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КОНТРОЛЬ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ ВНУТРИ ДЕФОРМИРУЕМЫХ СРЕД 

ПЬЕЗОПРЕОБРАЗОВАТЕЛЯМИ  

 

В.И. Зубцов, Д.Н. Шабанов, А.Н. Ягубкин, Д.Х. Фарран 

Полоцкий государственный университет, Беларусь 

email: v.zubcov@psu.by, d.shabanov@psu.by, a.yagubkin@psu.by 

 

Пьезопреобразователи предназначены для решения сложной научно-технической 

задачи: контроля и исследования напряжённого состояния внутри деформируемых сред. 

Проведена проверка работоспособности пьезопреобразователей при натурных измере-

ниях механических напряжений внутри образцов материалов. Рассмотрен принцип ра-

боты преобразователей и приведены результаты экспериментальных исследований. 

Ключевые слова: преобразователь; пьезоэлектрический эффект; механические 

напряжения; деформируемая среда; характеристика выхода; контролируемая среда; ка-

либровки; электрическое поле.  

 

THE CONTROL OF MECHANICAL STRESSES INSIDE DEFORMABLE MEDIA 

BY PIEZOELECTRIC TRANSDUCERS 

 

V. Zubcov, D. Shabanov, A. Yagubkin, J. Farran 

Polotsk State University, Belarus 

email: v.zubcov@psu.by, d.shabanov@psu.by, a.yagubkin@psu.by 

 

Piezoelectric transducers are designed to solve a complex scientific and technical problem: 

control and investigation of a stressed state within deformable media. The performance of piezo-

electric transducers was carried out and checked in the field measurements of mechanical stress-

es inside specimens of materials. The principle of operation of transducers is considered and the 

results of experimental studies are presented. 

Keywords: transducer; piezoelectric effect;  mechanical stresses; deformable medium; 

output characteristic; controlled environment; calibration; electric field. 

 

Introduction. The application of widely used ultrasonic methods and the traditional 

method of stress state control through glued strain gages, gives generalized information about 

the magnitude and nature of the distribution of mechanical stresses along the cross section of 

the monitoring object, and this is inadequate for practical purposes. The main purpose of piezoe-

lectric transducers for controlling mechanical stresses inside deformable media is to convert 

measurement information about the stressed state of the object, as a rule, under the influence 

of interfering factors.  Piezoelectric transducers realize the method of measuring mechanical 

stresses inside deformable media with higher reliability than strain gages, thanks to the original 

designs that make it possible to exclude the acoustic interaction of the converter with the con-

trolled environment into which it is placed [1]. 

The relationship between the mechanical loading of piezoelectrics and the resulting elec-

tric field strength, which is used in the technique of measuring variable pressures and forces us-

ing the piezoelectric effect [2], cannot be used to determine the constant pressures, forces, 
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since the resulting charge as a result of the piezoelectric effect rapidly flows. To eliminate this 

phenomenon, an auxiliary piezoelectric element is used to excite dynamic oscillations in the sec-

ond piezoelectric element [3]. But transducers constructed by this method cannot be used to 

measure mechanical stresses inside solid continuous media, since when the piezoelectric ele-

ment is excited in the converter, the latter changes its dimensions, and the environment will 

prevent it. In order for the piezoelectric transducer not to change its dimensions when the re-

verse piezoelectric effect is excited in the medium, and therefore the non-appearance of an 

electrical signal in the output circuit in the absence of a load, an additional piezoelectric element 

is applied. Moreover, in the two-layer transducer, the main, auxiliary and additional piezoele-

ments are arranged in a column and, in addition, the main one - inside the auxiliary made in the 

form of a ring [1]. Based on this principle, piezoelectric converters PPMN-1, PPMN -2, PPMN-3 

and PPMN -4 were developed. 

Principle of operation of piezoelectric transducers. Schematically, such piezoelectric 

transducers can be represented in the form of 2 piezoelements (figure 1): the first lower is elec-

trically excited and forces the upper to oscillate, which is excited by the measured component of 

the mechanical stress [3]. 

 

 
 

Figure 1. – Scheme of the operation of the piezoelectric transducer: 
T – mechanical stress (input value of the converter) 

 

~ inU
 – input excitation voltage; outU

 – output voltage (transducer output); 

These processes are described by the equations of the piezoelectric effect: 
 

E T

T E
t

P dT E

S d E s T

= + ε

= +
     (1) 

 

Equations (1) in this case will have the form: 
 

 
P d Ti ij j

S d Ej tij i

= ⋅

= ⋅
      (2) 

 

where 
EP , 

TS –  respectively, the polarization measured at a constant electric field E and the 

deformation measured at a constant mechanical stress T. 

 ε  – the dielectric constant; 

 s – elastic compliance. 

 Indexes ij – take the following values: 

             i=1-3; j=1-6; 

 t – matrix transposition; 
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The first expression of the system of equations (2) characterizes the operation of a piezo-

electric element excited by a mechanical stress. The second is the work of a piezoelectric ele-

ment excited by an electric field. 

Under the influence of mechanical stress on the piezoelectric element, its amplitude of 

dynamic oscillations changes, and hence the magnitude of the electrical voltage Uout at the out-

put electrodes, by the change of which the magnitude of the measured mechanical stress is 

judged. The mechanical stress is applied to the body, where the sensitive piezoelectric element 

is placed [1,4]. In addition, these transducers are of parametric type transducers that require ad-

ditional energy from an external source, in this case – a source of an electric alternating voltage 

Uv, modulated by the resistance of the piezoelectric, which varies under the influence of the 

measured quantity.  

Transducers are devices for displaying information about the state of stress in a studied 

object. Any transducer (sensor) can be considered as a sequential chain of data collection, pro-

cessing, storage and transmission, which is necessary to control any process. 

From the physical concepts of measurement, it follows that for the transformation of the 

measured physical quantity, certain energy consumption are required. In the piezoelectric trans-

ducers considered here, the transmission of information is accomplished by additional expendi-

ture of energy from an external source. 

Figure 2 expresses the principle of the piezoelectric transducer of mechanical stresses 

(PPMN). 

 

 
 

Figure 2. – Scheme explaining the operation of the PPMN: 
ES – energy source; PPMN – mechanical stress of piezoelectric transducer; 

MO – measurement object 

 

To convert the measured value, the PPMN is supplied with an external energy source 

(ES), which is an oscillator. The energy flow received from the ES is used to transport the meas-

urement information received from the measurement object (MO) to the output of the sensor 

and recorded by a voltmeter in the form of an alternating electric voltage. In this case, the re-

sistance of the sensor changes and the external energy flux is modulated by the input value, i.e. 

mechanical stress from the MO. The flow of energy coming from the ES and the information flow 

from the MO are not only unequal, but also are in different directions. 

Indeed, in order to detect, for example, an object using a photo-sensor, a certain flux of 

light energy must be directed from it to the ES; only the reflected part of the total stream di-

rected to the object will be fixed by this photo-sensor.  

Similarly, it is possible to treat the phenomena occurring in the PPMN. In this case, the 

change in mechanical stresses affects the change in the resistance of the converter, where we 
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cannot detect these voltages until we "illuminate" our transducer, and pass through it the flow 

of energy from the ES. 

The energy flow from the ES is much larger than the information flow from the MO, and 

the level of the measured mechanical stress is determined by the ratio of the intensity of the in-

formation flow from the MO to the intensity of the information flow from the ES. 

Figure 3 shows the dependence of the output characteristics of one of the piezoelectric 

transducer samples on the energy received by the transducer from the ES, that is, on the magni-

tude of the exciting voltage transducer Uexc from the oscillator (see Fig. 4). At researches, as 

sensitive elements of gages piezo-ceramics of type TTS - 19 was used. 

 

 
 

Figure 3. – Dependence of the output characteristics of the piezoelectric transducer 
of mechanical stresses on the value of Uv 

 
From the analysis of the characteristics, it follows that as Uv increases, the slope (conver-

sion coefficient) increases, i.e. sensitivity of the converter. 

 

 

 

where dUout – change in the output value of the transducer; 

  dT – change in the input (mechanical stress). 

In other words, the more energy is consumed by the ES in comparison with the level of 

interference, the more this information energy can be transferred and the higher the output sig-

nal level Uout is.  

Thus, the transfer of information to the PPMN is explained as follows. The carrier of the 

measuring information is energy. To create information on the input of the measuring channel of 

the mechanical stress transducer, which could then be transmitted further, it is necessary to ex-

pend energy. The higher the voltage level from the ES, that is, Uin, the more information can be 

transferred and the higher the output level Uout is. 

Measurements must be interpreted by some data in such a way as to ensure stability 

and, if possible, close the conditions of the stressed state of the PPMN in calibration and in full-

scale measurements. For the interpretation of the measured mechanical stresses within the con-

trolled materials, the calibration data obtained with the uniaxial loading of the PPMN were used. 

The scheme for measuring the mechanical stresses is shown in figure 4. 

,
dT

dU
S out=
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Figure 4. –Scheme of measurement of mechanical stresses: 
1 – piezoelectric transducer; 2 – controlled environment; 3 – oscillation generator; 

4 – voltage regulator; 5 – digital voltmeter; 6 – PTHP 
 

Calibration of the piezoelectric transducer of mechanical stresses. The scheme of the cali-

bration apparatus is given in [5] and is analogous to the scheme in Fig. 4; with the only difference 

being, that instead of the controlled environment, a mechanical loading device is used in the cal-

ibration apparatus. 

The PPMNs were placed in the loading device and subjected to an uniaxial loading be-

tween the steel gaskets, which were carried out in stages at a temperature of t=20°C. 

Before the start of calibration, a time delay is necessary because of the same and stable 

temperature conditions of the internal parts of the PPMN and the instruments. It is taken 

equal to 30 minutes. The power is supplied from the generator, the output signal of the PPMN 

- to a digital voltmeter. The power supply of the generator and voltmeter is stable. A frequency 

counter is used to control the oscillation frequency of the converter output signal. The calibra-

tion consists of six consecutive cycles, each of which consists in increasing the value of the load 

device from 0 to 100% in steps through 20% and in decreasing the value of the load by the 

same steps and is used for metrological studies of the PPMN, which are summarized in [6]. De-

pendences of the output signal on loading and unloading of the graduated PPMN are entered 

in a computer, coupled with a voltmeter B7-27A with the help of a developed matching device. 

The real function of the transformation of the PPMN will be nonlinear. The physical meaning of 

this non-linearity is the change in the sensitivity of the PPMN when the measured value chang-

es. To estimate the errors in the indications of the PPMN associated with the nonlinearity of its 

transformation, the approximation of the actual transformation function by a straight line 

segment is most often used. In this case, the problem of carrying out an approximating line 

through a series of experimental points can be successfully solved, for example, by the method 

of least squares. 

According to the obtained experimental data, the average values of the output value are 

determined under loading and unloading in Table 1. These data are then used to calculate the 

PPMN errors with respect to the approximating linear relationship function, which includes the 

actual values of the physical quantity. The equation of this approximating function in the general 

case has the form: 

 

U = AT + B, or in the notation of a rectangular coordinate system - У = AX + B. 
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Here coefficients A and B are functions of the input quantity and other influencing fac-

tors. From the point of view of the effect on the resulting measurement accuracy, A – represents 

the sensitivity of the sensor sensitivity, B – the error of zero, U – the electrical voltage (output 

value of the PPMN), T – the mechanical stress (input value). In other words, from the experi-

mental values of the input and output values, the sensitivity of the sensor A is calculated, which 

is the tangent of the slope of the approximating line to the abscissa axis and a constant value of 

B, which is the ordinate of the point of intersection of this line with the coordinate axis. 

Further, taking into account normative documents [6], the following parameters of sen-

sor error are determined: 

∆с – systematic component; 
σ~  - root-mean-square deviation of the random component; 

b – variation of the output signal; 

δ - relative error. 

 

Table 1. – Measuring and calculation data obtained with the calibration of piezoelectric 
transducers by uniaxial loading 

 

Lo
ad

 d
ev

ic
e 

re
ad

in
gs

, 
M

P
a 

Output voltage of the converters (arithmetic 
mean values of six measurements), V 

Calibration 
mode 

U (f, Hz) 

Angular 
coefficient 
(sensitivity) 

SR, 
mV / MPa 

Transducer 
type 

Loading Unloading 

experiment calculation experiment calculation 

0 0,998 0,998 0,990 0,999 10; (800) 
 
 
 
 
10; (800) 

8 
 
 
 
 
11 

PPMN-2 
 
 
 
 
PPMN-4 

2,15 1,017 1,013 1,026 1,023 

4,30 1,038 1,028 1,045 1,036 

6,45 1,054 1,044 1,060 1,05 

8,0 1,062 1,059 1,071 1,063 

0 1,995 1,993 1,990 1,986 

2,15 1,025 1,021 1,023 1,020 

4,30 1,050 1,042 1,051 1,049 

6,45 1,068 1,064 1,060 1,059 

8,0 1,086 1,080 1,081 1,078 

 

Checking the performance of piezoelectric transducers for in-situ measurements of 

mechanical stresses within specimens of materials 

The control of the stress state along the cross section of the object, that is, inside the 

materials, must be carried out by direct measurement of mechanical stresses by special 

transducers, which provide accuracy sufficient for practical purposes [6].   

The solution of such problems is greatly simplified when there are experimental data ob-

tained as a result of static testing of samples of materials. 

The stress transducer was pressed into the polymer material by means of a heating de-

vice. After the shrinkage of polyethylene within 24 hours and measurement of internal stresses, 

it was subjected to mechanical loading, and more about this is to be stated below. When the 

sample cools as a result of shrinkage, for example in polyethylene, due to the uneven cooling 

and due to the linear expansion coefficient of the transducer and medium, the internal stresses T 

appear in the latter. The magnitude of these stresses is determined experimentally by comparing 
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the transducer's readings with the calibration of the transducer's readings determined after 

shrinkage. Tests were subjected to 2 grades of composite compositions (Table 2). 

 

Table 2. – Properties of materials 
 

Notation 
of composition designation 

А B 

Composition Polyethylene of high pressure 
(PTHP) – 85% 
Fiberglass 
(FG) – 10% 
Talc – 5% 

 
PTHP – 90% 
 
FG – 10% 

Density, g/сm3 1,0378 1,0387 

 

The results of testing transducers in compositions A and B, the physical and mechanical proper-

ties of which are given in Table 2, are given in figure 5 and 6. 

 

 
Figure 5. – Readings of the piezoelectric transducer PPMN-2 under uniaxial loading: 

1 – in material A; 2 – between steel gaskets (calibration characteristic, load) 

 

 
Figure 6. – Readings of piezoelectric transducer PPMN-4 under uniaxial loading: 
1 – in the material B; 2 – between steel gaskets (calibration characteristic, load) 

 
To assess the impact of the interaction of the PPMN with composite materials, as well as 

measurement of internal stresses in the samples of these materials, the same measuring instru-

ments as for the calibration were used. The measurement scheme is shown in Fig. 4. To measure 

the PPN, the diameter and height of the sample of the material of a cylindrical shape were 

P
ol

ot
sk

S
U



278 

pressed into the sample, respectively, 50 mm and 20 mm, made up of disks, figure 7. For this 

purpose, a hole, equal to the diameter of the converter, was drilled in one of the discs. On the 

surface of the disk, grooves were cut out, in which the converter's terminals were laid and fixed. 

 

 
Figure 7. – Diagram showing a prism of disks 

On the transducer installed in the disk, we placed more polymer discs from below and 

above. The formed cylinder of 10 disks was fastened (fixed) with a heated electric soldering iron 

and was wrapped with thin and dense paper along the entire generatrix to prevent adhesion to 

the walls of the heating device when the polymer melted. To press the transducers into the 

samples the of the studied materials, to measure internal stresses in them, a heating device was 

made, Fig. 8. 

 

 
 

Figure 8. – Diagram showing the heating device 

 

The device is a matrix in the form of a metal hollow cylinder 1 with external and internal 

diameters, respectively, 61 mm and 51 mm, a height of 150 mm and a punch 2. On the outside 

of the matrix, an electrical spiral 3 is wound through the insulating liner to heat the cylinder with 

an electric current controlled by laboratory transformer. 

The inner surface of the matrix and the outer surface of the punch adjoining it must be 

ground and densely joined to each other. The temperature is monitored by a mercury thermom-

eter 4 with a scale up to 300°C, which is placed in the gap formed by the handle of the punch 

and the inner surface of the cylinder, Fig. 6. The thermometer was attached to the surface by 

Wood's alloy. 

P
ol

ot
sk

S
U



279 

Due to the experimentally selected heating regimes (temperature, heating time and 

pressure, respectively, 175°C, 30 min and 0.3 MPa), a sample with a measuring PPMN placed in 

the cylinder after melting and solidification had a continuous structure without shells. As a re-

sult, the transducer, after shrinkage of the polymer for 24 hours, was densely pressed. Then it 

was connected to the measuring circuit in Fig. 4, after which the readings of the digital voltmeter 

B7-27 were taken. When the sample cools as a result of the shrinkage of the polymer, due to 

uneven cooling and the linear expansion coefficient of PPN and the medium, internal stresses T 

appear in the latter. 

According to the calibration characteristic, the internal stresses arising in the polymer 

sample were determined. For example, in Fig. 5, the voltmeter reads 1026 mV, taken from the 

pressurized controlled medium of PPMN, which corresponds to 2.65 MPa. This is the internal 

tension in this environment. 

The loading of the PPMN in the sample of the material monitored by it was carried out in 

order to determine the distortions of the controlled stresses introduced by the PPMN, as by for-

eign inclusion. The magnitude of the distortion coefficient depends on the ratio of the moduli of 

elasticity of the medium and the sensor [5]. 

The requirements for PPMN are formed depending on the type of environment into 

which it is placed: it is desirable that the modulus of elasticity is the same as the modulus of elas-

ticity of the environment. However, if the modulus of elasticity of the medium changes under 

the influence of mechanical stresses, the accuracy of the sensor will be less if its rigidity is main-

tained approximately the same as the rigidity of the medium. 

To this end, piezoelectric transducers of static mechanical stresses of the type PPMN 

have been developed, the elastic moduli of which are in a wide range (5⋅103÷105 MPa). This 

makes it possible to use a specific modification of the PPMN depending on the rigidity of the 

monitored object, in order to increase the accuracy of the measurements, since it is known that 

the closer the controlled medium and the PPMN placed in it are in terms of rigidity, the more 

accurate the measurement is [5]. 

The output characteristics of the transducer and the transducer placed inside the poly-

mer sample under loading differ, firstly, by the steepness by the amount of the distortion factor 

of the stresses caused by the transducer as a foreign inclusion, and secondly by the displacement 

of zero (the beginning of the characteristic) by an amount internal stresses, Fig. 5.6  

Conclusions. To interpret the mechanical stresses inside the controlled materials and 

products from them, measured by the developed piezoelectric transducers, a calibration charac-

teristic obtained by uniaxial mechanical loading was used. 

Distortions of measured mechanical stresses by piezoelectric transducers placed inside 

the medium, like foreign inclusions, are accounted for by applying a particular type of piezoelec-

tric converter, depending on the rigidity of the controlled medium. 

A further line of research will be the use of such sensors in building materials and struc-

tures [7-9], and also in order to intensify the introduction of BIM-technologies in the Republic of 

Belarus. 
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