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METHODS OF SINGLE SIGN-ON IN THE MODERN WEB 
 

D. SAVCHENKO, O. GOLUBEVA 
(Polotsk State University, Belarus) 

 
Web applications typically require users to authenticate before starting to interact 

with them. A typical approach for this is so that at first users should register in applications, 
thus, creating personal credentials such as user names and passwords, and then as the first 
step of every interaction session they have to prove their identity by providing the 
credentials via a web form. This does not provide a decent user experience when multiple 
web applications are used and stimulates usage of the very same set of credentials for every 
web site which is unacceptable in terms of security and privacy. A different approach should 
be considered, when users are only required to enter credentials once and then are able to 
interact with all their web applications. 

The described approach is called single sign-on (SSO) [1]. The main idea of it is that 
there exists a single identity provider — a web service that holds the knowledge of users and 
their credentials, enables users to register and later sign into it, and is able to provide user 
authentication information to third party web sites in a secure manner. This way users are 
only required to sign into the identity provider and they are then able to access other web 
sites without any additional actions. There are a number of ways to implement single sign-on 
and there have been a number of respective standards and protocols established. 

Security Assertion Markup Language (SAML) [2] is an open standard for exchanging 
authentication and authorization data between parties and the most important use case this 
standard addresses is exactly web single sign-on. The SAML specification defines three roles: 
the principal (this is a web application user), the identity provider, and the service provider 
(this is the web application(s) that the user is going to interact with). The SAML also defines 
the format that is used to represent authentication requests and responses and some means 
by which authentication requests and responses are transferred between services and 
identity providers. This is done over the HTTP protocol with a web browser as a mediator, 
HTTP redirects, GET and POST requests and direct inter-server HTTP requests. 

The general authentication flow for SAML is as follows (see picture 1). 
1. A user requests a web application URL via a browser. 
2. The application identifies that the user is not authenticated yet and responses 

with an HTTP 302 redirect to the identity provider. The redirect URL holds authentication 
request identifier as a query parameter, for example: 
http://idprovider.example.com/redirect?auth_request_id=<somevalue>. 

3. Web browser performs an HTTP request to the redirected URL. 
4. Identity provider handles the HTTP request, extracts authentication request 

identifier from the URL and makes a direct HTTP GET request to the web application in order 
to receive actual authentication request data that matches received identifier. 

5. Web application responds to the HTTP request and presents authentication 
request data in the body of the HTTP response. 

6. Identity provider reads authentication request data, performs authentication and 
issues another HTTP 302 redirect response to the browser redirecting it back to the web 
application and passing authentication response identifier in the query parameter. 
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7. Web browser makes an HTTP request to the redirected resource. 
8. Web application handles the HTTP request, extracts authentication response 

identifier from the URL and makes a direct HTTP GET call to the identity provider in order to 
receive actual authentication response data that matches received identifier. 

9. Identity provider responds to the HTTP request and presents authentication 
response data in the body of an HTTP response. 

10. Web application obtains the authentication response data, authenticates the 
user and issues an HTTP 302 redirect response to the web browser, sending original request 
URL (from the first step) as a redirect URL. 

11. Web browser performs an HTTP request to the redirected URL. 
12. Web application successfully responses to the request as the user is 

authenticated now. 
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Picture 1. – SAML Flow 
 

The OAuth 2.0 authorization framework enables a third-party application to obtain 
limited access to an HTTP service on behalf of a user (resource owner) without knowing 
authorization credentials by orchestrating an approval interaction between the resource 
owner and the web service [3]. This is achieved through separating the role of the client 
from that of the resource owner; instead of using the resource owner’s credentials to access 
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protected resources, the client obtains an access token — a string denoting a specific scope 
of access, lifetime, and other access attributes; the access token is then used to access the 
protected resources hosted by the server. 

While OAuth 2.0 is an authorization framework it can still be used for authentication 
provided that the web service used for authentication provides some API to request some 
kind of user identification data, an email for instance. This data can be used to identify and 
thus authenticate a user. 

General abstract OAuth 2.0 flow is presented in the figure 2 and includes the 
following steps: 

1. the client requests authorization from the resource owner; the request can be 
made indirectly via the authorization server as an intermediary as it is done in authorization 
code grant type; 

2. the client receives an authorization grant, which is a special credential 
representing the resource owner’s authorization; 

3. the client requests an access token by authenticating with the authorization 
server and presenting the authorization grant; 

4. the authorization server authenticates the client and validates the 
authorization grant and issues an access token for valid authorization grant; 

5. the client requests the protected resource from the resource server and 
authenticates by presenting the access token; 

6. the resource server validates the access token and serves the request for valid 
access token. 
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Picture 2. – OAuth 2.0 Protocol Flow 

 
It is not necessary for an authorization server and a resource server to be separate 

entities; they may be the one same server. 
The authorization code grant type is used to obtain access tokens and is optimized 

for confidential clients [3]. This is a redirecting-based flow and thus the client must be 
capable of interacting with the resource owner’s user-agent (typically a web browser) and 
capable of receiving incoming requests (via redirection) from the authorization server. 
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The flow includes the following steps: 
1. the client directs the resource owner’s user-agent to the authorization endpoint; 

the client includes its client identifier, requested scope, local state, and a redirection URL for 
authorization server to send user-agent back to after access is granted or denied; 

2. the authorization server authenticates the resource owner via the user-agent 
and establishes whether he or she grants or denies the client’s access request; 

3. assuming access has been granted by the resource owner, the authorization 
server redirects the user-agent to the client using the redirected URI provided earlier and 
including an authorization code and local state provided by the client earlier; 

4. the client requests an access token from the authorization server by including 
the previously received authorization code and redirection URI previously used for 
verification; 

5. the authorization server authenticates the client, validates the authorization 
code and redirection URI and, if valid, responds with an access token. 

Obtained access token then can be used to form the Authorization HTTP header 
when accessing protected resources. 

OpenID Connect [4] is an authentication layer built on top of the OAuth 2.0 
authorization framework. OpenID Connect standardizes, besides other details, a special 
userinfo endpoint that should be used by web applications to obtain user authentication 
information. In order to be able to obtain it applications should first run the OAuth 2.0 
authorization flow and obtain an access token. This token can later be used to form the 
Authorization HTTP header when performing requests to the userinfo endpoint. 

Obviously, for each case when HTTP protocol is assumed it is highly recommended to 
use SSL encryption and digital signing on top of it for security and privacy considerations, 
thus effectively using HTTPS. 

Modern web applications tend to prefer OpenID Connect when implementing single 
sign-on functionality. This is explained by the fact that OpenID Connect has in fact some 
advantages over SAML or plain OAuth 2.0: it is much simpler (but by no means less secure) 
compared to SAML which has rather complicated authentication flow and verbose XML 
exchange data format, and it is designed specifically for authentication unlike OAuth 2.0. So, 
OpenID Connect should be recommended for all new web application that need to 
implement single sign-on. 
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