Министерство образования Республики Беларусь

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ПОЛОЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

УДК 697.9	УТ	BEP	ЖДАЮ			
№ госрегистрации 20130524	Проректор по научной работе					
			Д	.О. Глуг		
				20_	_ г.	
ОТЧЁТ						
О НАУЧНО-ИСЛЕДОВАТЕЛЬСКОЙ	I PA	БОТ	Έ			
ОЦЕНКА ТЕРМОДИНАМИЧЕСКОЙ И ТЕРМОЭКОНОМІ	ИЧЕ	СКО	Й ЭФФЕК	ТИВНО	СТИ	
ТЕПЛООБМЕННЫХ УСТАНО						
(заключительный)						
Науниций руковолители			Т.И. Корс	опäna		
Научный руководитель к.т.н., доцент			1 .rr. Kopc	шсва		
к.т.н., доцонт						

Новополоцк 2013

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель темы	 Т.И. Королёва (введение, заключение)
к.т.н., доцент	
Исполнитель темы научный сотрудник	 В.А. Зафатаев (введение, разделы 1-4)
Нормоконтролер	 В.Ф. Кулеш

РЕФЕРАТ

Отчёт 114 с., 30 рис., 1 табл., 97 источников.

ВОЗДУХОНАГРЕВАТЕЛЬ, РЕБРИСТАЯ ТРУБКА, ПЛАСТИНЧАТЫЙ ТЕПЛООБМЕННИК, ЭКСЕРГИЯ, МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, КРИТЕРИЙ ОПТИМИЗАЦИИ, ТЕРМОЭКОНОМИЧЕСКИЙ АНАЛИЗ

Объектом исследования являются рекуперативные теплообменники с теплоносителем «вода», применяемые в системах вентиляции, кондиционирования воздуха и теплоснабжения.

Цель работы – оценка термодинамической и термоэкономической эффективности преобразования теплоты в рекуперативных теплообменниках.

Методы исследования – анализ, сравнение, идеализация, абстрагирование, аналитико-обзорный, графический, эксергетический баланс, математическое моделирование.

Разработана математическая модель сухого теплообмена и алгоритм оценки термодинамической и термоэкономической эффективности установок рекуперативных теплообменников с теплоносителем «вода», имеющих преимущественное применение в системах вентиляции, кондиционирования воздуха и теплоснабжения, на основе итерационного расчёта эксерго-экономических критериев эффективности.

Полученные результаты можно использовать для расчёта энергоэффективности теплообменного оборудования в условиях эксплуатации, подбора оборудования, разработки технологических режимных карт работы по заданным характеристикам и условиям функционирования.

СОДЕРЖАНИЕ

	стр.
Введение	6
1 Эксергетический метод термодинамического анализа работы	
теплоиспользующих установок	8
2 Методы сравнения и оптимизации рекуперативных теплообменников	15
2.1 Критерии сравнения поверхностей теплообмена	15
2.1.1 Методы термодинамической оптимизации теплообменников	15
2.1.2 Методы технико-экономической оптимизации теплообменников	20
2.1.3 Другие методы сравнения теплообменных поверхностей	27
2.2 Формирование стоимостных показателей процесса теплопередачи	32
3 Методика эксерго-экономической оптимизации рекуперативных	
теплообменников	36
3.1 Выбор метода построения математической модели рекуперативного	
теплообменника	37
3.2 Модульный принцип построения математической модели	40
3.3 Определяющие температуры	41
3.4 Геометрическая модель конструктивно-компоновочных характеристик	
теплообменников	42
3.4.1 Калориферы типа КСк	43
3.4.2 Синусоидальные, треугольные и трапециевидные гофры оребрения	
теплопередающей поверхности воздухонагревателей типа ВНВ	49
3.4.3 Пластинчатые водо-водяные теплообменники	54
3.5 Тепловая, гидравлическая и экономическая математические модели	
теплообменников с сосредоточенными параметрами	57
3.5.1 Физические свойства теплоносителей	57
3.5.2 Исходные данные модели	58
3.5.3 Тепловой и гидравлический режим теплообменников	59
3.5.4 Расчёт экономических факторов	70
3.5.5 Расчет температурного напора при перекрестном токе теплоносителей	74
3.5.6 Расчёт термической эксергии металлов оребрения	78

4 Реализация методики эксерго-экономической оптимизации	
рекуперативных теплообменников при различном конструктивном	
оформлении интенсифицирующих элементов поверхности теплопередачи	80
4.1 Формирование системы автоматизированных расчётов	80
4.1.1 Алгоритм поверочного расчёта теплообменника	80
4.1.2 Итерационный расчёт температуры цилиндрической стенки	83
4.2 Термоэкономическая эффективность оребрения теплопередающей	
поверхности калориферов КСк	84
4.3 Термоэкономическая эффективность оребрения теплопередающей	
поверхности воздухонагревателей ВНВ	91
4.4 Термоэкономическая эффективность водо-водяных пластинчатых	
теплообменников с пластинами ленточно-поточного типа	97
Заключение	106
Список использованных источников	107

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Сажин, Б.С. Эксергетический метод в химической технологии / Б.С. Сажин, А.П. Булеков. М.: Химия, 1992. 208 с.
- 2. Гохштейн, Д.П. Современные методы термодинамического анализа энергетических установок / Д.П. Гохштейн. М.: Энергия, 1969. 368 с.
- 3. Зафатаев, В.А. Термодинамический анализ энергоэффективности устройств для подогрева воздуха в системах воздушного отопления и вентиляции: дис. ... магистра технических наук / В.А. Зафатаев. Новополоцк, 2010. 55 с.
- 4. Бродянский, В.М. Эксергетический метод и его приложения / В.М. Бродянский, В. Фратшер, К. Михалек. М.: Энергоатомиздат, 1988. 250 с.
- 5. Кафаров, В.В. Оптимизация теплообменных процессов и систем / В.В. Кафаров, В.П. Мешалкин, Л.В. Гурьева. М.: Энергоатомиздат, 1988. 191 с.
- 6. Шаргут, Я. Использование эксергии в экономике / Я. Шаргут, Р. Петеля // Эксергетический метод и его приложения: сборник статей; под ред. В.М. Бродянского. М.: Мир, 1967. С. 165-188.
- 7. Справочный документ по наилучшим доступным технологиям обеспечения энергоэффективности : подготовлен и опубликован при поддержке Фонда стратегических программ (SPF) Министерства иностранных дел Великобритании. РОО «ЭКОЛАИН», 2009. 434 с.
- 8. Андрющенко, А.И. Оптимизация тепловых циклов и процессов ТЭС / А.И. Андрющенко. – М.: Высшая школа, 1974. – 280 с.
- 9. Нитч, Р. К эксергетической теории формирования затрат / Р. Нитч // Энергия и эксергия: сборник статей; под ред. В.М. Бродянского. М.: Мир, 1968. С. 94-105.
- Валуева, Е.П. Оценка теплогидравлической эффективности рекуперативных теплообменных аппаратов / Е.П. Валуева, Т.А. Доморацкая // Теплоэнергетика. 2002. №3. С.43-48.
- 11. Кирпичёв, М.В. О наивыгоднейшей форме поверхности нагрева / М.В. Кирпичёв // Изв. Энергетического института им. Кржижановского. М.: АН СССР, 1944. Т.12. С. 5-9.
- 12. Эльперин, И.Т. Показатели эффективности процессов переноса / И.Т. Эльперин // Инженерно-физический журнал. 1963. Т.VI, №6. С. 100-105.
- 13. Антуфьев, В.М. Эффективность различных форм конвективных поверхностей нагрева / В.М. Антуфьев. М.: Энергия, 1966. 184 с.

- 14. Коваленко, Л.М. Теплообменники с интенсификацией теплоотдачи / Л.М. Коваленко, А.Ф. Глушков. М.: Энергоатомиздат, 1986. 240 с.
- 15. Мусин, И.Р. Энерго- и ресурсосбережение путем повышения тепловой и гидродинамической эффективности пластинчатых теплообменников ленточно- поточного типа: дис. ... канд. техн. наук: 05.14.04 / И.Р. Мусин. Москва, 2007. 158 л.
- 16. Жукаускас, А.А. Конвективный перенос в теплообменниках / А.А. Жукаускас. М.: Наука, 1982. 472 с.
- 17. Калафати, Д.Д. Сравнительная шкала эффективности теплоотдачи газовых теплоносителей / Д.Д. Калафати, В.В. Попалов // Теплоэнергетика. 1975. №9. С. 67-69.
- 18. Гухман, А.А. Введение в теорию подобия / А.А. Гухман. М.: Высшая школа, 1973. 296 с.
- Кирпиков, В.А. Графический способ сравнительной оценки эффективности конвективных поверхностей нагрева / В.А. Кирпиков, И. Лейфман // Теплоэнергетика.

 1975. №3. С.34-36.
- 20. Маскинская, А.Ю. Повышение эффективности теплообменных аппаратов за счет интенсификации теплообмена на поверхности с лунками : дис. ... канд. техн. наук : 05.14.04 / А.Ю. Маскинская. Москва, 2004. 139 л.
- 21. Калинин, Э.К. Эффективные поверхности теплообмена / Э.К. Калинин, Г.А. Дрейцер, И.З. Копп, А.С. Мякочин. М.: Энергоатомиздат, 1998. 408 с.
- 22. Калинин, Э.К. Интенсификация теплообмена в каналах / Э.К. Калинин, Г.А. Дрейцер, С.А. Ярхо. М.: Машиностроение, 1972. 220 с.
- 23. Якименко, Р.И. Исследование теплообмена в каналах с искусственной турбулизацией потока и разработка обобщающего метода сравнения теплогидравлической эффективности теплообменных аппаратов : автореф. дис. ... канд. техн. наук : 05.14.05 / Р.И. Якименко. Москва, 1996. 21 с.
- 24. Дубровский, Е.В. Метод относительного сравнения теплогидравлической эффективности теплообменных поверхностей и теплообменников / Е.В. Дубровский, В.Я. Васильев // Теплоэнергетика. 2002. № 5. С.47-53.
- 25. Мигай, В.К. Моделирование теплообменного энергетического оборудования / В.К. Мигай. М.: Энергоатомиздат, 1987. 264 с.
- 26. Калафати, Д.Д. Оптимизация теплообменников по эффективности теплообмена / Д.Д. Калафати, В.В. Попалов. М.: Энергоатомиздат, 1986. 240 с.

- 27. Кэйс, В.М. Компактные теплообменники / В.М. Кэйс, А.Л. Лондон. М.: Энергия, 1967. 224 с.
- 28. Бессонный, А.Н. Основы расчета и проектирования теплообменников воздушного охлаждения. Справочник / А.Н. Бессонный, Г.А. Дрейцер, В.Б. Кунтыш. Спб.: Недра, 1996. – 512 с.
- 29. Теплообменники. Методы испытаний для установления рабочей характеристики теплоутилизационных установок типа "воздух-воздух" и "воздух-отработанные газы" : СТБ EN 308-2012. Введ. 01.01.2013. Минск : Госстандарт, 2012.
- 30. Минин, В.Е. Воздухонагреватели для систем вентиляции и кондиционирования воздуха / В.Е. Минин. М.: Стройиздат, 1976. 199 с.
- 31. Колюнов, О.А. Система двухступенчатой утилизации энергии вытяжного воздуха с использованием обращенной тепловой машины : дис. ... канд. техн. наук : 05.04.03 / О.А. Колюнов. Санкт-Петербург, 2004. 144 л.
- 32. Грассман, П. К обобщённому определению понятия коэффициента полезного действия / П. Грассман // Вопросы термодинамического анализа (эксергетический метод): сборник статей; под ред. В.М. Бродянского. М.: Мир, 1965. С. 15-27.
- 33. Глазер, X. Показатель качества теплообменников / X. Глазер // Вопросы термодинамического анализа (эксергетический метод): сборник статей; под ред. В.М. Бродянского. М.: Мир, 1965. С. 209-221.
- 34. Ахременков, А.А. Математические модели и алгоритмы расчета предельных возможностей стационарных тепломеханических систем : дис. ... канд. техн. наук : 05.13.11 / А.А. Ахременков; Ин-т програм. систем РАН. Переславль-Залесский, 2007. 135 л.
- 35. Борисов, Г.Б. Синтез систем автоматического регулирования для объектов с запаздыванием и с изменяющимися динамическими свойствами : дис. ... канд. техн. наук : 05.13.06 / Г.Б. Борисов; Московский гос. ун-т инженерной экологии. Москва, 2003.
- 36. Григоревский, И.Н. Алгоритмическое и программное обеспечение построения области реализуемости термодинамических систем: дис. ... канд. техн. наук: 05.13.11, 05.13.01 / И.Н. Григоревский; Ин-т програм. систем им. А.К. Айламазяна РАН. Переславль-Залесский, 2011. 167 л.
- 37. Евенко, В.И. Методика оценки эффективности теплообменных аппаратов и поверхностей теплообмена / В.И. Евенко, В.Н. Соченов // Изв.ВУЗов, Энергетика. 1967. №4. С.91-75.

- 38. Бажан, П.И. Справочник по теплообменным аппаратам / П.И. Бажан, Г.Е. Каневец, В.М. Селивестров. М.: Машиностроение, 1989. 367 с.
- 39. Чичиндаев, А.В. Оптимизация компактных пластинчато-ребристых теплообменников. Ч.1. Теоретические основы. – Новосибирск, Изд-во НГТУ, 2003. – 400 с.
- 40. Туголуков, Е.Н. Математическое моделирование термонагруженных процессов и аппаратов многоассортиментных химических производств : дис. ... д-ра техн. наук : 05.17.08, 05.13.18 / Е.Н. Туголуков. Тамбов, 2004. 399 л.
- 41. Покотилов, В.В. Методика технико-экономического обоснования энергосберегающих мероприятий / В.В. Покотилов, С. Макаревич, В. Ширшова // Энергосбережение и энергоэффективность. 2001. № 3. С.68-71.
- 42. Лапидус, А.С. Экономическая оптимизация химических производств / А.С. Лапидус. М.: Химия, 1986. 207 с.
- 43. Кафаров, В.В. Математическое моделирование основных процессов химических производств / В.В. Кафаров, М.Б. Глебов. М.: Высшая школа, 1991. 400 с.
- 44. Кафаров, В.В. Принципы математического моделирования химико-технологических систем / В.В. Кафаров, В.Л. Перов, В.П. Мешалкин. М.: Химия, 1974. 310 с.
- 45. Каневец, Г.Е. Термоэкономическая оптимизация сложных теплообменных систем / Г.Е. Каневец, Л.К. Вукович, В.Р. Никульшин // Химическая технология. 1979. №6. С.34-37.
- 46. Эль-Саид, И.М. Термоэкономика и проектирование тепловых систем / И.М. Эль-Саид, Р.Б. Эванс // Труды ASME, серия энерг. машиностр. 1970. №1. С.10-14.
- 47. Драганов, Б.Х. Эксергоэкономическая оптимизация поверхностных теплообменных аппаратов / Б.Х. Драганов, А.А. Халатов // Теплоэнергетика. 2010. № 10. С.65-68.
- 48. Горленко, А.М. Термоэкономический анализ и оптимизация многоцелевых энерготехнологических систем / А.М. Горленко // Промышленная энергетика. 1986. № 9. С.2-7.
- 49. Энергоэкономические аспекты химико-технологических систем : учеб. пособие / С.Н. Михайлов [и др.]. Казань, КГТУ, 2000. 114 с.
- 50. Пиир, А.Э. Выбор технико-экономических скоростей газовых потоков в рекуператорах / А.Э. Пиир, В.Б. Кунтыш // Изв.ВУЗов, Энергетика. 1975. №3. С.126-129.
- 51. Хамидов, А.С. Разработка методов расчета эффективности работы теплообменных аппаратов компрессорных станций: дис. ... канд. техн. наук: 05.02.13 / А.С. Хамидов; Тюмен. гос. нефтегаз. ун-т. Тюмень, 2009. 153 л.

- 52. Демин, А.А. Оптимизация систем рекуперации тепла газоперерабатывающих заводов : дис. ... канд. техн. наук : 05.14.13 / А.А. Демин. Киев, 1984. 295 л.
- 53. Васильев, А.В. Комплексная оптимизация низкотемпературных поверхностей нагрева котельных агрегатов маневренных энергоблоков : дис. ... канд. техн. наук : 05.14.01 / А.В. Васильев. Саратов, 1984. 251 л.
- 54. Шаргут, Я., Петела, Р. Эксергия; перев. Ю.И. Батурина и Д.Ф. Стржижовского. М.: Энергия, 1968. 280 с.
- 55. Симонов, В.Ф. Повышение эффективности энергоиспользования в нефтехимических производствах / В.Ф. Симонов. М.: Химия, 1985. 240 с.
- 56. Янтовский, Е.И. Потоки энергии и эксергии / Е.И. Янтовский. М.: Наука, 1988. 144 с.
- 57. Афанасьева, О.В. Комплексный анализ эффективности автономных источников энергоснабжения, работающих на угле : дис. ... канд. техн. наук : 05.14.04 / О.В. Афанасьева; Казан. гос. технол. ун-т. Казань, 2010. 205 л.
- 58. Тсатсаронис, Дж. Взаимодействие термодинамики и экономики для минимизации стоимости энергопреобразующей системы; перев. Т.В. Морозюка. Одесса: Студия «Негоциант», 2002. 152 с.
- 59. Каневец, Г.Е. Обобщённые методы расчёта теплообменников / Г.Е. Каневец. Киев: Навуковая думка, 1979. 351 с.
- 60. Попырин, Л.С. Математическое моделирование и оптимизация теплоэнергетических установок / Л.С. Попырин. М.: Энергия, 1978. 416 с.
- 61. Бойко, Е.А. Применение ЭВМ для решения теплоэнергетических задач / Е.А. Бойко. Красноярск: «Сибирский промысел», 2001. – 202 с.
- 62. Белоногов, Н.В. Пути совершенствования пластинчатых перекрестноточных рекуперативных теплообменников : дис. ... канд. техн. наук : 05.04.03, 01.04.14 / Н.В. Белоногов. Санкт-Петербург, 2005. 204 л.
- 63. Бардаков, В.И. Моделирование и оптимизация рекуперативных аппаратов в условиях обледенения теплопередающих стенок : дис. ... канд. техн. наук : 05.14.05 / В.И. Бардаков. Воронеж, 2000. 127 л.
- 64. Горяйнов, В.В. Анализ математической модели теплообменных систем с учетом поперечной и продольной теплопроводности : дис. ... канд. физико-математических наук : 05.13.18 / В.В. Горяйнов. Воронеж, 2004. 195 л.
- 65. Криницкий, Е.В. Повышение энергетической эффективности теплообменников с интенсификаторами посредством воздействия на локальные характеристики : дис. ... канд. техн. наук : 05.14.04 / Е.В. Криницкий. Москва, 2002. 141 л.

- 66. Бояринов, А.И. Методы оптимизации в химической технологии / А.И. Бояринов, В.В. Кафаров. М.: Химия, 1969. 566 с.
- 67. Оносовский, В.В. Моделирование и оптимизация холодильных установок / В.В. Оносовский. Л.: Издательство ЛУ, 1990. 208 с.
- 68. Полянская, П.В. Алгоритмическое обеспечение робастных систем регулирования процессов теплообмена в пищевых производствах : дис. ... канд. техн. наук : 05.13.06 / П.В. Полянская; Моск. гос. ун-т пищевых пр-в (МГУПП). Москва, 2007. 143 л.
- 69. Бялый, Б.И. Тепломассообменное оборудование воздухообрабатывающих установок OOO «ВЕЗА» / Б.И. Бялый. М.: OOO «Инфорт», 2005. 280 с.
- 70. Барочкин, Е.В. Анализ и оптимальный синтез теплообменных систем со сложной конфигурацией потоков в энергетических и химических комплексах : дис. ... д-ра техн. наук : 05.13.01 / Е.В. Барочкин; ГОУВПО "Ивановский государственный химико-технологический университет". Иваново, 2008. 308 л.
- 71. Виноград, Д.Л. Автоматизированный синтез схем ректификации с рекуперацией тепла на основе интегрально-гипотетического принципа : дис. ... канд. техн. наук : 05.17.08 / Д.Л. Виноград. Москва, 1984. 225 л.
- 72. Бекманис, И.В. Разработка методики оптимизации рекуперативных теплообменников по обобщенным характеристикам и средней скорости потока: дис. ... канд. техн. наук: 05.14.04 / И.В. Бекманис. Рига, 1984. 195 с.
- 73. Торговников, Б.М. Проектирование промышленной вентиляции / Б.М. Торговников, В.Е. Табачник, Е.М. Ефанов. Киев: Будивельник, 1983. 256 с.
- 74. Ресурсно-сметные нормы на строительные конструкции и работы. Отопление внутренние устройства: РСН 8.03.118-2007. Мн.: Министерство архитектуры и строительства, 2007.
- 75. Ресурсно-сметные нормы на строительные конструкции и работы. Вентиляция и кондиционирование воздуха: PCH 8.03.120-2007. Мн.: Министерство архитектуры и строительства, 2007. 385 с.
- 76. Ресурсно-сметные нормы на монтаж оборудования. Теплосиловое оборудование: PCH 8.03.206-2007. Мн.: Министерство архитектуры и строительства, 2007.
- 77. Ресурсно-сметные нормы на монтаж оборудования. Компрессорные машины, насосы и вентиляторы: РСН 8.03.207-2007. Мн.: Министерство архитектуры и строительства, 2007.
- 78. Справочник проектировщика: внутренние санитарно-технические устройства: в 3 т. / под ред. Н.Н. Павлова, Ю.И. Шиллера. М.: Стройиздат, 1992. Т. 3, ч. 2: Вентиляция и кондиционирование воздуха. 416 с.

- 79. Сынков, И.В. Влияние турбулентности и неравномерности воздушного потока на теплогидравлические характеристики теплообменников систем кондиционирования воздуха: дис. ... канд. техн. наук: 05.14.04 / И.В. Сынков; Моск. энергет. ин-т. Москва, 2007. 176 л.
- 80. Исаченко, В.П. Теплопередача / В.П. Исаченко, В.А. Осипова, А.С. Сукомел. М.: Энергоиздат, 1981. 416 с.
- 81. Бережная, О.К. Моделирование теплогидравлических процессов и разработка методики обобщения данных по эффективным теплообменникам : дис. ... канд. техн. наук : 05.14.04 / О.К. Бережная. Москва, 2005. 166 л.
- 82. Идельчик, И.Е. Справочник по гидравлическим сопротивлениям / под ред. М.О. Штейнберга. М.: Машиностроение, 1992. 672 с.
- 83. Теплоиспользующие установки промышленных предприятий / под ред. О.Т. Ильченко. Харьков: Вища Школа, 1985. 384 с.
- 84. Дахин, С.В. Расчёт рекуперативных теплообменных аппаратов непрерывного действия: учеб. пособие / С.В. Дахин. Воронеж: ГОУ ВПО «Воронежский государственный технический университет», 2008. 110 с.
- 85. Конахин, А.М. Расчёт теплообменных аппаратов : учеб. пособие / А.М. Конахин, И.А. Конахина. Казань: Казан. гос. энерг. ун-т, 2006. 92 с.
- 86. Ращиков, В.И. Численные методы. Компьютерный практикум: учеб.-метод. пособие / В.И. Ращиков. М.: НИЯУ МИФИ, 2010. 132 с.
- 87. Юдин, В.Ф. Теплообмен поперечнооребрённых труб / В.Ф. Юдин. Л.: Машиностроение, 1982.-189 с.
- 88. Пиир, А.Э. Исследование и разработка эффективных воздухонагревателей из биметаллических ребристых труб для химико-лесного комплекса : дис. ... д-ра техн. наук : 05.14.04 / А.Э. Пиир. Архангельск, 2002. 315 л.
- 89. Копко, В.М. Пластинчатые теплообменники в системах централизованного теплоснабжения. Курсовое и дипломное проектирование : учеб. пособие / В.М. Копко, М.Г. Пшоник. Минск: БНТУ, 2005. 199 с.
- 90. Юркина, М.Ю. Совершенствование теплообменных аппаратов водяных систем теплоснабжения повышением энергетической эффективности: дис. ... канд. техн. наук: 05.14.04 / М.Ю. Юркина; Моск. энергет. ин-т. Москва, 2009. 179 л.
- 91. Михеев, М.А. Основы теплопередачи / М.А. Михеев, И.М. Михеева. М.: Энергия, 1977. 344 с.
- 92. Рабинович, О.М. Сборник задач по технической термодинамике / О.М. Рабинович. М.: Машиностроение, 1973. 344 с.

- 93. Каталог вент. оборудования ООО «ПКФ «Кондиционер», 2011. 21 с.
- 94. Справочник по теплообменникам : в 2-х т. / пер. с англ. и ред. О.Г. Мартыненко, А.А. Михалевича и В.К. Шикова. М.: Энергоатомиздат, 1987. Т.1. 560 с.; Т.2. 352 с.
- 95. Соколов, Е.Я. Теплофикация и тепловые сети / Е.Я. Соколов. М.: Изд-во МЭИ, 2001. 472 с.
- 96. Степанов, В.С. Анализ энергетического совершенства технологических процессов / В.С. Степанов. Новосибирск: Изд-во «Наука», 1984. 274 с.
- 97. Веринчук, Е.В. Моделирование процессов тепло- и массопереноса в рекуперативных конденсационных теплоутилизаторах : дис. ... канд. техн. наук : 05.14.04 / Е.В. Веринчук. Москва, 2004. 136 л.