966 569(4)	
80 Hg 19	96	195.965 833(3)	0.0015(1)	200.59(2)	
-	98	197.966 769 0(4)	0.0997(20)	` '	
	99	198.968 279 9(4)	0.1687(22)		

200 199.968 326 0(4) 0.2310(19) 201 200.970 302 3(6) 0.1318(9) 202 201.970 643 0(6) 0.2986(26) 204 203.973 493 9(4) 0.0687(15) 81 Tl 203 202.972 3442(14) 0.2952(1) 204.3833(2) 205 204.974 4275(14) 0.7048(1) 82 Pb 204 203.973 0436(13) 0.014(1) 207.2(1) 206 205.974 4653(13) 0.241(1) 207 206.975 8969(13) 0.221(1) 208 207.976 6521(13) 0.524(1)	g,r,f
202 201.970 643 0(6) 0.2986(26) 204 203.973 493 9(4) 0.0687(15) 81 Tl 203 202.972 3442(14) 0.2952(1) 204.3833(2) 205 204.974 4275(14) 0.7048(1) 82 Pb 204 203.973 0436(13) 0.014(1) 207.2(1) 206 205.974 4653(13) 0.241(1) 207 206.975 8969(13) 0.221(1)	g,r,f
204 203.973 493 9(4) 0.0687(15) 81 Tl 203 202.972 3442(14) 0.2952(1) 204.3833(2) 205 204.974 4275(14) 0.7048(1) 82 Pb 204 203.973 0436(13) 0.014(1) 207.2(1) 206 205.974 4653(13) 0.241(1) 207 206.975 8969(13) 0.221(1)	g,r,f
204 203.973 493 9(4) 0.0687(15) 81 T1 203 202.972 3442(14) 0.2952(1) 204.3833(2) 205 204.974 4275(14) 0.7048(1) 82 Pb 204 203.973 0436(13) 0.014(1) 207.2(1) 206 205.974 4653(13) 0.241(1) 207 206.975 8969(13) 0.221(1)	g,r,f
205 204.974 4275(14) 0.7048(1) 82 Pb 204 203.973 0436(13) 0.014(1) 207.2(1) 206 205.974 4653(13) 0.241(1) 207 206.975 8969(13) 0.221(1)	g,r,f
82 Pb 204 203.973 0436(13) 0.014(1) 207.2(1) 206 205.974 4653(13) 0.241(1) 207 206.975 8969(13) 0.221(1)	g,r,f
206 205.974 4653(13) 0.241(1) 207 206.975 8969(13) 0.221(1)	g,r,f
207 206.975 8969(13) 0.221(1)	
` '	
208 207.976 6521(13) 0.524(1)	
83 Bi 209 208.980 3987(16) 1.0000 208.980 40(1)	
84 Po 209 208.982 4304(20) [209]	
210 209.982 8737(13)	
85 At 210 209.987 148(8) [210]	
211 210.987 4963(30)	
86 Rn 211 210.990 601(7) [222]	
220 220.011 3940(24)	
222 222.017 5777(25)	
87 Fr 223 223.019 7359(26) [223]	
88 Ra 223 223.018 5022(27) [226]	
224 224.020 2118(24)	
226 226.025 4098(25)	
228 228.031 0703(26)	
89 Ac 227 227.027 7521(26) [227]	
90 Th 230 230.033 1338(19)	
232 232.038 0553(21) 1.0000 232.038 06(2)	g
91 Pa 231 231.035 8840(24) 1.0000 231.035 88(2)	
92 U 233 233.039 6352(29)	
234 234.040 9521(20) 0.000 054(5) 238.028 91(3)	g,m,c
235 235.043 9299(20) 0.007 204(6)	
236 236.045 5680(20)	
238 238.050 7882(20) 0.992 742(10)	

Изотоп	а.е.м.	Состав	Стандартный атомный вес Прим
93 Np 236	236.046 570(50)		[237]
237	237.048 1734(20)		
94 Pu 238	238.049 5599(20)		[244]
239	239.052 1634(20)		
240	240.053 8135(20)		
241	241.056 8515(20)		
242	242.058 7426(20)		
244	244.064 204(5)		
95 Am 241	241.056 8291(20)		[243]
243	243.061 3811(25)		
96 Cm 243	243.061 3891(22)		[247]
244	244.062 7526(20)		
245	245.065 4912(22)		
246	246.067 2237(22)		
247	247.070 354(5)		
248	248.072 349(5)		
97 Bk 247	247.070 307(6)		[247]
249	249.074 9867(28)		
98 Cf 249	249.074 8535(24)		[251]
250	250.076 4061(22)		
251	251.079 587(5)		
252	252.081 626(5)		
99 Es 252	252.082 980(50)		[252]
100 Fm 257	257.095 105(7)		[257]