Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет

УДК 530:536.75+621.762 № гос.регистрации 20103214 Инв. №

УТВЕРЖДАЮ Проректор по научной работ		
	Д .О.Глухов 2012г.	

ОТЧЕТ о научно-исследовательской работе

«СИНТЕЗ НАНОСТРУКТУРНЫХ АЛМАЗНЫХ И ПОДОБНЫХ МАТЕРИАЛОВ И ОПРЕДЕЛЕНИЕ РАЦИОНАЛЬНЫХ УСЛОВИЙ ИХ ПРИМЕНЕНИЯ НА ОСНОВЕ КОМПЛЕКСНОГО АНАЛИЗА И ПАРАМЕТРИЗАЦИИ НЕРАВНОВЕСНЫХ ПРОЦЕССОВ ФОРМИРОВАНИЯ ФАЗ»

(заключительный)

договор с БРФФИ № Т10Р-067 от "01" мая 2010 г.

Научный руководитель		
д.т.н., профессор	 М.Л.Хейф	ец
	«»	2012г.
Нормоконтролер	 Л.В.Дмитриченко	
	« »	2012г.

Новополоцк 2012

СПИСОК ИСПОЛНИТЕЛЕЙ

Научный руководитель,		
д.т.н., профессор		М.Л.Хейфец
	(подпись, дата)	(общее руководство, разделы 1,
		2, 4, 5)
Ответственный исполнитель,		
вед. н. с., к.т.н.		В.Т.Сенють
	(подпись, дата)	(разделы 1, 2, 4, 5)
Ответственный исполнитель,		
ст. н.с.		С.В.Кухта
	(подпись, дата)	(разделы 2, 3)
Вед.н.с.,		
к.т.н., доцент		А.А.Лысов
	(подпись, дата)	(разделы 1, 5)
Ст.н.с.,		
к.т.н., доцент		А.С.Аршиков
	(подпись, дата)	(разделы 1, 5)
Ст.н.с.		С.А.Ковалева
	(подпись, дата)	(раздел 4, 5)
H.c.		И.В.Валькович
	(подпись, дата)	(раздел 4–5)

РЕФЕРАТ

Отчет 78 с., 23 рис., 12 табл., 75 источников

МУЛЬТИФРАКТАЛЬНЫЙ АНАЛИЗ, ФИЗИКО-ХИМИЧЕСКАЯ СИСТЕМА, НАНОМАТЕРИАЛЫ, ПРИНЦИП НЕПРЕРЫВНОСТИ, ПРИНЦИП СООТВЕТСТВИЯ, ТОПОЛОГИЧЕСКАЯ МОДЕЛЬ, САМООРГАНИЗАЦИЯ, ВЕЙВЛЕТ-АНАЛИЗ, АЛМАЗНЫЕ И ПОДОБНЫЕ МАТЕРИАЛЫ

Согласно основным принципам физико-химического анализа, с позиций термодинамики неравновесных процессов изучена самоорганизация фазовых переходов в мультиструктурной системе. Показано, что изучение неравновесных процессов позволяет определить возможность и вероятность фазовых переходов и структурных превращений, а также механизмов их реализации при синтезе алмазных и подобных сверхтвердых материалов и покрытий.

Показана co структурно-энергетических позиций целесообразная последовательность этапов развития поверхностей раздела структур, фаз и слоев: рост фрактальных структур поверхности; увеличение числа элементов основы фрактала; усложнение фрактальных меандров; перколяция слоев на поверхности раздела; вырождение фракталов. Рекомендован мультифрактальный подход к количественному описанию структур различной природы, заключающийся в построении меры множества, аппроксимирующего изучаемую структуру. Предложено использовать вейвлет-анализ для описания наноструктур материалов. Определены свойства и параметры вейвлет-анализа, влияющие на описание материалов.

ОГЛАВЛЕНИЕ

введение	5
1 ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ В ПРОЦЕССАХ СИНТЕЗА	
НАНОМАТЕРИАЛОВ	6
1.1 Принцип непрерывности свойств физико-химической систем	6
1.2 Принцип соответствия топологической модели физико-	
химической системе	8
1.3 Анализ топологической модели физико-химической системы	10
1.4 Исследование сингулярных элементов топологической модели	13
1.5 Самоорганизация структурных изменений и фазовых переходов	15
2 ФРАКТАЛЬНОЕ ОПИСАНИЕ КОМПЛЕКСА СТРУКТУР	
НАНОМАТЕРИАЛОВ	17
2.1 Фрактальная размерность	17
2.2 Фрактальная параметризация и перколяция	19
2.3 Трансформация фракталов на поверхностях раздела	21
2.4 Мультифрактальный анализ	23
3 ОПИСАНИЕ СТРУКТУР НАНОМАТЕРИАЛОВ С	
ИСПОЛЬЗОВАНИЕМ ВЕЙВЛЕТ-АНАЛИЗА	27
3.1 Определение вейвлета	27
3.2 Отображение преобразования	28
4 РАЗРАБОТКА НАУЧНЫХ И ТЕХНОЛОГИЧЕСКИХ ОСНОВ	
ПОЛУЧЕНИЯ АЛМАЗНЫХ И ПОДОБНЫХ МАТЕРИАЛОВ	31
4 .1 Изучение режимов синтеза алмазных и подобных материалов из	31
наноструктурных порошков	31
4.2 Разработка технологических основ синтеза алмазных и подобных материалов из наноструктурных порошков	48
5. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ СИНТЕЗИРОВАННЫХ	
АЛМАЗНЫХ И ПОДОБНЫХ МАТЕРИАЛОВ	58
5. 1 Определение условий рационального применения	
синтезированных наноструктурных алмазных и подобных	58
материалов 5.2 Анализ эффективности применения синтезированных	
наноструктурных алмазных и подобных материалов. Изучение	
перспектив дальнейшего развития и практического	68
использования полученных результатов ЗАКЛЮЧЕНИЕ	72
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	74

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Блаттер К. Вейвлет-анализ. Основы теории. Москва, 2004. 280 с.
- 2. Астафьева Н.М. //Успехи физических наук, 1996. Т.166. № 11, С.1145-1170.
- 3. Левкович-Маслюк Л., Переберин А. Введение в вейвлет-анализ М.: ГрафиКон'99, 1999.
- 4. Зверев А.А., Колмаков А.Г., Чернышова Т.А., Кобелева Л.И. // Перспективные материалы, 2007. Спец.выпуск, Сентябрь. С.603.
- 5. Зверев А.А., Колмаков А.Г. // Book of articles «Deformation & Fracture of Materials and Nanomaterials DFMN 2007» ed. by O.A. Bannykh et. al. Moscow: Interkontakt Nauka, 2007. P. 637-639.
- 6. Колмаков А.Г. Зверев А.А. Применение современных математических методов для системного описания структур материалов // В сб. Науч. тр. под ред. академика К.А. Солнцева «Институту металлургии и материаловедения им. А.А.Байкова РАН 70 лет», М.: Интерконтакт Наука, 2008, 736 С., С.660-675.
- 7. Технологические основы управления качеством машин: Справочное пособие/ А.С.Васильев, А.М.Дальский, М.Л.Хейфец и др. – Минск: ФТИ НАНБ, 2002. – 216 с.
- Технологические основы управления качеством машин / А.С. Васильев [и др.].
 М.: Машиностроение, 2003. 256 с.
- 9. Технологические основы управления качеством машин: Библиотека технолога/ А.С.Васильев, А.М.Дальский, М.Л.Хейфец и др.— М.: Машиностроение, 2003. 256 с.
- 10. Хейфец М.Л. Самоорганизация процессов при высокоэффективных методах обработки деталей.- Новополоцк: ПГУ, 1997.- 268 с
- 11. Хейфец М.Л., Кожуро Л.М., Мрочек Ж.А. Процессы самоорганизации при формировании поверхностей. Гомель: ИММС НАНБ, 1999. 276 с.
- 12. Хейфец М.Л. Проектирование процессов комбинированной обработки: Библиотека технолога. Москва: Машиностроение, 2005. 272 с.
- 13. Хейфец М.Л. Формирование свойств материалов при послойном синтезе деталей. Новополоцк: ПГУ, 2001. 156 с.

- 14. Технологические основы высокоэффективных методов обработки деталей: Учебное пособие / П.И. Ящерицын, М.Л. Хейфец, Б.П. Чемисов и др.-Новополоцк: ПГУ, 1996.- 136 с.
- Синергетические аспекты физико-химических методов обработки / А.И.Гордиенко, М.Л.Хейфец, Б.П.Чемисов и др. – Минск: ФТИ НАНБ, 2000. – 172 с.
- 16. Акулович Л.М., Ивашко В.С., Хейфец М.Л. Самоорганизация процессов упрочняющей обработки. Минск: Народная книга, 2008. 236 с.
- 17. Интеллектуальное производство: состояние и перспективы развития / Под общ. ред. М.Л.Хейфеца и Б.П.Чемисова.- Новополоцк: ПГУ, 2002.- 268 с.
- Научные основы материаловедения / Б.Н. Арзамазцев [и др.]. М.: МГТУ им.
 Н.Э. Баумана, 1994. 366 с.
- 19. Аносов, В.Я. Основы физико-химического анализа / В.Я. Аносов, М.И. Озерова, Ю.Я. Фиалков. М: Наука, 1976. 504 с.
- 20. Курнаков, Н.С. Введение в физико-химический анализ / Н.С. Курнаков. М.-Л.: AH СССР, 1940. 562 с.
- 21. Курнаков, Н.С. Избранные труды. Т. 1 / Н.С. Курнаков. М.: Изд. АН СССР, 1960. 595 с.
- 22. Гиббс, Дж.В. Термодинамические работы / Дж.В. Гиббс. М.-Л.: Гостехтеориздат, 1950. 492 с.
- 23. Гленсдорф, П. Термодинамическая теория структуры, устойчивости и флуктуации / П. Гленсдорф, И. Пригожин. М: Мир, 1973. 280 с.
- 24. Понтрягин, Л.С. Основы комбинаторной топологии / Л.С. Понтрягин. М.: Наука, 1986. 118 с.
- 25. Cauchy, A. Recherches sur les polyedres / A. Cauchy // Journal de l'Ecole polytechnique. 1813. V. IX. P. 68 86.
- 26. Stringham, W.J. Regular figures in n-dimensional space / W.J. Stringham // American journal of mathematics. 1880. V.III. P. 1 14.
- 27. Берже, П. Порядок в хаосе: О детерминистическом подходе к турбулентности / П. Берже, И. Помо, К. Видаль. М.: Мир, 1991. 368 с.
- 28. Менделеев, Д.И. Исследование водных растворов по удельному весу / Д.И. Менделеев // Избр. произв. Л.: Госхимтехиздат, 1934. Т. III. 497 с.

- 29. Витязь, П.А. Синтез и применение сверхтвердых материалов / П.А. Витязь, В.Д. Грицук, В.Т. Сенють. Мн.: Бел. наука, 2005. 359 с.
- 30. Колмаков А.Г. Анализ связи структурных изменений и механических свойств металлических материалов при модификации поверхности с использованием мультифрактальных представлений.... Дисс. на соиск. уч. степ. д-ра техн. наук.- Москва: ИМЕТ им.А.А.Байкова РАН, 2005.- 376 с.
- 31. Инструменты из сверхтвердых материалов / Под ред. Н.В. Новикова. М.: Машиностроение, 2005. 555 с.
- 32. Mandelbrot B.B. The fractal geometry of nature. New York: Freeman, 1983.
- 33. Feder J., Fractals, Plenum, New York, 1988.
- 34. Иванова В.С., Баланкин А.С., Бунин И.Ж., Оксогоев А.А. Синергетика и фракталы в материаловедении. М.: Наука, 1994.
- 35. Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. Ижевск, 2001.
- 36. Морозов А.Д. Введение в теорию фракталов. Ниж. Новгород, 1999.
- 37. Кунак М.И. Фрактальная механика материалов. Минск, 2002.
- 38. Дорохов И.Н., Моисеев Ю.Н., Кафаров В.В.//Докл. РАН, 1992. Т.324, № 4. С.805-809.
- 39. Соколов И.М.//УФН, 1986. Т.150, № 2. С.221-225.
- 40. Челидзе Т.Л. Методы протекания в механике геоматериалов. М., 1987.
- 41. Встовский Г.В., Колмаков А.Г., Бунин И.Ж. Введение в мультифрактальную параметризацию структур материалов., Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001, 116 с.
- 42. Кочин П.Я. и др. Простые отношения в природе. Пропорциональность, инвариантность, подобие., М.: Наука, 1996.
- 43. Vstovky G.V. //Found.Phys., 1997, 27, №10, 1413-1444.
- 44. Встовский Г.В., Колмаков А.Г. // Сб. статей «Нелинейная динамика, фракталы и нейронные сети в управлении технологическими системами» (под ред. д.т.н., проф. Ю.Г. Кабалдина), Владивосток: Дальнаука, 2001, с. 15-31.
- 45. Встовский Г.В. Элементы информационной физики. М.: МГИУ, 2002. 260с.
- 46. Колмаков А.Г. // Фракталы и прикладная синергетика 2005: Сб. статей под ред. Ю.К. Ковнеристого и др. М.: Издательство Интерконтакт Наука, 2005. С.87–90.

- 47. Колмаков А.Г. // Нелинейный мир, 2006. т.4. №3. С.126-136.
- 48. Ботвина Л.Р., Иоффе А.В., Тетюева Т.В., // МиТОМ, 1997, №7, с. 21-25.
- 49. Aharony A. // Physica A, 1990 Vol.168. P.479-489.
- 50. Halsey T.C., Jensen M.H., Kadanoff L.P. et al. // Phys. Rev. A, 1986. Vol.33. N 2. P.1141-1151.
- Физическая энциклопедия / Гл. ред. А.М. Прохоров. М.: Сов. энциклопедия.
 Т1. 1988. 704 с.
- 52. Vinogradov A.Yu., Agnew S.R. Nanocrystalline Materials: Fatigue / in Encyclopedia of Nanotechnology. N.Y.: Marcel Dekker, 2004. P.2269-2288.
- Лейпунский О.И. Об искусственных алмазах // Успехи химии, 1939, вып. 8. –
 С. 1519-1534.
- 54. Berman R., Simon F. // Z. Elektrochem., 1955, Bd. 59, № 5, S. 333-338.
- 55. Gamarnik M.Y. Energetical preference of diamond nanoparticles. // Phys. Rev. B. 1996. 54, № 3. P. 2150-2156.
- 56. Чайковский Э.Ф., Розенберг Г.Х. Фазовая диаграмма углерода и возможность получения алмаза при низких давлениях // ДАН СССР. 1984, т. 279, № 6. С.1372-1375.
- 57. Aisenberg S., Chabot R.-J. Appl. Phys., 1971, vol. 42, № 7. P. 2953-2958.
- 58. Weissmantel C., et. al Thin Solid Films, 1979, vol. 63. P. 315-325.
- 59. Долматов В.Ю. Ультадисперсные алмазы детонационного синтеза. Получение, свойства, применение. СПбГПУ, Санкт-Петербург, 2003. 344 С.
- 60. Tomita S., Fujii M., Hayashi S., Yamamoto K. Transformations of carbon onions to diamond by low-temperature heat treatment in air. // Diamond Relat. Mater., 2000, Vol.9, № 3-6. P. 856-860.
- 61. Zaiser M., Banhart F. Radiation-induced transformation of graphite to diamond. // Phys. Rev. Lett. 1997, Vol. 79. P. 3680-3683.
- 62. Banhart F, Ajayan P. M. Self-compression and diamond formation in carbon onions.

 // Adv. Mater. 1997, Vol. 9, № 3. P. 261-263.
- 63. Получение, свойства и применение порошков алмаза и кубического нитрида бора. /Под. ред. П. А. Витязя. Минск: Беларуская навука, 2003. 335 с.

- 64. Новиков Н. В., Богатырева Г. П., Волошин М. Н.и др. Наноструктурные алмазные поликристаллические порошки // Инструментальный свет, 2002. № 1. С. 13-15.
- 65. Senyut V.T. The formation of the superhard materials based on nanodiamond // Science for materials in the frontier of centuries: Advantages and challenges. –Kiev, 2002.– P.485-486.
- 66. Shock-wave consolidation of micropowders of super-hard and diamond composite materials. // P.A. Vityaz, O.V. Roman, G.V. Smirnov, A.A. Komorny // J.Phys. IV France, 2000. № 10. –P. 107-112.
- 67. Витязь П.А. Состояние и перспективы использования наноалмазов детонационного синтеза в Белоруссии // ФТТ, т. 46, вып. 4, 2004. С. 591-595.
- 68. Кулакова И. И. Химия поверхности наноалмазов. // ФТТ, т. 46, вып. 4, 2004. С. 621-628.
- 69. Сенють В. Т. Особенности совместной термообработки УДА и неалмазного углерода при различных р, Т- условиях // Сверхтвердые материалы. № 6, 2002. С.68-77.
- 70. Технологии конструкционных наноструктурных материалов и покрытий / П.А. Витязь, А.Ф. Ильющенко, М.Л. Хейфец, С.А. Чижик, К.А. Солнцев, А.Г. Колмаков, М.И. Алымов, С.М. Баринов / Под общ. ред. П.А. Витязя и К.А. Солнцева.— Минск: Белорусская наука, 2011. 283 с.
- 71. Синергетика и фракталы в материаловедении/ В.С.Иванова, А.С.Баланкин, И.Ж.Бунин, А.А.Оксогоев. М.: Наука, 1994. 383 с.
- 72. Мультифрактальный метод тестирования устойчивости структур в материалах / В.С.Иванова, Г.В.Встовский, А.Г.Колмаков, В.Н.Пименов М: Интерконтакт-Наука, 2000. 54 с.
- 73. Мрочек Ж.А., Эйзнер Б.А., Марков Г.В. Основы технологий формирования многокомпонентных выкуумных, электродуговых покрытий. Минск: Наука и техника, 1991. 96 с.
- 74. Артемов А.С. Наноалмазы для полирования //ФТТ.–2004.–Т. 46.–№. 4.–С. 670-678.
- 75. Долматов В.Ю. Ультрадисперсные алмазы детонационного синтеза: свойства и применение //Успехи химии. 2001. –Т. 70. –№7. –С. 687--708.