

УДК 517.51, УДК 004.94,УДК 519.6

Поиск наилучшего приближения в метрике квадратичного отклонения ступенчатыми функциями для распределения Коши

Пастухов Ю.Ф.¹, Пастухов Д.Ф.¹, Чернов С.В.², Пастухов А.Ю. Полоцкий государственный университет, факультет информационных технологий¹ ОАО «Конструкторское бюро «Дисплей», Витебск²

Научные руководители: Пастухов Ю.Ф., к. ф. м. н., доцент; Пастухов Д.Ф., к. ф. м. н., доцент, факультет информационных технологий Полоцкого государственного университета

Магистранты: Синица П.Р.¹, Субботин А. В.¹, Кохановский А.В.¹, Исаков И.В.¹, Епанешников А.В.¹, Сивограков А.А.¹, Карабанов Р.Ю.¹, Меницкий Е.А.¹, Андреев И.С.¹, Андрейчиков А.Г.¹, Денисова Е.¹, Иваненко Е.С.¹, Карнилович А.В.¹, Петюкевич В. В.¹, Смоляк А.И.¹, Соловьёв А.А.¹, Шевцов М..Ю.¹, Станкевич К.В.¹, Мисевич И.В.¹

Предложен метод нахождения наилучшего приближения плотности распределения Коши в пространстве ступенчатых функций на заданном интервале. В данной работе описан метод и алгоритм, заменяющий функцию распределения Коши ступенчатой функцией, являющейся наилучшим приближением плотности распределения Коши в метрике квадратичного отклонения. По сути получен алгоритм квантования функции плотности распределения Коши в пространстве ступенчатых функций на заданном интервале. Данный метод и алгоритм, отличается от алгоритма квантования Ллойда.

Ключевые слова: наилучшим приближением функции в метрике квадратичного отклонения, численная аппроксимация интегралов с двенадцатым порядком погрешности, алгоритм Ллойда.

1. Введение

Новым в данной работе является алгоритм нахождения наилучшего приближения плотности распределения Коши в пространстве ступенчатых функций на заданном интервале.

2. Квантование функции плотности нормального распределения в метрике квадратичного отклонения Определение. Пусть $m \in N$. Функция $f_m: [a,b] \to R(a < b)$ называется m-кусочно-постоянной на [a,b],

если $\exists x_1 < x_2 < ... < x_{m-1}$ такие что:

 $x_0 = a < x_1 < x_2 < \ldots < x_{m-1} < b = x_m ,$

 $f_m(x) = y_i = const \ \forall x \in (x_{i-1}, x_i), f_m(x_i) = y_i, f_m(x_{i+1}) = y_{i+1}, y_i \neq y_{i+1}, \ \forall i = \overline{1, m-1}.$

Множество m – ступенчатых функций (m – уровней) $f_m:[a,b] \to R(a < b)$ обозначим как $S_m[a,b]$.

Пусть $f:[a,b] \to \Re$, $f \in C^2[a,b]$, $f'(x) < 0 \forall x \in [a,b]$, $m \in N$. Для минимизации ошибки квантования требуется в пространстве m – ступенчатых функций найти наилучшее приближение $h_m:[a,b] \rightarrow R$ функции $f:[a,b] \to \Re$ в метрике квадратичного отклонения, такое что $dist = \left\|f - h_m\right\|_{C^2_{[a,b]}} = \min_{f_m \in S_m[a,b]} \left\|f - f_m\right\|_{C^2_{[a,b]}}$. С

учетом этого, расстояние оценивается как:

$$dist = \|f - h_m\|_{C^2_{[a,b]}} = \sqrt{\int_a^b (f(x) - h_m(x))^2 dx} = \min_{f_m \in S_m[a,b]} \sqrt{\int_a^b (f(x) - f_m(x))^2 dx} = \min_{f_m \in S_m[a,b]} \|f - f_m\|_{C^2_{[a,b]}}$$

Пусть ступенчатая функция $h_m(x) = y_k$ равна константе на отрезке $x \in (x_{k-1}, x_k)$, $k = \overline{1, m}$, при этом функция ошибки $G(x_1,...,x_{m-1},y_1,...,y_m) = \sum_{k=1}^m \int_{x_{k-1}}^{x_k} (f(x) - y_k)^2 dx$ описывает квадрат отклонения ступенчатой

функции $h_m:[a,b] \to R$ от функции нормального распределения $f:[a,b] \to \Re$. Необходимое условие экстремума функции $G(x_1,...,x_{m-1},y_1,...,y_m)$ описывается системой уравнений:

$$\frac{\partial G(x_1,\ldots,x_{m-1},y_1,\ldots,y_m)}{\partial x_i} \equiv G'_{x_i} = 0, i = \overline{1,m-1}, G'_{y_i} = 0, i = \overline{1,m},$$

Получим явный вид этих уравнений.

Пусть
$$H(x) = \int_{g_1(x)}^{g_2(x)} f(y, x) dy$$
 Известно, что

	EURASIAN
	SCIENTIFIC
EBPA3HMCKOE	ASSOCIATION
научное	1
объединение	
www.esa-conf	ference.ru

$$\frac{dH(x)}{dx} = -f(g_1(x), x)\frac{dg_1(x)}{dx} + f(g_2(x), x)\frac{dg_2(x)}{dx} + \int_{g_1(x)}^{g_2(x)} \frac{\partial f(y, x)}{\partial x} dy$$

Пусть
$$H_k(x_{k-1}, x_k, y_k) = \int_{x_{k-1}}^{x_k} (f(x) - y_k)^2 dx$$
 Так как $\frac{dx_{k-1}}{dy_k} = \frac{dx_k}{dy_k} = 0$, то

$$\frac{\partial H_k(x_{k-1}, x_k, y_k)}{\partial y_k} = -(f(x_{k-1}) - y_k)^2 \frac{dx_{k-1}}{dy_k} + (f(x_k) - y_k)^2 \frac{dx_k}{dy_k} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial y_k} (f(x) - y_k)^2 dx =$$

$$= \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial y_k} (f(x) - y_k)^2 dx = (-2) \int_{x_{k-1}}^{x_k} (f(x) - y_k) dx = 0 \Rightarrow \int_{x_{k-1}}^{x_k} f(x) dx = \int_{x_{k-1}}^{x_k} y_k dx = y_k (x_k - x_{k-1})$$

$$\frac{\partial H_k(x_{k-1}, x_k, y_k)}{\partial x_{k-1}} = -(f(x_{k-1}) - y_k)^2 \frac{dx_{k-1}}{dx_{k-1}} + (f(x_k) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{dx_k}{dx_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} (f(x) - y_k)^2 dx = -(f(x_{k-1}) - y_k)^2 \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial x_{k-1}} + \int_{x_{k-1}}^{x_{k-1}} \frac{\partial}{\partial$$

При подстановке вместо k k+1 получим

$$\frac{\partial H_{k+1}(x_{k+1-1}, x_{k+1}, y_{k+1})}{\partial x_{k+1-1}} = \frac{\partial H_{k+1}(x_k, x_{k+1}, y_{k+1})}{\partial x_k} = -(f(x_{k+1-1}) - y_{k+1})^2 = -(f(x_k) - y_{k+1})^2$$

$$\frac{\partial H_k(x_{k-1}, x_k, y_k)}{\partial x_k} = -(f(x_{k-1}) - y_k)^2 \frac{dx_{k-1}}{dx_k} + (f(x_k) - y_k)^2 \frac{dx_k}{dx_k} + \int_{x_{k-1}}^{x_k} \frac{\partial}{\partial x_k} (f(x) - y_k)^2 dx = (f(x_k) - y_k)^2$$

$$G(x_{1},...,x_{m-1},y_{1},...,y_{m}) = \sum_{k=1}^{m} \int_{x_{k-1}}^{x_{k}} (f(x) - y_{k})^{2} dx = \sum_{k=1}^{n} H_{k}(x_{k-1},x_{k},y_{k})$$

$$\frac{\partial G(x_{1},...,x_{m-1},y_{1},...,y_{m})}{\partial y_{k}} = \frac{\partial H_{k}(x_{k-1},x_{k},y_{k})}{\partial y_{k}} = (-2) \int_{x_{k-1}}^{x_{k}} (f(x) - y_{k}) dx = 0 \Rightarrow \int_{x_{k-1}}^{x_{k}} y_{k} dx = y_{k}(x_{k} - x_{k-1})$$

$$\frac{\partial G(x_{1},...,x_{m-1},y_{1},...,y_{m})}{\partial x_{k}} = \frac{\partial H_{k}(x_{k-1},x_{k},y_{k})}{\partial x_{k}} - \frac{\partial H_{k+1}(x_{k},x_{k+1},y_{k+1})}{\partial x_{k}} = (f(x_{k}) - y_{k})^{2} - (f(x_{k}) - y_{k+1})^{2} =$$

$$= (f(x_{k}) - y_{k} + f(x_{k}) - y_{k+1})(f(x_{k}) - y_{k} - f(x_{k}) + y_{k+1}) = (2f(x_{k}) - y_{k} - y_{k+1})(y_{k+1} - y_{k}) = 0$$

$$Tak \text{ Kak } y_{k+1} \neq y_{k} \Rightarrow 2f(x_{k}) - y_{k} - y_{k+1} = 0 \Rightarrow f(x_{k}) = \frac{1}{2}(y_{k} + y_{k+1})$$

Отсюда следует следует:

$$\begin{cases} f(B_i) = \frac{1}{2}(C_i + C_{i+1}), i = \overline{1, n-1} \\ f(B_i) = \frac{1}{2}C_n \\ \int_{B_{j-1}}^{B_j} f(x)dx = C_j(B_j - B_{j-1}), j = \overline{1, n} \end{cases}$$
(2)

Для n+1 ненулевой ступеньки система (1) имеет вид :

$$\begin{cases} f(B_i) = \frac{1}{2}(C_i + C_{i+1}), \ i = \overline{1, n} \\ \int_{B_j}^{B_j} f(x) dx = C_j(B_j - B_{j-1}), \ j = \overline{1, n+1} \end{cases}$$
(3)

И содержит 2n+1 уравнений и 2n+1 неизвестных.

В работе при вычислении интегралов был использован алгоритм для составной интегральной квадратурной формулы с 12 порядком погрешности, когда исходный отрезок интегрирования делится на число частей кратное десяти (11 узлов равномерной сетки на каждой части). C_i, x_i, r - соответственно веса, узлы и невязка квадратурной формулы.

$$\int_{a}^{b} f(z)dz = \sum_{i=0}^{n} C_{i}f(x_{i}) + r(f)$$
(4)

1.

Интегрируя степенные координатные функции z^{2s} на каноническом отрезке[-1,1], $n_0 = 10$ число частей, на которое делится отрезок[-1,1], учитывая симметрию весов относительно центрального узла z = 0 получим:

$$\begin{cases} \int_{-1}^{1} dz = 2 = C_0 + 2\sum_{k=1}^{n_0/2} C_k \\ \int_{-1}^{1} z^{2s} dz = 2/(2s+1) = 2\sum_{k=1}^{n_0/2} C_k (2k/n_0)^{2s}, s = \overline{1, n_0/2} \end{cases}$$
(5)

Для канонического отрезка [-1,1] запишем квадратурную формулу в виде эквивалентном (4)

$$\int_{-1}^{1} f(z)dz = \frac{hn_0}{2} \sum_{i=0}^{n_0} C_i f(x_i) = 5h \sum_{i=0}^{10} C_i f(x_i), \quad \frac{hn_0}{2} = 1, x_i = -1 + ih, i = \overline{0, n_0}$$
(6)

Где h - шаг интегрирования, $n_0 = 10$ число отрезков, на которое делится канонический отрезок [-1,1] и каждая часть из k в составной формуле исходного отрезка [a,b].

А определённый интеграл на отрезке [a,b] отличается от(6) на отрезке [-1,1]длиной интервала в

$$k = n/n_0 = \frac{b-a}{2}$$
 раз, используем замену переменных и формулу(4)

$$x = \frac{b+a}{2} + \left(\frac{b-a}{2}\right)z, a \le x \le b, -1 \le z \le 1, dx = \left(\frac{b-a}{2}\right)dz = kdz$$

$$\int_a^b f(x)dx = \int_{-1}^1 f(z)\left(\frac{b-a}{2}\right)dz = \frac{hn_0}{2}\sum_{i=0}^{n_0*k}C_if(x_i), \sum_{i=0}^{n_0}C_i = 2, h = \frac{b-a}{n}, hn = b-a, x_i = a+ih, i = \overline{0, n}$$

Разбивая канонический отрезок[-1,1] $n_0 = 10$ равных частей (из соображений удобства разбиения), используя симметрию весовых коэффициентов, можно получить решение системы уравнений(5) ($n_0 = 10$), в которой 6 неизвестных коэффициентов C_0 , C_1 , C_2 , C_3 , C_4 , C_5 являются решением системы $n_0/2+1=6$ линейных неоднородных уравнений с 11 алгебраическим порядком точности:

$$\left\{ C_0 = \frac{17807}{12474}, C_1 = -\frac{4825}{5544}, C_2 = \frac{5675}{6237}, C_3 = -\frac{16175}{99792}, C_4 = \frac{26575}{74844}, C_5 = \frac{16067}{299376} \right\}$$
(7)

Проверим на компьютере, что рациональный вид коэффициентов (7)(символьное решение системы (5) для $n_0 = 10$) удовлетворяет с двойной точностью(16 значащих цифр). В таблице 1 в левой части указано точное значение интеграла $a(s) = \int_{-1}^{1} z^s dz$, $s = \overline{0,12}$, а справа численное значение правой части уравнений

системы (5) - b(s) с использованием значений весовых коэффициентов (7) (s – показатель степенной функции).

Таблица 1. Сравнение интеграла от координатной степенной функции и квадратурной интегральной формулы

a(0)=2.00000000000000000	b(0)=2.000000000000004
a(1)=0.0000000000000000	b(1)=0.0000000000000000
a(2)=0.66666666666666666	b(2)=0.6666666666666666
a(3)=0.00000000000000000	b(3)=-0.00000000000000000
a(4)=0.4000000000000000	b(4)=0.400000000000001
a(5)=0.0000000000000000	b(5)=-0.0000000000000000
a(6)=0.2857142857142857	b(6)=0.2857142857142858
a(7)=0.0000000000000000	b(7)=0.0000000000000000
a(8)=0.2222222222222222	b(8)=0.222222222222222
a(9)=0.0000000000000000	b(9)=-0.0000000000000000
a(10)=0.1818181818181818	b(10)=0.1818181818181819
a(11)= .0000000000000000	b(11)=0000000000000000
a(12) = .1538461538461539	b(12) = .1554621683809524

Из таблицы 1 видно, что алгебраический порядок точности системы уравнений (5) при n₀ = 10 равен11,

квадратурной

а порядок погрешности

$$\int_{-1}^{1} f(z)dz = 5h \sum_{i=0}^{10} C_i f(x_i), 5h = 1, \sum_{i=0}^{10} C_i = 2, x_i = -1 + ih, i = \overline{0,10}$$

равен 12(C_i определяются с помощью (7)).

Из (6) для $n_0 = 10$ получим составную формулу:

$$\int_{a}^{b} f(z)dz = 5h\sum_{i=0}^{n} C_{i}f(x_{i}), h = \frac{(b-a)}{n}, \sum_{i=0}^{10} C_{i} = 2, x_{i} = a + ih, n = 10k$$
(8)

в которой весовые коэффициенты C_i определяются алгоритмом (9):

$$\begin{cases} ec\pi u \ j = 0 \ u\pi u \ j = n : C_j = \frac{16067}{299376}; \\ ec\pi u \ j \equiv 1 \mod 10 \ u\pi u \ j \equiv 9 \mod 10 : C_j = \frac{26575}{74844}; \\ ec\pi u \ j \equiv 2 \mod 10 \ u\pi u \ j \equiv 8 \mod 10 : C_j = -\frac{16175}{99792}; \\ ec\pi u \ j \equiv 3 \mod 10 \ u\pi u \ j \equiv 7 \mod 10 : C_j = \frac{5675}{6237}; \\ ec\pi u \ j \equiv 4 \mod 10 \ u\pi u \ j \equiv 6 \mod 10 : C_j = -\frac{4825}{5544}; \\ ec\pi u \ j \equiv 5 \mod 10 : C_j = \frac{17807}{12474}; \\ ec\pi u \ j \equiv 0 \mod 10 \ , j > 0, \ j < n : C_j = \frac{16067}{149688}; \end{cases}$$

Методы точных вычислений в стеганогафии описаны также в работах[6-9].

Для исследования рассмотренного алгоритма разработана программа, которая позволяет получать пороговые уровни и ошибку приближения для различного числа n (таблица 2) с учетом интегральных квадратурных формул(8, 9).

Таблица 2. Результаты исследований ошибки квантования распределения Коши для различного количества уровней

n	8	16	32	64	128
$G = dist^2$	$2.26*10^{-3}$	6,14 * 104	1,61* 104	4,51* 10-5	1,41* 10-5
dist	4,76* 10-2	2,48* 10-2	1,27* 10-2	6,72* 10 ⁻³	3,75* 10-3

На рисунке 1 представлен пример квантования функции плотности распределения Коши

$$f(x) = \frac{1}{\pi a \left(1 + \left(\frac{x-b}{a}\right)^2\right)} = \frac{1}{\pi (1+x^2)} npu \ a = 1, b = 0$$
 на основе предложенного подхода в метрике квадра-

тичного отклонения для числа ступеней a)m=10 и б)m=20.(на одну сторону). Полученные значения пороговых уровней для n=20(m=10 ступеней): 0; 0.264; 0.387; 0.504; 0.616; 0.729; 0.848; 0.972; 1.113; 1.261; 1.440; 1.632; 1.881; 2.155; 2.543; 2.986; 3.709; 4.588; 6.527; 9.250

Рис. 1. Результат квантования: а)для m=10; б)для m=20

формулы

Введите число ступенек
По умолчанию количество отрезков разонения для расчета интеграла=1000
теперь кол-во отрезков разонения для расчета интеграла можно вводить и тообо (с
лед.параметр-количество отрезков подразовения-100) - время расчета - где-то ми
рово Вравите количество отверков пользобнация для рашения интегрального уравнения
ведите количество отрезков подразонения для решения интегрального уравнения
но умолчанию количество отрезков подразовения для решения интегрального уравнен
Ввелите количество узлов(кратно 10) для расчета интеграла
Начало работы программы:
Время : год:2019 мес:9 дней:6 час:9 мин:41 сек:40 .
Прогресс: 100.0000 % Осталось: сут: 0 час: 0 мин: 0 секунд: 0 .
Время : год:2019 мес:9 дней:6 час:9 мин:41 сек:56 .
Оценка приближения к решению = 3.916165956096915Е-004
Вывод уровней квантования :
X(1)= 1.053671212772351E-008
X(2)= 0.2640000000000
X(3)= 0.387085123300085
X(4)= 0.50419999999974
X(5)= 0.615990660510715
X(6)= 0.72859999999999
X(7)= 0.848297887788875
X(8)= 0.97199999999922
X(9)= 1.11257148803550
X(10)= 1.2607999999989
X(11)= 1.43967431565539
X(12)= 1.63219999999985
X(13)= 1.88080392547260
X(14)= 2.154999999999999
X(15) = 2.54253590/9285/
X(16) = 2.985599999999/0
X(1) = 3.70884505481046
A(16) = 4.58800000000000000000000000000000000000
X(19)= 0.52/30034/06390
∧(20)= 9.25020000000512 Ownerski €(x) = στυσομιστοἕ δυμειματο
опоска (квадрат расстояния)-интеграл квадрата раности т(х) и ступенчатой функции
Paceroxine - 1.9769303061325312-002

Рис. 3. Уровни квантования для т=10

Рис. 4. График уровней квантования: для m=10

На рисунке 3,4 приведен результат работы программы для поиска оптимальных уровней квантования для числа ступеней m=10

Литература:

1. Пастухов Ю.Ф., Пастухов Д.Ф., Богуш Р.П., Пастухов А.Ю. Определение оптимальных уровней восстановления и квантования плотности нормального распределения в метрике квадратичного отклонения для алгоритма сжатия данных/Пастухов Ю.Ф.//Евразийское Научное Объединение. 2018. Т. 1. № 11(45). С. 16-21.

2. Моделирование сжатия радиолокационных данных дистанционного зондирования Земли на основе блочного адаптивного квантования / Богуш Р. П., [и др.] // Вестник ПГУ. Серия С. Фундаментальные науки. 2019. №4 — С. 7-15.

3. Карабанов Р. Ю., Пастухов Д. Ф., Пастухов Ю. Ф., Богуш Р. П. Наилучшее приближение монотонно убывающих функций кусочно — постоянными функциями в метрике квадратичного отклонения. В сборнике: Прикладная математика и информатика: современные исследования в области естественных и технических наук. Сборник научных статей IV научно- практической международной конференции (школысеминара) молодых ученых: в двух частях. 2018. С. 48-5

4. Пастухов Ю. Ф. Необходимые условия в обратной вариационной задаче/ Ю.Ф. Пастухов // Фундаментальная и прикладная математика. 7:1 (2001). С. 285–288.

5. Пастухов Ю.Ф., Пастухов Д.Ф., Богуш *Р.П.* Квантование функции плотности нормального распределения в метрике квадратичного отклонения. В сборнике: Информационно-коммуникационные технологии: достижения, проблемы, инновации (ИКТ-2018). Электронный сборник статей I международной научнопрактической конференции, посвященной 50-летию Полоцкого государственного университета. 2018. С. 92-95.

6. Пастухов Д.Ф. Оптимальный порядок аппроксимации разностной схемы волнового уравнения на отрезке / Д.Ф. Пастухов, Ю.Ф. Пастухов, Н.К. Волосова // Вестник Полоцкого университета. Серия С. Фундаментальные науки. – 2018. – № 12. – С. 60–74.

7. Пастухов Д.Ф. К вопросу о редукции неоднородной краевой задачи Дирихле для волнового уравнения на отрезке / Д.Ф. Пастухов, Ю.Ф. Пастухов, Н.К. Волосова // Вестник Полоцкого университета. Серия С. Фундаментальные науки. – 2018. – № 4. – С. 167–186.

8. Пастухов Д.Ф. Минимальная разностная схема для уравнения Пуассона на параллелепипеде с шестым порядком погрешности / Д.Ф. Пастухов, Ю.Ф. Пастухов, Н.К. Волосова // Вестник

Полоцкого университета. Серия С. Фундаментальные науки. – 2019. – № 4. – С. 154–173.

9. Пастухов Д.Ф., Волосова Н.К., Волосова А.К. Некоторые методы передачи Q-R кода с помощью стеганогафии / Д.Ф. Пастухов, Н.К. Волосова, А.К. Волосова // Мир транспорта. 2019. Т. 17. № 3.(82). С. 16–39.

10. Вакуленко С. П., Волосова Н. К., Пастухов Д. Ф. Способы передачи Q-R кода с помощью, стеганогафии / С. П. Вакуленко, Н.К. Волосова, Д. Ф. Пастухов // Мир транспорта. 2018. Т. 16. № 5(78). С. 14–25.

Пастухов Ю.Ф., Соловьев А.А., Карабанов Р.Ю., Субботин А.В., Пастухов Д.Ф. Роль обратной функции при определении оптимальных пороговых уровней восстановления. Вестник современных исследований.
 № 2.13 (29). С. 33-41.