Министерство образования Республики Беларусь УО «ПОЛОЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

УДК 537.533; 621.384

№ гос. регистрации 20102193

Проректор по н	аучной работе
к.т.н., доцент	
	Д.О. Глухов
" "	2012 г

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

«РАЗРАБОТАТЬ ОПЫТНЫЙ ОБРАЗЕЦ ОТЕЧЕСТВЕННОГО ЭЛЕКТРОННО-ЛУЧЕВОГО ЭНЕРГОКОМПЛЕКСА НА БАЗЕ ПУШКИ С ПЛАЗМЕННЫМ ЭМИТТЕРОМ»

(заключительный)

Шифр 07-10

Начальник НИСа	""	Т.В. Гончарова 2012 г.
Научный руководитель	""	д.т.н., проф. В.А. Груздев 2012 г.
Ответственный исполнитель	""	к.фм.н., доц. В.Г. Залесский

Новополоцк 2012

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель работы,

главный научный сотрудник,

д.т.н., профессор

Груздев В.А. (общее руководство,

введение, заключение)

Исполнители

Ответственный исполнитель,

ведущий научный сотрудник,

к.ф.-м.н., доцент

Залесский В.Г. (разделы 1-5)

Старший научный сотрудник

к.т.н., доцент

Антонович Д.А. (раздел 2, 4, 5)

Младший научный сотрудник

Русецкий И.С. (раздел 2 – 4, 5)

Инженер

Мазаник Ю.В. (раздел 2)

Инженер

Подворный А.Ф. (раздел 3)

Нормоконтролер

Кулеш В.Ф.

РЕФЕРАТ

Отчет 163 стр., 34 рис., 3 табл., 12 ист., 10 приложений ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЭЛЕКТРОНОВ, ПЛАЗМЕННЫЕ ЭМИТТЕРЫ, ЭЛЕКТРОННО-ЛУЧЕВОЙ ЭНЕРГОКОМПЛЕКС, СИСТЕМА ЭЛЕКТРОПИТАНИЯ И УПРАВЛЕНИЯ ЭНЕРГОКОМПЛЕКСА

Объектом исследований являются газоразрядные структуры, формирующие плазму с эмиссионными свойствами, достаточными для создания высокоэффективных технологических плазменных источников электронов, а также технологические плазменные источники электронов, способные функционировать в тяжелых вакуумных условиях и пригодные для сварки и других родственных технологий, системы их электропитания и управления

Цель работы – разработка отечественного электронно-лучевого энергокомплекса, предназначенного для реализации электронно-лучевой сварки деталей машин с использованием плазменных источников электронов.

В результате выполнения работы разработан и создан опытный образец отечественного электронно-лучевого энергокомплекса способный осуществлять электронно-лучевую сварку. При этом энергокомплекс обеспечивает: ток электронного пучка — до 300 мА; ускоряющее напряжение — до 40 кВ; коэффициент полезного действия — не ниже 90%; диаметр электронного пучка, в зависимости от его тока на уровне полувысоты распределения плотности тока пучка — 0,8-1,5 мм; стандартные электро- и радиационную безопасность.

Область применения: полученные результаты развивают теорию генераторов плазмы и могут быть использованы при создании отечественных электронно-лучевых энергокомплексов на базе пушек с плазменным эмиттером различенного технологического назначения.

Основные показатели: полученные результаты и технические решения обладают научной новизной и патентоспособностью и будут использованы для создания ПИЭЛ различного технологического применения, что расширит область применения электроннолучевых технологийвысокая эффективность разработанных источников электронов обеспечивается высокой стабильностью рабочих параметров в тяжелых технологических условиях и возможностью реализовать энерго- и ресурсосберегающие технологии электронно-лучевой сварки.

Степень внедрения: результаты исследований планируется использовать для создания отечественных электронно-лучевых энергокомплексов различного технологического назначения на промышленных предприятиях Республики Беларусь. Полученные новые научные результаты используются при подготовке научных кадров в рамках магистратуры и аспирантуры.

СОДЕРЖАНИЕ

Введение	6
1. Состав энергокомплекса и принцип его действия	9
2. Конструкции, принципиальные схемы и принципы действия	
функциональных блоков энергокомплекса	11
2.1 Электронная пушка	11
2.2 Плазменный источник электронов	13
2.3 Система формирования пучка	17
2.4 Система электропитания и управления энергокомплекса	18
2.4.1 Блок автоматического управления	18
2.4.2 Блок питания фокусирующей линзы	21
2.4.3 Блок ускоряющего напряжения	22
2.4.4 Блок электропитания разряда	23
2.5 Технические характеристики	27
3. Автоматизированная система управления	28
3.1 Общая структура.	28
3.2. Проектирование автоматизированной системы управления	
электронно-лучевым энергокомплексом на базе устройства	
управления ADCS14-8D	33
3.3. Проектирование автоматизированной системы управления	
электронно-лучевым энергокомплексом на базе станции	
распределенной периферии ET200S	36
3.4 Реализация системы автоматизации на базе промышленного	
логического контроллера «UNITRONICS V-570»	38
4. Расчет ряда функциональных элементов энергокомплекса.	
примеры реализации дополнительных возможностей	41
4.1 Управление током пучка по заданной программе на примере формирования	
прерывистых пучков	41
4.2 Расчет газодинамического канала (ГДК)	43
4.3 Рекомендации по оптимизации вакуумной части	
электронно-лучевой установки	47
5. Апробация разработанного электронно-лучевого энергокомплекса	
Заключение	
Список использованных источников	

Приложение А. Список научных публикаций для более подробного ознакомления	
с физическими процессами, использованными в настоящем проекте по созданию	
опытного образца электронно-лучевого комплекса	. 56
Приложение Б. Комплект конструкторской документации на разработанную	
электронно-лучевую пушку с плазменным эмитттером	. 61
Приложение В. Схема электрическая принципиальная системы электропитания	
разработанного образца электронно-лучевого энергокомплекса	. 119
Приложение Г. Перечень сигналов системы автоматизации	. 121
Приложение Д. Модули системы автоматизации на базе станции	
распределенной периферии ET200S	124
Приложение Е. Монтаж модулей системы автоматизации на базе станции	
распределенной периферии ET 200S	135
Приложение Ж. Промышленный логический контроллер «UNITRONICS V-570».	
Технические характеристики	144
Приложение И. Модуль ввода/вывода V200-18-E6B.	
Технические характеристики	. 149
Приложение К. Функциональная схема системы автоматизации на базе	
промышленного логического контроллера «UNITRONICS V-570»	. 153
Приложение Л. Проект технического задания на работы с РУП «МТЗ	. 155

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Лазерная и электронно-лучевая обработка материалов: Справочник / Н.Н. Рыкалин [и др.], под общ. ред. Н.Н. Рыкалина. М.: Машиностроение, 1985. 496 с.
- 2. Шипко, А.А. Упрочнение сталей и сплавов с использованием электроннолучевого нагрева / А.А. Шипко, И.Л. Поболь, И.Г. Урбан. – Минск: Навука і тэхніка, 1995. – 280 с.
- 3. Шиллер, 3. Электронно-лучевые технологии / 3. Шиллер, У. Гайзиг, 3. Панцер. М.: Энергия, 1980. 528 с.
- 4. Окс, Е.М. Источники электронов с плазменным катодом / Е.М. Окс. Томск: Изд-во НТЛ, 2005. 216 с.
- 5. Источники электронов с плазменным эмиттером / Ю.Е. Крейндель [и др.] под общ. ред. Ю.Е. Крейнделя. Новосибирск: Наука, 1983. 120 с.
- 6. Электронно-лучевая сварка / О.К. Назаренко [и др.], под общ. ред. Б.Е. Патона. Киев: Наукова думка, 1987. 256 с.
- 7. Крейндель, Ю.Е. Плазменные источники электронов / Ю.Е. Крейндель. М.: Атомиздат, 1977. – 145 с.
- 8. Капцов, Н.А. Электрические явления в газах и вакууме / Н.А. Капцов. М., Л.: ГИТТЛ, 1950.-836 с.
- 9. Петрович О.Н., Груздев В.А. Программный комплекс ELIS для моделирования плазменных процессов в ЭОС. // Прикладная физика, № 2. 2012. С. 35-43
- 10. Гейнце, В. Введение в вакуумную технику / В. Гейнце. М.: Госуд-ое энергетич. изд-во, 1960. 511 с.
- 11. Модифицирование и легирование поверхности лазерными, ионными и электронными пучками / Дж. М. Поут [и др.] под общ. ред. Дж. М. Поута; пер. с англ. Н.К. Мышкин [и др.] под общ. ред. А.А. Углова. М.: Машиностроение, 1987. 424 с.
- 12. Груздев, В.А. Моделирование температурного поля в поверхностном слое при импульсном электронно-лучевом воздействии / В.А. Груздев, В.Г. Залесский, Д.Г. Руголь // Инженерно физический журнал. -2007. -№ 2. -C 134 142.

ПРИЛОЖЕНИЕ А

СПИСОК НАУЧНЫХ ПУБЛИКАЦИЙ

для более подробного ознакомления с физическими процессами, использованными в настоящем проекте по созданию опытного образца электронно-лучевого комплекса

I. По генераторам плазмы

- 1. Плазменные источники электронов перспективные устройства для электронно-лучевых технологий / В.А. Груздев [и др.] // Мир технологий. 2003. № 1. С. 45-54.
- 2. Universal plasma electron source / V.A. Gruzdev [et al] // Vacuum. 2005. № 77 P. 399 405.
- 3. Груздев, В.А. Плазменный источник электронов с изолированным эмиттерным электродом / В.А. Груздев, В.Г. Залесский, И.С. Русецкий // Вестн. Полоц. гос. ун-та. Сер. С: Фундаментальные науки. 2010. № 9. С. 61-67
- 4. Антонович, Д.А. Плазменный эмиттер для формирования радиально расходящихся электронных пучков / Д.А. Антонович, В.А. Груздев, В.Г. Залесский // Проблемы проектирования и производства радиоэлектронных средств: сборник материалов V международной науч.-техн. конф.: в 3-х т. / под. общ. ред. А.П. Достанко, В.А. Груздева. Новополоцк: ПГУ 2008. Т.П: Технология. С. 48 51.
- 5. Antonovich, D.A. The gas-discharge structure for the formation of radial electron beams / D.A. Antonovich, V.A Gruzdev, V.G. Zalesski // Electrotechnica and electronica. 2009 5-6. P. 186 188.
- 6. Плазменный источник электронов с пучком большого сечения / В.А. Груздев [и др.] // Инженерно-физический журнал. 2002. Т. 75, № 3. С. 166 170.
- Возможности и перспективы использования плазменных источников электронов для реализации электронно-лучевых технологий в машиностроении / В.А. Груздев [и др.] // Тяжелое машиностроение. 2004. №9 С. 25 32.
- 8. Окс, Е.М. Источники электронов с плазменным катодом / Е.М. Окс. Томск: Изд-во НТЛ, 2005. 216 с.
- 9. Источники электронов с плазменным эмиттером / Ю.Е. Крейндель [и др.] под общ. ред. Ю.Е. Крейнделя. Новосибирск: Наука, 1983. 120 с.
- 10. Источники заряженных частиц с плазменным эмиттером / П.М. Щанин [и др.] под общ. ред. П.М. Щанина. Екатеринбург: Наука, 1993. 149 с.
- 11. Крейндель, Ю.Е. Плазменные источники электронов / Ю.Е. Крейндель. М.: Атомиздат, 1977. 145 с.
- 12. Источники электронов с плазменным эмиттером на основе отражательного разряда с полым катодом / В.Л. Галанский [и др.] // Изв. ВУЗов. Физика. 1992. Т. 35, № 5. С. 5-23

ІІ. По эмиссионному каналу

- 13. Груздев, В.А. Эволюция вторичной плазмы в ускоряющем промежутке плазменных источников электронов при повышенном давлении / В.А. Груздев, В.Г. Залесский // ЖТФ. 1996. Т. 66, вып. 7. С. 46 55.
- 14. Gruzdev, V.A. Emission current formation in Plasma electron emitters / V.A. Gruzdev, V.G. Zalesski // Plasma Physics 2010. vol. 36. –№ 13. P. 1191-1198.
- 15. Залесский, В. Г. Особенности формирования эмитирующей поверхности в плазменных источниках электронов / В.Г. Залесский, О.Н. Петрович // Вестн. Полоц. гос.ун-та. Сер. С: Фундаментальные науки. 2009. № 9 С. 69 76.
- 16. Груздев, В.А. О деформации распределения потенциала в ускоряющем промежутке плазменных источников электронов при повышенном давлении / В.А. Груздев, В.Г. Залесский, О.Н. Петрович // ЖТФ. 1995. Т. 65, вып. 10. С. 38 45.
- 17. Галанский, В.Л. О механизме переключения разрядного тока в эмиссионный канал ПИЭЛ / В.Л. Галанский, В.А. Груздев, В.В. Илюшенко // ЖТФ. 1993. Т. 63, вып. 4. C. 58 67.
- 18. Распространение плазмы в эмиссионном канале анодного электрода плазменного источника электронов / Д.Г. Данилишин [и др.] // Изв. ВУЗов. Физика. -2001. T. 44, № 5. -C. 29 32.
- 19. Мартенс, В.Я. Переходная область между неравновесной плазмой и отрицательным электродом / В.Я. Мартенс // ЖТФ. 2002. Т. 72, вып. 10. С. 45 52.
- 20. Мартенс, В.Я. Слой между плазмой и отрицательным электродом при наличии потоков заряженных частиц / В.Я. Мартенс // ЖТФ. 1996. Т. 66, вып. 5. С. 70 76.
- 21. Крейндель, Ю.Е. Параметры системы плазма-слой в электродной полости разряда низкого давления / Ю.Е. Крейндель, С.П. Никулин // ЖТФ. 1988. Т. 58, вып. 6. С. 1208 1209.
- 22. Ульянов, К.Н. Двухмерная модель плазменного катода с открытой границей плазмы / К.Н.Ульянов, А.А. Филиппов // Теплофизика высоких температур. -2001. том 39, № 4. С. 539 546.
- 23. Окс, Е.М. Эмиссионные свойства плазмы сверхплотного тлеющего разряда, возбуждаемого в скрещенных $E \times H$ полях / Е.М. Окс, А.А. Чагин // ЖТФ. 1991. Т. 61, вып. 6. С. 204 206.

- 24. Никулин, С.П. Влияние эмиссии заряженных частиц на характеристики тлеющих разрядов с осциллирующими электронами / С.П. Никулин // Изв. ВУЗов. Физика. 2001. T. 44, № 9. C. 63 68.
- 25. Крейндель, Ю.Е. Влияние электронной эмиссии на структуру отражательного разряда с полым катодом / Ю.Е. Крейндель, С.П. Никулин, О.Л. Шубин // ЖТФ. 1990. Т. 60, вып. 4. С. 190 192.
- 26. Анализ эмиссионных свойств плазменного катода / В.Л. Галанский [и др.] // ЖТФ. 1987. Т. 57, вып. 8. С. 1518 1521.
- 27. Никулин, С.П. Генерация однородной плазмы в тлеющих разрядах низкого давления / С.П. Никулин, С.В. Кулешов // ЖТФ. -2000. Т.70, вып. 4. С. 18 23.
- 28. Антонович, Д.А. Эмиссионные свойства плазменного эмиттера электронов / Д.А. Антонович, В.А. Груздев, В.Г. Залесский // Вестн. Полоц. гос.ун-та. Сер. С: Фундаментальные науки. 2008. N 9. C.114 123.
- 29. Груздев, В.А. Особенности работы плазменных источников электронов (ПИЭЛ) при повышенных давлениях / В.А. Груздев, В.Г. Залесский, Д.А. Антонович // Труды II международного крейнделевского семинара «Плазменная эмиссионная электроника» Улан-Уде, 17-24 июня 2006 г./под общ. ред. А.П. Семенова. Улан-Уде: БНЦ СО РАН, 2006 г. С 70 78.
- 30. Влияние давления газа на эмиссионные свойства плазменного эмиттера / Д.А. Антонович [и др.] // Вестн. Полоц. гос.ун-та. Сер. С: Фундаментальные науки. 2007. № 4. С.122 –127.

III. По характеристикам и режимам работы

- Голубев, Ю.П. Экспериментальные исследования эмиссии электронов в плазменных эмиттерах при возмущении плазмы отбором электронов / Ю.П. Голубев, И.С. Русецкий // Вестн. Полоц. гос.ун-та. Сер. С: Фундаментальные науки. 2009. № 9 С. 77 85.
- 2. Груздев, В.А. Режимы эмиссии электронов в плазменных источниках двух типов / В.А. Груздев, В.Г. Залесский // Плазменная эмиссионная электроника: тр. III междунар. крейнделевского семинара, Улан-Уде, 23-30 июня 2009 г. / под общ. ред. А.П. Семенова. Улан-Уде: БНЦ СО РАН, 2006. С. 22 29.
- 3. Груздев, В.А. Формирование эмиссионного тока в плазменных эмиттерах электронов / В.А. Груздев, В.Г. Залесский // Прикладная физика. 2009. № 5. С. 87 92.

4. Белюк, С.И. Промышленное применение электронных источников с плазменным эмиттером / С.И. Белюк, И.В. Осипов, Н.Г. Ремпе // Изв. ВУЗов. Физика. – 2001. – Т. 44, № 9. – С. 77 – 84.

IV. По вакуумной технике

- 1. Гейнце, В. Введение в вакуумную технику / В. Гейнце. М.: Госуд-ое энергетич. изд-во, 1960.-511 с.
- 2. Вакуумная техника: Справочник / Е.С. Фролов [и др.].; под общ. ред. Е.С. Фролова, В.Е. Минайчева. М.: Машиностроение, 1985. 360 с.