ON VECTOR FIELD DEFINED BY THE HOPF MAP S^3 ON S^2 ## V.S. Dryuma Institute of Mathematics and Computer Sciences AS of Moldova, Kishinev, Moldova valdryum@gmail.com The subject of our consideration is the system of ODE's in E^3 -space $$\frac{d}{dt}x(t) = 8 \frac{4zx - y(x^2 + y^2 + z^2) + 4y}{(x^2 + y^2 + z^2 + 4)^2}, \quad \frac{d}{dt}y(t) = 8 \frac{4zy + x(x^2 + y^2 + z^2) - 4x}{(x^2 + y^2 + z^2 + 4)^2},$$ $$\frac{d}{dt}z(t) = \frac{24x^2 + 24y^2 - 8z^2 - (x^2 + y^2 + z^2)^2 - 16}{(x^2 + y^2 + z^2 + 4)^2},$$ associated with the Hopf map $S^3 \to S^2$ of three dimensional sphere with equation $z_1\bar{z}_1 + z_2\bar{z}_2 = 1$ on two-dimensional sphere S^2 considered as set of the points $[z_1/z_2, 1]$ of complex space C^2 . In our report we discuss the properties of this system of equations. The results presented generalize those obtained in [1]. **Theorem.** In the spherical system of coordinates $x(t) = r(t)\cos(\phi(t))\sin(\psi(t))$, $z(t) = r(t)\cos(\psi(t))$, $y(t) = r(t)\sin(\phi(t))\sin(\psi(t))$ the system takes form $$\frac{d}{dt}r(t) = \frac{((r(t))^4 + 8(r(t))^2 - 64(r(t))^2(\sin(\psi(t)))^2 + 16)\cos(\psi(t))}{(r(t))^4 + 8(r(t))^2 + 16},$$ $$\frac{d}{dt}\phi(t) = -8\frac{-4 + (r(t))^2}{(r(t))^4 + 8(r(t))^2 + 16},$$ $$\frac{d}{dt}\psi(t) = -\frac{\sin(\psi(t))((r(t))^4 + 40(r(t))^2 - 64(r(t))^2(\sin(\psi(t)))^2 + 16)}{r(t)((r(t))^4 + 8(r(t))^2 + 16)}$$ and it solutions are expressed trough the function $\sqrt{H(r)}$ which satisfies to the equation $$4 C_1 \operatorname{Bessel} I(0, 1/2 \sqrt{H(r)r^2}) + C_1 \operatorname{Bessel} I(0, 1/2 \sqrt{H(r)r^2}) r^2 - \\ -8 C_1 \operatorname{Bessel} I(1, 1/2 \sqrt{H(r)r^2}) \sqrt{H(r)r^2} + 4 \operatorname{Bessel} K(0, -1/2 \sqrt{H(r)r^2}) + \\ + \operatorname{Bessel} K(0, -1/2 \sqrt{H(r)r^2}) r^2 - 8 \operatorname{Bessel} K(1, -1/2 \sqrt{H(r)r^2}) \sqrt{H(r)r^2} = 0,$$ where $\sqrt{H(r)} = \sin(\psi(r))$ and C_i are the parameters. More detail information about properties of the solutions can be obtained by means of the first order p. d. e. associated with the considered systems of equations [2]. **Aknowledgement.** The work is partially supported by Grant 14-01-00389. ## References - 1. Aminov Yu. A. Geometriya vektornogo polya M.: Nauka, Gl. red. fiz.-mat. lit., 1990. 208 pp. - 2. Dryuma V. S. On the theory of the first order systems of differential equations // Intern. Conf. on Differential Equations and Dynamical Systems. Suzdal, July' 2–7, 2010. Abstracts. Suzdal, 2010. P. 205–206.