MuHucTepcTBo 0bpa3oBaHmna Pecnybamkm benapycb
YuperkaeHne obpa3oBaHuA

«MoNouKMin rocyAapCTBEHHbIN YHUBEPCUTETY

MHOPOPMALUNOHHO-KOMMYHUKALIMOHHbIE TEXHOJ/10IUW:
DOCTUXEHUA, NPOBJIEMbI, UHHOBALIUU
(UKT-2018)

INEeKTPOHHbIN COOPHUK CcTaTel
| MexayHapoAHOM Hay4HO-NPAKTUYECKON KOHpepeHUunm,

I'IOCBFILLI,E‘HHOI\/’I 50-neTuto NMonoukoro rocygapCcrtBeHHOro yHUBepCcuTeTa

(HoBononouk, 14—15 nioHa 2018 r.)

Hosononouk

MoNOUKMI rocyAapCTBEHHbIN YHUBEPCUTET
2018



MHdopMaLMOHHO-KOMMYHUKALMOHHbIE TEXHONOTUU: A0CTUXKEHUA, Npobaembl,
nHHoBaummn (UKT-2018) [IneKTPOHHbIN pecypc] : 3/NEKTPOHHbIN COOPHMK cTaTen
| MeXXAyHapOAHOM Hay4yHO-MPAKTUYECKOM KOHdepeHumu, nocsAweHHon 50-netuio
MonouKoro rocyaapcrseHHOro yHusepcuteta, Hosononouk, 14-15 uions 2018 r. /
MonouKUM rocyaapcTBeHHbIN yHuBepcuTteT. — HoBonosouk, 2018. — 1 3neKTpoH. onrT.
Aanck (CD-ROM).

MpeacTaBneHbl pe3yabTaTbl HOBEMLWMX Hay4HbIX McCaedoBaHMiA, B obiact nHdopma-
LMOHHO-KOMMYHUKALMOHHBIX U UHTEPHET-TEXHONOMMIA, @ UMEHHO: MEeTOAbl U TEXHONOTMU Ma-
TEMATUYECKOro Y MMMUTALMOHHOIO MOZAEAMPOBAHMA CUCTEM; aBTOMATM3aUMA U ynpaB/ieHue
NPOWU3BOACTBEHHbIMM MPOLLECCAMM; MPOrPAMMHANA UHKEHEPUS; TECTUPOBAHNE U BepUPUKauma
nporpamm; 0b6paboTka cMrHaNoB, N300paKeHU U BUAEO; 3awmTa MHGOPMaLIMK U TEXHOIOTUN
MHPOPMALMOHHOM 6e30NaCHOCTU; 3/IEKTPOHHbLIN MAPKETUHT; NpobieMbl U MHHOBAUWOHHbIE
TEXHOJIOTMU NOArOTOBKM CMELMannuCcToB B AaHHON 0bnacTu.

CbopHUK sKntoveH 8 ocydapcmeeHHsblli pecucmp UHGOPMAUUOHHO20 pecypca. Peecucmpa-
UuoHHoe ceudemenscmeo Ne 3201815009 om 28.03.2018.

KomnbtoTepHbin agnsanH M. 3. nctaHosa.
TexHuyeckune peaaktopsbl: T. A. JapbaHoBsa, O. M. Muxaiinosa.

KomnbtoTepHana BepcTka [. M. CeBacTbAHOBOW.

211440, yn. baoxnHa, 29, r. Hosononouk, benapycb
Ten. 8 (0214) 53-21-23, e-mail: irina.psu@gmail.com

ISBN 978-985-531-602-3 [J Monouknn rocyaapcTBeHHbIN yHUBepcuTeT, 2018



UDC 004.9+004.056
METHODS OF SINGLE SIGN-ON IN THE MODERN WEB

D. SAVCHENKO, O. GOLUBEVA
(Polotsk State University, Belarus)

Web applications typically require users to authenticate before starting to interact
with them. A typical approach for this is so that at first users should register in applications,
thus, creating personal credentials such as user names and passwords, and then as the first
step of every interaction session they have to prove their identity by providing the
credentials via a web form. This does not provide a decent user experience when multiple
web applications are used and stimulates usage of the very same set of credentials for every
web site which is unacceptable in terms of security and privacy. A different approach should
be considered, when users are only required to enter credentials once and then are able to
interact with all their web applications.

The described approach is called single sign-on (SSO) [1]. The main idea of it is that
there exists a single identity provider — a web service that holds the knowledge of users and
their credentials, enables users to register and later sign into it, and is able to provide user
authentication information to third party web sites in a secure manner. This way users are
only required to sign into the identity provider and they are then able to access other web
sites without any additional actions. There are a number of ways to implement single sign-on
and there have been a number of respective standards and protocols established.

Security Assertion Markup Language (SAML) [2] is an open standard for exchanging
authentication and authorization data between parties and the most important use case this
standard addresses is exactly web single sign-on. The SAML specification defines three roles:
the principal (this is a web application user), the identity provider, and the service provider
(this is the web application(s) that the user is going to interact with). The SAML also defines
the format that is used to represent authentication requests and responses and some means
by which authentication requests and responses are transferred between services and
identity providers. This is done over the HTTP protocol with a web browser as a mediator,
HTTP redirects, GET and POST requests and direct inter-server HTTP requests.

The general authentication flow for SAML is as follows (see picture 1).

1. A userrequests a web application URL via a browser.

2. The application identifies that the user is not authenticated yet and responses
with an HTTP 302 redirect to the identity provider. The redirect URL holds authentication
request identifier as a query parameter, for example:
http://idprovider.example.com/redirect?auth _request _id=<somevalue>.

3. Web browser performs an HTTP request to the redirected URL.

4. Identity provider handles the HTTP request, extracts authentication request
identifier from the URL and makes a direct HTTP GET request to the web application in order
to receive actual authentication request data that matches received identifier.

5. Web application responds to the HTTP request and presents authentication
request data in the body of the HTTP response.

6. Identity provider reads authentication request data, performs authentication and
issues another HTTP 302 redirect response to the browser redirecting it back to the web
application and passing authentication response identifier in the query parameter.

334



7. Web browser makes an HTTP request to the redirected resource.

8. Web application handles the HTTP request, extracts authentication response
identifier from the URL and makes a direct HTTP GET call to the identity provider in order to
receive actual authentication response data that matches received identifier.

9. Identity provider responds to the HTTP request and presents authentication
response data in the body of an HTTP response.

10. Web application obtains the authentication response data, authenticates the
user and issues an HTTP 302 redirect response to the web browser, sending original request
URL (from the first step) as a redirect URL.

11. Web browser performs an HTTP request to the redirected URL.

12. Web application successfully responses to the request as the user is
authenticated now.

pad Jasmolq uolesldde
14N 81$ gam 1senbay >

74N yne Japiaoad A1nuspi 01 10811pey
14N 19341pal Ul Jainuapl 1sanbal yine ssed

01 15anb3g I@eN

anbal yine-30enx3 -

lessng@gaeednuayingy 0000 gy

|oeq 1031ipay
19pI asuadsal >

JyN0alipalaylollsenbaraey——

odsal yihggarnxg

‘pjep-osuodsesypreypmpuodssy——— — — 0 — —

3Y3 01 10841paJ ‘erep YIne a|pueH
74N paisenbal Apetibie

719N paloalipal 1sanbay >

80IN0Sal gam palsanbal Y1IM puadsay

Picture 1. — SAML Flow

The OAuth 2.0 authorization framework enables a third-party application to obtain
limited access to an HTTP service on behalf of a user (resource owner) without knowing
authorization credentials by orchestrating an approval interaction between the resource
owner and the web service [3]. This is achieved through separating the role of the client
from that of the resource owner; instead of using the resource owner’s credentials to access

335



protected resources, the client obtains an access token — a string denoting a specific scope
of access, lifetime, and other access attributes; the access token is then used to access the
protected resources hosted by the server.

While OAuth 2.0 is an authorization framework it can still be used for authentication
provided that the web service used for authentication provides some APl to request some
kind of user identification data, an email for instance. This data can be used to identify and
thus authenticate a user.

General abstract OAuth 2.0 flow is presented in the figure2 and includes the
following steps:

1. the client requests authorization from the resource owner; the request can be
made indirectly via the authorization server as an intermediary as it is done in authorization
code grant type;

2. the client receives an authorization grant, which is a special credential
representing the resource owner’s authorization;

3. the client requests an access token by authenticating with the authorization
server and presenting the authorization grant;

4. the authorization server authenticates the client and validates the
authorization grant and issues an access token for valid authorization grant;

5. the client requests the protected resource from the resource server and
authenticates by presenting the access token;

6. the resource server validates the access token and serves the request for valid

access token.

——A——Authorization Request—>
Resource

o Owner
.« B—Authorization Grant —|

——C——Authorization Grant—> L.
Authorization

Client Server
 D——Access Token

——E——Access Token
Resource

Server
<<——F——~Protected Resource ——

Picture 2. — OAuth 2.0 Protocol Flow

It is not necessary for an authorization server and a resource server to be separate
entities; they may be the one same server.

The authorization code grant type is used to obtain access tokens and is optimized
for confidential clients [3]. This is a redirecting-based flow and thus the client must be
capable of interacting with the resource owner’s user-agent (typically a web browser) and
capable of receiving incoming requests (via redirection) from the authorization server.

336



The flow includes the following steps:

1. the client directs the resource owner’s user-agent to the authorization endpoint;
the client includes its client identifier, requested scope, local state, and a redirection URL for
authorization server to send user-agent back to after access is granted or denied;

2. the authorization server authenticates the resource owner via the user-agent
and establishes whether he or she grants or denies the client’s access request;

3. assuming access has been granted by the resource owner, the authorization
server redirects the user-agent to the client using the redirected URI provided earlier and
including an authorization code and local state provided by the client earlier;

4. the client requests an access token from the authorization server by including
the previously received authorization code and redirection URI previously used for
verification;

5. the authorization server authenticates the client, validates the authorization
code and redirection URI and, if valid, responds with an access token.

Obtained access token then can be used to form the Authorization HTTP header
when accessing protected resources.

OpenID Connect [4] is an authentication layer built on top of the OAuth 2.0
authorization framework. OpenlD Connect standardizes, besides other details, a special
userinfo endpoint that should be used by web applications to obtain user authentication
information. In order to be able to obtain it applications should first run the OAuth 2.0
authorization flow and obtain an access token. This token can later be used to form the
Authorization HTTP header when performing requests to the userinfo endpoint.

Obviously, for each case when HTTP protocol is assumed it is highly recommended to
use SSL encryption and digital signing on top of it for security and privacy considerations,
thus effectively using HTTPS.

Modern web applications tend to prefer OpenID Connect when implementing single
sign-on functionality. This is explained by the fact that OpenID Connect has in fact some
advantages over SAML or plain OAuth 2.0: it is much simpler (but by no means less secure)
compared to SAML which has rather complicated authentication flow and verbose XML
exchange data format, and it is designed specifically for authentication unlike OAuth 2.0. So,
OpenID Connect should be recommended for all new web application that need to
implement single sign-on.

References

1. Single sign-on [Electronic Resource] / Wikimedia Foundation, Inc. — Mode of access:
https://en.wikipedia.org/wiki/Single_sign-on. — Date of access: 14.05.2018.

2. Security Assertion Markup Language (SAML) V2.0 Technical Overview [Electronic Resource] /
N. Ragouzis [et al.]. - Mode of access: https://www.oasis-
open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf. — Date of
access: 14.05.2018.

3. RFC 6749 — The OAuth 2.0 Authorization Framework [Electronic Resource] / Dick Hardt. —
Mode of access: https://tools.ietf.org/pdf/rfc6749.pdf. — Date of access: 14.05.2018.

4, OpenlD Connect Core 1.0 [Electronic Resource] / N. Sakimura [et al.]. — Mode of access:
http://openid.net/specs/openid-connect-core-1_0-final.html. — Date of access: 14.05.2018.

337



