УДК 621.75
ТЕХ

ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ТОЧНОСТИ НАУКОЕМКИХ СБОРОЧНЫХ УЗЛОВ С ПРИМЕНЕНИЕМ CALS-ТЕХНОЛОГИЙ НА ОСНОВЕ АНАЛИЗА РАЗМЕРНЫХ СВЯЗЕЙ

Е. А. ПОЛЬСКИЙ, А. З. СИМКИН Брянский государственный технический университет, Россия

Целью исследований является обеспечение точности позиционирования исполнительного элемента привода на этапах сборки узла из отдельных покупных элементов и изготавливаемых деталей. В основе методики исследований лежит анализ размерных связей, формируемых как на этапах проектирования узла, так и на этапах механической обработки отдельных сопрягаемых деталей.

В настоящее время в рамках этапов разработки и постановки продукции на производство требуется параллельная разработка документации при выполнении мероприятий конструкторско-технологической подготовки производства и создания единых конструкторско-технологических отделов. В результате создаются предпосылки реализации нового принципа проектирования – технологического обеспечения требуемых эксплуатационных показателей высокотехнологичных сборочных узлов и их надежности при одновременном проектировании технологии механической обработки с уточнением параметров сборки. Такой подход к этапам проектирования для обеспечения точности конструкций предполагает управление точностью непосредственно элементами разрабатываемых технологических процессов изготовления и сборки. Такое проектирование актуально при любом типе производства и любой сложности технического проекта. Наибольший эффект, как показывает опыт внедрения автоматизированных подсистем, обеспечивается при непрерывной компьютерной поддержки основных этапов жизненного цикла (CALS-технологии) [1].

Использование готовых приобретаемых модулей при изготовлении сложных наукоемких изделий, таких как металлорежущие станки, приводит к конструктивным изменениям. Число стыков в конструкции резко возрастает. В связи с этим важность проблемы обеспечения контактной жесткости резко возрастает. Контактные деформации для станков, собраннь ко це не пр пр ще ни та

ных из модулей могут быть существенными и влиять на точность и жесткость станков. В связи с этим, при проектировании технологических процессов сборки и механической обработки отдельных опорных деталей, необходимо выполнять расчеты по определению контактных деформаций.

Контактная жесткость тесно связана с параметрами качества поверхностного слоя, а они определяются условиями обработки. Следовательно, расчеты контактных деформаций можно корректно выполнить только при прогнозировании технологических решений — разработке соответствующей технологии обработки контактирующих поверхностей с формированием параметрах качества поверхностного слоя, обеспечивающих эксплуатационные свойства [1, 2, 3].

Необходимость повышения качества продукции и, в частности, надежности требует полного анализа работы узла на этапах проектирования. Следует учитывать не только функциональные параметры, но и технологические возможности производства и сборки машины, возможности контроля основных ее параметров и их изменение в процессе последующей эксплуатации. В частности, необходимо отметить актуальность расчетов контактной жесткости для оценки эксплуатационных характеристик станка с учетом изменения некоторых исполнительных размеров в процессе сборки. Характерный пример представлен на рисунке, где упрощенно показана часть конструкции одной из линейных координат станка. На плоскости станины 1 монтируются проставки 2 под рельсовые направляющие 3 (правая рельсовая направляющая на рисунке не показана) и подшипниковые опоры для винта ШВП 4. По рельсовым направляющим движутся каретки рельсовых направляющих 5. Стол 6 устанавливается на плоскости кареток и корпуса гайки ШВП 7.

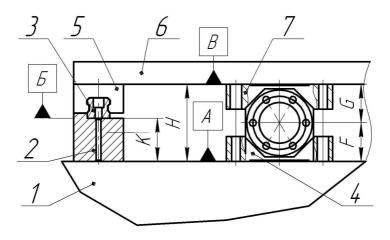


Рис. Схема размерной цепи для расчета размеров с учетом контактных деформаций

Д М М М Н И М Н

При этом плоскости комплекта кареток (в комплекте не менее двух, чаще четырех, возможно и более) должны точно совпадать, чтобы обеспечить нормальный контакт с опорной плоскостью стола. Замыкающим размером для данной схемы в первом приближении можно считать размер G от оси корпуса гайки ШВП до привалочной плоскости. При этом мы пренебрегаем постоянством размера К — высотой опорной поверхности левой и правой проставок под рельсы, угловой погрешностью их расположения в горизонтальной плоскости. Конструкция имеет несколько стыков, деформации которых вносят коррективы в размер G, который необходимо задать на чертеже.

При эксплуатации размерные связи не остаются постоянными [2, 3]. На машину будут воздействовать внешние и внутренние факторы, которые приводят к потере точности. Такие воздействия необходимо учитывать для комплексного обеспечения точности, поэтому для размерных цепей необходимо выделить еще одну группу размеров – эксплуатационные размеры.

В результате объединения размерных цепей с учетом формирования каждого типа размеров могут быть назначены предельные отклонения исходных размеров [2, 3].

$$T_{\Delta} = \sum_{i}^{n} c_{i} T_{Si} + \sum_{j}^{m} c_{j} k_{\text{внут}j} k_{\text{внеш}j} k_{T \ni \kappa j} + \sum_{k}^{l} c_{k} k_{\text{внут}k} k_{\text{внеш}k} k_{T \ni \kappa k} , \qquad (1)$$

где c – коэффициенты передаточных отношений; T_S , – допуски технологических размеров; $k_{\text{внут}}$, $k_{\text{внеш}}$, $k_{\text{д}}$, $k_{\text{Тэк}}$ – коэффициенты, формирующие допуски эксплуатационных размеров, соответственно для внутренних и внешних факторов, долговечности, точности расчетной схемы, используемой для определения параметров эксплуатационных свойств.

Значения дополнительных эксплуатационных звеньев являются функциями, которые определяются внешними и внутренними факторами. К внешним факторам можно отнести условия эксплуатации. К внутренним факторам — параметры, которые определяют эксплуатационные свойства сопряженных поверхностей: материал деталей, смазочные материалы, параметры качества поверхностного слоя и др.

Предложена концепция автоматизированной подсистемы технологической подготовки производства, обеспечивающая определение конструктивных размеров и корректировку точности функциональных размеров отдельных деталей по критериям повышения технологичности конструкции

1. Q 2.

при оптимизации простановки технологических размеров для различных вариантов реализации операций механической обработки. По критериям минимизации припуска и (или) минимуму рабочих ходов оптимизируется РТА при различных схемах простановки операционных размеров.

ЛИТЕРАТУРА

- 1. Инженерия поверхности деталей / под ред. А.Г. Суслова. М. : Машиностроение. 2008. 320 с.: ил.
- 2. Польский, Е.А. Технологическое обеспечение качества сборочных единиц на основе анализа размерных связей с учетом эксплуатации / Е.А. Польский, Д.М. Филькин // Наукоемкие технологии в машиностроении. − 2014. − № 11 (41). − С. 36–44.
- 3. Суслов, А.Г. Наукоемкая технология повышения качества сборочных единиц машин на этапах жизненного цикла / А.Г. Суслов, О.Н. Федонин, Е.А. Польский // Наукоемкие технологии в машиностроении. 2016. № 5 (59). С 34–42.