Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ПОЛОЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

УДК <u>537.533; 621.384, 621.785</u> <u>э ГР 20160830 от 08.04.16</u>

	УТВЕРЖДАЮ									
Γ	Проректор по научной работе									
К	т.н	., Д	цоцент							
				Д.О. Глухов						
"	20	**	декабря	2018 г.						

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

«РАЗРАБОТКА И ИССЛЕДОВАНИЕ ВЫСОКОПЕРВЕАНСНЫХ ИСТОЧНИКОВ ЭЛЕКТРОНОВ С ПЛАЗМЕННЫМ ЭМИТТЕРОМ»

(заключительный) задание 3.4.02 / ГБ 1416

ГПНИ «Физическое материаловедение, новые материалы и технологии» подпрограмма «Материалы в технике»

Задание «Разработка комбинированных ресурсосберегающих технологий, в том числе аддитивных, изготовления и поверхностного модифицирования деталей машиностроения, наземного транспорта и сельскохозяйственной техники с использованием электронно-ионно-плазменной обработки»

Начальник ОСНИ		Т.В. Гончарова
	« <u>20</u> » <u>декабря</u> 2018 г.	•
Руководитель НИР,		
к.т.н., доцент		Д.А. Антонович
Ответственный исполнитель		
к.т.н., доцент		Ю.П. Голубев
	<u>«20» декабря</u> 2018 г.	

Новополоцк 2018

СПИСОК ОСНОВНЫХ ИСПОЛНИТЕЛЕЙ

уководитель работы,	У уководитель работы,		
г тавный научный сотрудник,		водство, введение, раздел 1, за-	
к т.н., доцент	<u>«20»</u> декабря 2018 г.	ключение)	
г тавный научный сотрудник, д.т.н., профессор		Груздев В.А. (введение, разделы 1, 2, заключение)	
д.т.п., профессор	<u>«20»</u> декабря 2018 г.	JIBI 1, 2, SARJIIO TEHNE)	
Исполнители:			
с тветственный исполнитель,		Голубев Ю.П. (раздел $1-3$)	
эдущий научный сотрудник,			
.т.н., доцент	«20» декабря 2018 г.		
Младший научный сотрудник	<u>«20»</u> декабря 2018 г.	Солдатенко П.Н. (разделы 2, 3)	
Младший научный сотрудник	<u>«20» декабря</u> 2018 г.	Абраменко С.Н. (раздел 3)	
Нормоконтролер		Ищенко Л.В.	
	«20» декабря 2018 г.		

РЕФЕРАТ

Отчет 66 с., 47 рис., - табл., 47 ист.

ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЗАРЯЖЕННЫХ ЧАСТИЦ, ПЛАЗМЕННЫЕ ЭМИТТЕРЫ, ЛЕКТРОННО- И ИОННОЛУЧЕВЫЕ ТЕХНОЛОГИИ, МОДИФИКАЦИЯ ПОВЕРХНОСТЕЙ ОТОКАМИ ЗАРЯЖЕННЫХ ЧАСТИЦ, ВЫСОКОПЕРВЕАНСНЫЕ ИСТОЧНИКИ ЗАРЯЖЕННЫХ ЧАСТИЦ

Объектом исследований являются потоки заряженных частиц, эмитированные из плазмы, ромируемой в газоразрядных структурах, с параметрами, достаточными для реализации технологий модификации поверхностей и других родственных технологий.

Цель работы — разработка плазменных источников электронов, для реализации комбинироанных ресурсосберегающих технологий электронно-ионно-плазменной обработки поверхностных осев, инженерии изделий и формирования композиционных покрытий на материалах для повышения их твёрдости, износо- и коррозионной стойкости, контактной выносливости и усталостной вочности при изгибе.

В результате выполнения работы выявлены наиболее перспективные, отличные от традиционных, области применения плазменных источников заряженных частиц. Разработан и исслерован ряд конструкций плазменных электронно-ионных источников. Показана возможность их применения для разработки высокопервеансного источника заряженных частиц. Предложены способы повышения первеанса в плазменных электронно-ионных источниках. Предложен вариант построения системы электропитания для формирования коротких импульсов тока пучка.

Область применения: новые конструкции высокопервеансных источников с плазменным эмиттером позволят разработать на их основе комбинированные ресурсосберегающие технологии электронно-ионно-плазменной обработки поверхностных слоев, реализовать технологии модификации поверхности деталей машиностроения, а так же разработать и реализовать аддитивные технологии в области машино- и приборостроения.

Основные показатели: Создание новых конструкций высокопервеансных источников с плазменным эмиттером и разработка комбинированных ресурсосберегающих технологий электронно-ионно-плазменной обработки поверхностных слоев на их основе позволит снизить себесто-имость продукции за счёт сокращения длительности процесса ионно-плазменной обработки, снизить энергозатраты, а также повысить эксплуатационные характеристики изделий за счёт создания поверхностного покрытия с требуемыми свойствами.

Степень внедрения: результаты исследований планируется использовать для создания отечественных электронно-ионно-лучевых энергокомплексов различного технологического назначения и для разработки новой технологии модификации поверхностей различных материалов и сплавов. Полученные новые научные результаты используются при подготовке научных кадров в рамках магистратуры и аспирантуры.

Polotskal

СОДЕРЖАНИЕ

Введение	5
1. Области, перспективные к применению высокопервеансных	
источников заряженных частиц	7
1.1 Высокоэнергетичные пучки заряженных частиц	8
1.2 Низкоэнергетичные пучки заряженных частиц	11
2. Плазменные источники для формирования пучков заряженных частиц	14
2.1 Плазменный источник для формирования высокоэнергетичных	
пучков заряженных частиц	14
2.2 Плазменный источник для формирования низкоэнергетичных	
пучков заряженных частиц	21
2.3 Общие принципы формирования пучков большого сечения в плазменных ис-	
точниках заряженных частиц	23
2.4 Макет источника электронов с повышенным первеансом	41
3. Формирование наносекундных импульсов тока пучка в плазменных эмиссионных	
системах на основе разряда в скрещенных Е×Н полях	44
3.1. Условия формирования эмитирующей плазмы в ПИЭЛ	44
3.2 Анализ существующих конструкций высоковольтных источников питания	
импульсного напряжения наносекундного диапазона	47
3.3 Разработка возможных вариантов электронной схемы	54
Заключение	61
Список использованных источников.	63

5. 6.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Ионно-плазменные технологии в электронном производстве / В. Т. Барченко [и др.]; под общ. ред. Ю. А. Быстрова. – СПб. : Энергоатомиздат, 2001. – 332 с.

Плазменные эмиссионные системы с ненакаливаемыми катодами для ионно-плазменных технологий / В.Т. Барченко [и др.], под общ. ред. В.Т. Барченко. — СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2011.-220 с.

Ремпе, Н.Г. Промышленное применение электронных пушек с плазменным катодом / Н.Г. Ремпе // Плазменная эмиссионная электроника : тр. II Междунар. сем., Улан-Уде, 17-24 июня 2006 г. / БНЦ СО РАН. – Улан-Уде, 2006. – С. 108–112.

Окс, Е. М. Источники электронов с плазменным катодом: физика, техника, применения / Е. М. Окс. – Томск: Изд-во НТЛ, 2005. – 216 с.

- Технологические процессы и системы в микроэлектронике: плазменные, электронно-ионно-лучевые, ультразвуковые / А. П. Достанко [и др.]; под общ. ред. А. П. Достанко. Минск: Бестпринт, 2009. 199 с.
- 6. Источники электронов с плазменным эмиттером / И. В. Свадковский [и др.]; под общ. ред. А.П. Достанко. –Мн.: Бестпринт, 2002. 214 с.
- 7. Ионно-плазменные методы формирования тонкопленочных покрытий / Ю. Е. Крейндель [и др.]; под общ. ред. Ю. Е. Крейнделя. Новосибирск: Наука, 1983. 120 с.
- 8. Семенов А.П. Пучки распыляющих ионов: получение и применение. Улан-Уде: Изд-во БНЦ СО РАН, 1999. 207 с.
- 9. Модифицирование и легирование поверхности лазерными, ионными и электронными пучками / Дж. М. Поут [и др.] под общ. ред. Дж. М. Поута; пер. с англ. Н.К. Мышкин [и др.] под общ. ред. А.А. Углова. – М.: Машиностроение, 1987. – 424 с.
- 10. Возможности и перспективы использования плазменных источников электронов для реализации электронно-лучевых технологий в машиностроении / В.А. Груздев [и др.] // Тяжелое машиностроение. -2004. -№9 C. 25 32.
- 11. Белюк, С.И. Промышленное применение электронных источников с плазменным эмиттером / С.И. Белюк, И.В. Осипов, Н.Г. Ремпе // Изв. ВУЗов. Физика. -2001. T. 44, № 9. C. 77 84.
- Поболь, И.Л. Применение электронно-лучевых технологий этап решения проблемы обращения с отработавшим ядерным топливом /И.Л. Поболь // Вестник ПГУ. Сер В., Промышленность. Приклад.науки. 2014. №3. С.35-42
- 13. Физика и технология плазменных эмиссионных систем / под общ. ред. В. Т. Барченко. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2014. 286 с.

- 14.
 15.
 16.
 17.
 19.
 20.
 - 14. Залесский, В. Г. Эмиссионные и электронно-оптические системы плазменных источников электронов : дис. ... д-ра физ.-мат. наук : 01.04.04 / В. Г. Залесский. Минск, 2015. 316 л.
 - Москалев, Б.И. Разряд с полым катодом / Б.И. Москалев. М.: Энергия, 1969. 184 с.
 - 15. Петрович, О.Н. Программный комплекс ELIS для моделирования ЭОС ПИЭЛ / О.Н. Петрович, В.А. Груздев // Прикладная физика. 2012. № 2. С. 79 85.
 - 7. Свешников, В.М. Моделирование ЭОС с плазменным эмиттером на основе метода декомпозиции расчетной области / В.М. Свешников, В.Г. Залесский, О.Н. Петрович // Прикладная физика. 2012. № 2. С.40 44.
 - Антонович, Д.А. Электронно-ионный источник для реализации комбинированного воздействия на поверхность / Д.А. Антонович, В.А. Груздев, В.Г. Залесский // Вестн. Полоц. гос. ун-та. Сер. С, Фундам.науки. 2014. \mathbb{N} 4. С. 113–118.
 - Антонович, Д.А. Применение низкоэнергетичных пучков заряженных частиц для реализации комбинированного воздействия на материалы / Антонович Д.А., Залесский В.Г., Солдатенко П.Н.// Сборник материалов международной научно-технической конференции «Инновационные технологии в машиностроении». Новополоцк, 2015. С. 14-16.
 - 20. Антонович, Д.А. Плазменные эмиссионные системы для электронно-лучевых технологий. Часть 1 / Д.А. Антонович [и др.] // Вестник ПГУ. Сер С., Фундам.науки. 2016. №12. С.37-44
 - 21. Антонович Д.А., Груздев В.А., Залесский В.Г., Солдатенко П.Н. Плазменные эмиссионные системы для электронно-лучевых технологий. Часть 2 Сер. С: Фундаментальные науки. 2017. N = 4 C.45 = 51
 - 22. Бугаев, С.П. Электронные пучки большого сечения / С.П. Бугаев, Ю.Е. Крейндель, П.М. Щанин. М.: Энергоатомиздат, 1984. 112 с.
 - 23. Плазменный эмиттер электронов с сеточной стабилизацией. I / A.B. Жаринов [и др] // ЖТФ. -1986.-T.56, вып. 1.-C.66-70.
 - 24. Плазменный эмиттер электронов с сеточной стабилизацией. II / А.В. Жаринов [и др] // ЖТФ. – 1986. – Т. 56, вып. 4. – С. 687 – 693.
 - 25. V. G. Zalesski, D.A. Antonovich. Peculiarities of plasma electron sources operation at high pressures J. Phys. D, Appl. Phys. 2007. № 40. P. 7771–7777.
 - 26. V.A. Grusdev, V.G. Zalesski, D.A. Antonovich, Yu.P. Golubev. Universal plasma electron source. Vacuum. 2005. № 77. P. 399–405.
 - 27. Антонович, Д.А. Эмиссионные свойства плазменного эмиттера электронов / Д.А. Антонович, В.А. Груздев, В.Г. Залесский // Вестн. Полоц. гос.ун-та. Сер. С: Фундаментальные науки. 2008. N 9. C.114 123.
 - 28. Райзер, Ю.П. Физика газового разряда Долгопрудный : Интеллект, 2009. 736 с.

29. 31. 31. 31. 55. 5. 37.

- Груздев, В. А. Плазменный источник электронов с изолированным эмиттерным электродом/ В.Г. Залесский, И.С. Русецкий // Вестн. Полоц. гос. ун-та. Сер. С: Фундаментальные науки. 2010. № 9. С. 61–67.
- Плазменный источник электронов с пучком большого сечения / В.А. Груздев, В.Г. Залесский, Д.А. Антонович, Ю.П. Голубев // ИФЖ. 2002. Т. 75, № 3. С. 166–170.
- 51. Груздев, В.А. Физические процессы формирования электронных пучков в плазменных источниках. / В.А. Груздев, В.Г. Залесский// Вестник Полоцкого госуниверситета. Сер. С: Фундаментальные науки.-2007.-№9.-с.2-14.
- 2. Груздев, В.А. О роли плазменных электронов в формировании газоразрядной плазмы / В.А. Груздев, В. Г. Залесский, И.С. Русецкий // Прикладная физика. 2012. № 1. С. 64 72.
- В. Молоковский С.И., Сушков А.Д. Электронно-оптические системы приборов СВЧ. Л., «Энергия», 1965.
- **3** 4. Чен, Ф. Введение в физику плазмы / Ф. Чен. М.: Мир, 1987. 398 с.
- 5. Силадьи М., Электронная и ионная оптика: Пер. с англ. М.: Мир, С36 1990. 639 с.
- 5. Груздев, В.А. Плазменный ионно-электронный источник// В. Г. Залесский, П.Н. Солдатенко/ Вестн. Полоц. гос. ун-та. Сер. С: Фундаментальные науки. 2013. № 4. С. 63–68.
- 37. OOO «Тор» Elcut, Моделирование двумерных полей методом конечных элементов / Версия 5.10 / Руководство пользователя -2012.
- 38. Разработка и применение источников интенсивных электронных пучков: сб. науч. тр. / науч. ред. Г.А. Месяц. Новосибирск. Наука, 1976. 191 с.
- 39. Galansky, V L. Physical processes in plasma electron emitters based on a hollow-cathode reflected ed discharge / V L Galansky [et al.] // J. Phys. D: Appl. Phys. 1994. Vol. 27. P. 953 961.
- 40. Антонович Д.А. Разработка концепции и опытных образцов плазменных источников электронов для технологических целей / ДА Антонович, АВ Груздев Вестник Полоцкого государственного университета. Серия С. Фундаментальные науки, 2018, № 4. С. 119-123
- 41. Antonovich D.A. Plasma emission systems for electron and ion-beams technologies / D.A. Antonovich, V.A. Gruzdev, V.G. Zalesski, I.L. Pobol, P.N. Soldatenko // High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) v. 21 is. 2. P 143-159.
- 42. Райзер, Ю.П. Основы современной физики газоразрядных процессов / Ю.П. Райзер. М.: Наука. Глав. ред. физ.-мат. лит., 1980.-416 с
- 43. Справочник по транзисторам [Электронный ресурс] / Электронный портал. Datasheets Режим доступа http://kazus.ru/guide/transistors/ Дата доступа 09.09.2017
- 44. Шустов М.А. Практическая схемотехника. Книга 3. Преобразователи напряжения. М.: Издательский дом «Додэка XXI», 2007. 192 с.

45.

Месяц Г.А. Генерирование мощных наносекундных импульсов. – М.: Советское радио, 1974. - 213 с.

Месяц Г.А. Импульсная энергетика и электроника. - М.: Наука, 2004.-704с.

Абраменко С.Н. Формирование наносекундных импульсов тока пучка в плазменных эмиссионных системах на основе разряда в скрещенных $E \times H$ полях / С.Н. Абраменко, Д.А. Антонович, В.А. Груздев // Сер. С: Фундаментальные науки. − 2017. - № - C. 17-22.