PolotskSU

Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет»

информационно-коммуникационные технологии: достижения, проблемы, инновации (икт-2018)

Электронный сборник статей
I Международной научно-практической конференции,
посвященной 50-летию Полоцкого государственного университета

(Новополоцк, 14-15 июня 2018 г.)

Новополоцк
Полоцкий государственный университет
2018

PolotskSU

Информационно-коммуникационные технологии: достижения, проблемы, инновации (ИКТ-2018) [Электронный ресурс] : электронный сборник статей І международной научно-практической конференции, посвященной 50-летию Полоцкого государственного университета, Новополоцк, 14–15 июня 2018 г. / Полоцкий государственный университет. — Новополоцк, 2018. — 1 электрон. опт. диск (CD-ROM).

Представлены результаты новейших научных исследований, в области информационно-коммуникационных и интернет-технологий, а именно: методы и технологии математического и имитационного моделирования систем; автоматизация и управление производственными процессами; программная инженерия; тестирование и верификация программ; обработка сигналов, изображений и видео; защита информации и технологии информационной безопасности; электронный маркетинг; проблемы и инновационные технологии подготовки специалистов в данной области.

Сборник включен в Государственный регистр информационного ресурса. Регистрационное свидетельство № 3201815009 от 28.03.2018.

Компьютерный дизайн М. Э. Дистанова.

Технические редакторы: Т. А. Дарьянова, О. П. Михайлова.

Компьютерная верстка Д. М. Севастьяновой.

211440, ул. Блохина, 29, г. Новополоцк, Беларусь тел. 8 (0214) 53-21-23, e-mail: irina.psu@gmail.com

Polotical Skyling of the skyling of

УДК 621.396.96

МОДЕЛЬ ГРУППОВОЙ ВОЗДУШНОЙ ЦЕЛИ ПРИ СИНТЕЗЕ АЛГОРИТМОВ ТРАЕКТОРНОЙ ОБРАБОТКИ

канд. техн. наук С.А. ЮРАС, А.Н. ЛЫСЫЙ (Военная академия Республики Беларусь, Минск)

Радиолокационная обстановка в зоне ответственности радиолокационного источника обзорного типа характеризуется наличием как одиночных, так и групповых целей. Групповые цели состоят из определённого числа одиночных (элементарных) целей.

Будем полагать, что известны только возможные размеры области, занимаемой групповой целью, и возможное распределение числа целей в группе. Пространственную интенсивность пуассоновского потока целей будем считать постоянной в пределах всей зоны ответственности Ω , за исключением областей локализации групповых целей, где пространственная интенсивность потока целей резко возрастает [1-3].

Проведенный в обзор и анализ основных методов определения местоположения воздушных объектов подтверждает необходимость использования дополнительных источников радиолокационной информации для уточнения координат. В качестве дополнительных источников возможно использование, для решения задачи объединения информации, возможно использование как активных, так и пассивных радиосредств (радиолокационных и радиотехнических) наблюдения за воздушной обстановкой, среди которых могут быть стационарные и движущиеся средства наземного и воздушного базирования.

При синтезе алгоритмов обработки радиолокационной информации для описания пика пространственной интенсивности потока, соответствующего i-й групповой цели, целесообразно использовать гауссову аппроксимацию

$$\beta(\vec{a} / \mu_i) = \frac{N_{ii}}{((2\pi)^p \det K_{ii})^{\frac{1}{2}}} \exp(-\frac{1}{2} (\vec{a} - \vec{a}_{ii})^T K_{pi}^{-1} (\vec{a} - \vec{a}_{ii})),$$

где $\mu_i = (\vec{a}_{ii}, K_{ni}, N_{ii});$

p – размер вектора \vec{a} .

Пространственную интенсивность потока целей при постоянном числе $N_{_{\mathcal{P}}}$ групповых целей в зоне ответственности Ω можно представить соотношением

$$\beta(\vec{a}/N_{\tilde{a}\tilde{o}},\vec{\mu}_1,...,\vec{\mu}_{N_{\tilde{a}\tilde{o}}}) = \beta_0 + \sum_{i=1}^{N_{\tilde{a}\tilde{o}}} \beta_{\tilde{a}\tilde{o}}(\vec{a}/\vec{\mu}_i), \tag{1}$$

где β_0 – постоянная интенсивность потока одиночных целей;

 $eta_{ec{a}ec{o}}(ec{a}\,/\,ec{\mu}_i)$ - пространственная плотность потока, соответствующая i -й групповой цели.

по гру

Общегрупповые параметры движущейся группы целей изменяются во времени, поэтому необходимо дополнительно задать законы изменения параметров центра группы, размеров и формы группы, а также числа целей в группе. Закон изменения составляющих вектора \vec{a}_{ii} (закон движения центра i-й группы целей) будем описывать гауссовско-марковской моделью, как и для одиночных целей.

Если боевой прядок отдельных целей в группе друг относительно друга будет постоянный, то изменение элементов матрицы K_p будет обусловлено лишь изменением пространственного положения группы относительно центра координат. При пространственном изменении боевого прядка целей в группе друг относительно друга изменяются и значения элементов матрицы K_p .

Особую сложность представляет моделирование изменения числа элементарных целей в группе. Оно может быть вызвано как появлением в составе группы отделившихся от элементарных целей новых элементарных целей (появление самолетов-ловушек), так и присоединением (отделением) целей из состава ранее бывших одиночных целей или из состава других групповых целей.

Изменение количественного состава групповой цели учитывается при формировании подхода к синтезу алгоритмов вторичной обработки радиолокационной информации в литературе [4] путем использования отдельного подалгоритма (устройства) обнаружения отделяющихся целей. В нем предлагается использовать сравнение переменных состояний параметров центра группы и целей, находящихся на периферии пространственного объема групповой цели.

С учетом увеличивающейся сложности возможной радиолокационной обстановки при ведении современных боевых действий (наличие большого количества беспилотных летательных аппаратов, применение новых видов радиолокационных помех и т.д.) возникает проблема выдачи радиолокационной информации на различных этапах боевых действий и для различных уровней потребителей с различной степенью детализации. Предложенная модель радиолокационной обстановки позволяет в определенной степени оказать помощь в решении данной проблемы.

Литература

- 1. Большаков, И.А. Статистические проблемы выделения потока сигналов из шума : моногр. / И.А. Большаков. М.: Сов. радио, 1969. 464 с.
- 2. Бакут, П.А. Обнаружение движущихся объектов: / П.А. Бакут, Ю.В. Жулина, Н.А. Иванчук. М.: Сов. радио, 1980. 288 с.
- 3. Юрас, С.А. Особенности разработки алгоритмов многоцелевого обнаружения-измерения для плотных потоков целей / С.А. Юрас, А.Н. Лысый, Я.И. Неверович // Сб. науч. ст. УО «ВА РБ». 2016. № 31. С. 99–102.
- 4. Фарина, А. Цифровая обработка радиолокационной информации. Сопровождение целей: [пер. с англ.] / А. Фарина, Ф. Студер. М.: Радио и связь, 1993. 320 с.
- Saha, R.K. Track to Track Fusion with Dissimilar Sensors / R.K. Saha // IEEE Trans on AES. 1996. –
 Vol. 32, № 3. P. 1021–1028.