УДК 539.375

ФИЗИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ ГРАНИЦЫ ОСТАТОЧНОГО ДВОЙНИКА

канд. физ.-мат. наук О.М. ОСТРИКОВ (Гомельский государственный технический университет им. П.О. Сухого)

Разработана модель движущейся двойниковой границы в условиях различных способов нагружения образца. Предсказан резонанс границы двойника при знакопеременных нагрузках. Ключевые слова: остаточный двойник, двойниковая граница, двойникование

С появлением материалов нового поколения, таких как материалы с памятью формы [1, 2], уникальные физико-механические свойства которых полностью определяются подвижностью двойниковых границ, возросла актуальность разработки физических моделей и математического описания процессов двойникования и бездиффузионных фазовых превращений. Двойниковая граница остаточной двойниковой прослойки пересекает весь образец [3]. Дислокационное описание движения такой границы в настоящее время хорошо развито [3, 4]. Однако недостаточным можно считать недислокационное физическое описание движения границы остаточного двойника. Целесообразность такого описания связана с тем, что геометрический размер двойниковой границы в рассматриваемом случае соизмерим с размерами образца и масштабный уровень модели границы выходит за рамки дислокационных моделей.

Целью данной работы стала разработка физической модели движения границы остаточного двойника.

Схематическое изображение границы остаточного двойника представлено на рисунке.

Двойниковая граница

Рисунок – Схематическое изображение границы остаточного двойника в системе сил нагружения образца

Данная граница разделяет сдвойникованный и несдвойникованный объем (либо аустенитную и мартенситную фазу в материалах с памятью формы). Как показали экспериментальные исследования [1], для активизации движения данной границы нет необходимости в наличии составляющей вдоль оси *OY* (см. рис.) внешней силы, как это было представлено в [3]. Достаточно наличие сил *F*, направленных вдоль оси *OX* (см. рис.). При одноосном растяжении или сжатии связь этих сил с внешними напряжениями имеет вид

$$\sigma_{xx}^{\infty} = \frac{F}{S}, \qquad (1)$$

где *S* – площадь сечения образца плоскостью, перпендикулярной оси *OX*.

Согласно правилу Шмида [4], нормальные напряжения σ_{xx}^{∞} в плоскости двойниковой границы создают сдвиговые напряжения, определяемые по формуле

$$\tau_{xy}^{\text{\tiny AB}} = m\sigma_{xx}^{\infty} \,, \tag{2}$$

где *m* – ориентационный фактор Шмида.

Напряжения $\tau_{xy}^{_{AB}}$ и являются движущей силой процесса двойникования при одноосном сжатии или растяжении образца.

Лагранжиан движущейся границы остаточного двойника представим в виде

$$L = \frac{\beta \dot{x}^2}{2} - \alpha x - \frac{kx^2}{2} + xF(t), \qquad (3)$$

где α, β и *k* – эмпирические коэффициенты. Подставляя (3) в уравнение движения

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0, \qquad (4)$$

получим уравнение

$$\beta \ddot{x} + \alpha \dot{x} + kx = F(t), \qquad (5)$$

которое удобно представить в виде

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = \frac{1}{\beta} F(t).$$
(6)

Здесь

$$2\lambda = \alpha/\beta, \quad \omega_0^2 = k/\beta. \tag{7}$$

Физический смысл коэффициента β заключается в характеристике меры инертности двойниковой границы. В связи с этим можно полагать, что данный коэффициент зависит от массы M всех атомов на границе. При этом M можно определить по формуле

$$M = \sum_{i=1}^{N_1} m_i^{(1)} + \sum_{i=1}^{N_2} m_i^{(2)} + \dots + \sum_{i=1}^{N_n} m_i^{(n)} , \qquad (8)$$

где *i* – индекс суммирования;

 $m_i^{(n)}$ – масса *i*-го атома *n*-го сорта многокомпонентного материала;

N_n – количество атомов *n*-го сорта.

Тогда справедливо соотношение

$$\beta = \eta M , \qquad (9)$$

где η – безразмерный коэффициент, зависящий от скорости генерации и подвижности двойникующих дислокаций.

Коэффициент α – аналог коэффициента трения и определяет силы сопротивления движению двойникующих дислокаций. В случае двойникования данные силы зависят от характера взаимодействия двойникующих дислокаций с полными или сидячими дислокациями, имевшимися в кристалле до начала процесса двойникования, или сгенерированными двойниковыми границами, либо образовавшимися в ходе дислокационных реакций при взаимодействии двойникующих дислокаций с дислокациями леса [5].

Таким образом, в свою очередь, коэффициент λ можно трактовать, как коэффициент затухания для возвратно-поступательного движения двойниковой границы.

Коэффициент k определяет упругие свойства двойниковой границы, связанные со стремлением движения двойникующих дислокаций в обратном направлении после снятия нагрузки. Тогда ω_0 есть частота собственных колебаний границы двойника.

В качестве начальных условий можно принять, например, условия

$$x(0) = x_0, \quad \dot{x}(0) = V_0. \tag{10}$$

Таким образом, x₀ – положение двойниковой границы в начальный момент времени;

 $V_{\scriptscriptstyle 0}\,$ – начальная скорость границы остаточного двойника. В частном случае $V_{\scriptscriptstyle 0}=0$.

Движение рассматриваемой двойниковой границы может осуществляться в условиях действия квазистатических, знакопеременных, пульсирующих и импульсных нагрузок.

В случае квазистатической нагрузки в (6) можно принять

$$F(t) = \text{const} = F , \qquad (11)$$

где *F* – проекция силы, действующей вдоль оси *OX* (см. рис.). Как известно [6], общее решение однородного уравнения

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = 0 \tag{12}$$

есть

$$x(t) = C_1 e^{a_1 t} + C_2 e^{a_2 t}, (13)$$

где C_1 и C_2 – константы;

 a_1 и a_2 – характеристические числа, определяемые по формулам:

$$a_1 = -\lambda - \sqrt{\lambda^2 - \omega_0^2} , \quad a_1 = -\lambda + \sqrt{\lambda^2 - \omega_0^2} .$$
(14)

Частное решение уравнения (6) при (11), полагая $\omega_0^2 \neq 0$, будем искать в виде

$$x^* = P . (15)$$

Тогда получим, что

$$x^* = \frac{F}{\beta \omega_0^2} \,. \tag{16}$$

Таким образом, закон движения границы остаточного двойника при квазистатическом нагружении имеет вид

$$x(t) = C_1 e^{a_1 t} + C_2 e^{a_2 t} + \frac{F}{\beta \omega_0^2} .$$
(17)

Уравнение (17) справедливо для движения двойниковой границы в материалах, у которых $\lambda \neq 0$. Это такие материалы, у которых двойниковая граница при движении испытывает препятствия со стороны дислокаций леса, или сидячих дислокаций, либо сама активно генерирует полные дислокации, препятствующие движению двойникующих дислокаций. Такое наблюдается, например, в металлических кристаллах висмута, олова, сурьмы, цинка, бериллия [5]. Однако имеется ряд материалов, для которых можно принять $\lambda = 0$. Это, например, относится к сплавам Гейслера [1, 2]. В этом случае лагранжиан (3) примет вид

$$L = \frac{\beta \dot{x}^2}{2} - \frac{kx^2}{2} + xF(t), \qquad (18)$$

а уравнение движения двойниковой границы

$$\ddot{x} + \omega_0^2 x = \frac{1}{\beta} F(t).$$
⁽¹⁹⁾

Решение уравнения

$$\ddot{x} + \omega_0^2 x = 0 \tag{20}$$

можно представить в виде

$$x(t) = A_1 \cos \omega_0 t + A_2 \sin \omega_0 t \tag{21}$$

или

$$x(t) = a\cos(\omega_0 t + \alpha), \qquad (22)$$

где A_1 и A_2 – константы;

$$a = \sqrt{A_1^2 + A_2^2};$$

 $tg\alpha = -A_2/A_1.$

При (11) и поиске частного решения в виде (15) окончательно получим

$$x(t) = a\cos(\omega_0 t + \alpha) + \frac{F}{\beta\omega_0^2}.$$
(23)

При условии x(0) = 0, $\dot{x}(0) = 0$ решение уравнения (19) будет иметь вид

$$x(t) = \frac{F}{\beta \omega_0^2} (1 - \cos \omega_0 t) .$$
⁽²⁴⁾

Как видно из решений (17) и (24), действие постоянной силы F приводит к поступательному перемещению двойниковой границы.

При знакопеременных нагрузках можно принять

$$F(t) = F\cos(\gamma t + \phi), \qquad (25)$$

где γ – частота; ϕ – фаза;

F – максимальное значение внешней силы.

При $\phi = 0$ и $\lambda \neq 0$ уравнение движения двойниковой границы имеет вид

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = \frac{F}{\beta} \cos \gamma t .$$
⁽²⁶⁾

Решение данного уравнения может быть представлено как

$$x(t) = ae^{-\lambda t}\cos(\omega t + \alpha) + b\cos(\gamma t + \delta), \qquad (27)$$

где
$$\omega = \sqrt{\omega_0^2 + \lambda^2};$$

 $b = \frac{F}{\beta \sqrt{(\omega_0^2 - \gamma^2)^2 + 4\lambda^2 \gamma^2}};$
 $\operatorname{tg} \delta = \frac{2\lambda\gamma}{\gamma^2 - \omega_0^2};$

а и α – вещественные константы.

Через некоторое количество циклов нагружения первое слагаемое устремляется к нулю. Тогда движение двойниковой границы будет подчиняться закону

$$x(t) = b\cos(\gamma t + \delta).$$
⁽²⁸⁾

При больших значениях λ, например, увеличивающихся с каждым циклом нагружения, очевидно, произойдет остановка двойниковой границы, несмотря на действующие внешние знакопеременные напряжения.

При $\lambda \approx \omega_0$ амплитуда смещения двойниковой границы *b* растет, причем при $\lambda \to 0$ $b \to \infty$. Следует отметить, что малая величина λ свойственна для определенного класса двойников ферромагнитных сплавов с памятью формы, у которых согласно разрабатываемой модели можно прогнозировать неуправляемое нагрузкой смещение двойниковой границы в области резонансных частот.

При пульсирующих нагрузках для F(t) можно использовать функцию вида

$$F(t) = F(1 + f - \cos(\gamma t + \phi)), \qquad (29)$$

где *f* – некоторая константа, равная нулю, когда цикл нагружения завершается полной разгрузкой. Уравнение движения границы в этом случае примет следующий вид:

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = \frac{F}{\beta} \left(1 + f - \cos\left(\gamma t + \phi\right) \right). \tag{30}$$

На основании принципа суперпозиции [6] частное решение уравнения (30) можно представить как

$$x^* = x_1 + x_2$$

где

$$x_1 = \frac{F(1+f)}{\beta\omega_0^2}, \quad x_2 = -b\cos(\gamma t + \delta).$$

Тогда решение уравнения (30) будет иметь вид

$$x(t) = ae^{-\lambda t}\cos(\omega t + \alpha) - b\cos(\gamma t + \delta) + \frac{F(1+f)}{\beta\omega_0^2}.$$
(31)

Для импульсной нагрузки примем

$$F(t) = F e^{-\sigma t}, \qquad (32)$$

где σ – константа.

В этом случае уравнение движения двойниковой границы

$$\ddot{x} + 2\lambda \dot{x} + \omega_0^2 x = \frac{F}{\beta} e^{-\sigma t} .$$
(33)

Методом подбора [6] частное решение этого уравнения будем искать в виде

$$x^* = B \mathrm{e}^{-\mathrm{\sigma} t} \,, \tag{34}$$

где

$$B = \frac{F}{\beta \left(\sigma^2 - 2\lambda \sigma + \omega_0^2\right)}.$$
(35)

Решением уравнения (33) будет

$$x(t) = C_1 e^{a_1 t} + C_2 e^{a_2 t} + \frac{F}{\beta \left(\sigma^2 - 2\lambda\sigma + \omega_0^2\right)} e^{-\sigma t}.$$
(36)

Таким образом, разработан математический аппарат для описания движения двойниковой границы для различных способов нагружения двойникующегося материала. Это позволило предсказать резонансное поведение границы двойника при знакопеременных нагрузках.

ЛИТЕРАТУРА

- 1. Остриков, О.М. Разрушение и сопутствующие ему эффекты в ферромагнитном монокристалле Ni₂MnGa с эффектом памяти формы / О.М. Остриков, Е.В. Шматок // Инженерно-физический журнал. 2015. Т. 88, № 1. С. 272–279.
- Остриков, О.М. Исследование пластической деформации поверхности монокристалла Ni₂MnGa методом индентирования / О.М. Остриков, А.Л. Созинов, А.В. Сорока // Инженерно-физический журнал. – 2012. – Т. 85, № 5. – С. 1132–1141.
- 3. Бойко, В.С. Дислокационное описание движения границ остаточного двойника / В.С. Бойко // Физика твердого тела. 1980. Т. 22, № 4. С. 1066–1071.
- 4. Остриков, О.М. Дислокационная модель нетонкой границы двойниковой прослойки / О.М. Остриков // Вестн. Полоц. гос. ун-та. Сер. С. Фундаментальные науки. 2013. № 4. С. 83–95.
- 5. Лаврентьев Ф.Ф. Взаимодействие дислокаций в цинке, висмуте и сурьме при двойниковании / Ф.Ф. Лаврентьев // Физика металлов и металловедение. 1964. Т. 18, № 3. С. 428–436.
- Краснов, М.Л. Обыкновенные дифференциальные уравнения / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. М. : Едиториал УРСС. – 2002. – 256 с.

Поступила 17.03.2016

PHYSICAL MODEL OF BORDER TRAFFIC RESIDUAL TWIN

O. OSTRIKOV

The model of moving a twin boundary in a variety of ways to sample loading. Predicted response twin border with alternating loads.

Keywords: residual twin, twin boundary, twinning.