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This paper introduces general definitions of convolutions without and with weight, obtains four new 

convolutions and generalized convolutions of the Fourier-cosine and Fourier-sine integral transforms. 

Furthermore, the paper investigates into a class of integral equations with the mixed Toeplitz-Hankel kernel. 

Namely, by using the constructed convolutions the explicit solutions are obtained. 

 

1. Introduction and summary of results 

The integral transforms of Fourier type and their convolutions have been studied for a long time ago, and 

they are applied in many fields of mathematics. Generalized convolutions for integral transforms and theirs 

applications were first studied by Churchill in 1940, then an idea of construction of the convolutions was 

formulated by Vilenkin in 1958 (see [4, 20]). There is an extensive list of materials concerning the applications 

of the integral transforms and of their convolutions (see [2, 5, 13, 17, 21]). 

One knows that there are several relations, explicit or implicit, between the integral transforms of Cauchy, 

Fourier, Hankel, Laplace, Mellin (see [13, 17]). In recent years, many papers devoted to those transforms are given 

the convolutions, generalized convolutions, polyconvolutions and theirs applications (see [2, 3, 14, 15, 16, 18]).  

A reason that the theory of integral transforms and their convolutions attracts a lot of attention is that each of 

convolutions, generally speaking, is a new transform which can become an object of study (see [3, 12, 15, 18, 19]). 

It is well-known that the Fourier-cosine and Fourier-sine integral transforms defined as follows: 

2

1
( )( ) cos ( ) : ( ),

(2 )
dc cd

T f x xyf y dy g x= =

p
т
Ў

                                        (1.1) 

and 

2

1
( )( ) sin ( ) : ( ),

(2 )
dc sd

T f x xyf y dy g x= =

p
т
Ў

                                       (1.2) 

where 
1 1 1 1cos : cos( ... ), sin : sin( ... ).d d d dxy x y x y  xy x y x y= + + = + +  Remark that for any 1( )df LО Ў , the fun-

ctions ( )( ), ( )( )c sT f x  T f x exist for every dx О Ў and they are the continuous functions vanishing at infinity  

(see [1, 11, 13, 17]). 

The main purpose of this paper is to present some general definitions of convolutions, construct 

convolutions and generalized convolutions with and without weight-function for transforms Tc, Ts, F (F denoted 

the Fourier transform) and to solve a class of integral equations of the convolution type in 1( ).dL Ў  

The paper is divided into three sections and organized as follows. 

Section 2 is divided into two subsections. In Subsection 2.1, there are the general definitions of 

convolutions with and without weight for linear operators mapping from a linear space U to a commutative 

algebra V. In Subsection 2.2, there are four generalized convolutions for the transforms Tc, Ts. Generally 

speaking, each of convolutions is a new transform which can become an object of study. As usual, there exist 

difierent generalized convolutions for the same transform.  

In Subsection 3.1, by using each of the obtained convolutions we construct the normed ring structures for 

1( ).dL Ў  In Subsection 3.2, we solve the integral equations with the mixed Toeplitz-Hankel kernel by the use of the 

constructed convolutions in Section 2. In particular, we obtain the explicit solutions in 1( )dL Ў of the integral 

equations with the mixed Toeplitz-Hankel kernel. 

                                                 
* This works is supported partially by Central Project-VNU, Grant QGTD-08.09. 
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2. Generalized convolutions for Tc, Ts 

This section contains two subsections. The general definitions of convolutions are in Subsection 2.1, and 

the generalized convolutions are in Subsection 2.2. 

2.1. General definitions of convolutions. In 1967, the construction methods for convolutions and 

generalized convolutions for arbitrary integral transforms were proposed by Kakichev, and in 1990 a concept of 

the generalized convolutions for arbitrary linear operators was first introduced (see [7]). However, for the 

integral transforms some results of convolutions and generalized convolutions were obtained in 1997 (see [8]), 

and the generalization of these results were presented in 1998 (see [9]). 

This subsection also introduces some definitions of convolutions and generalized convolutions for 

arbitrary linear operators from a linear space to a commutative algebra on the same field of scalars. 

Let U be a linear space and let V be a commutative algebra on the field κ. 
Let T ( , )L U  VО  be a linear operator from U to V: 

Definition 2.1. A bilinear map * : U × U : → U is called a convolution for T, if T(* (f, g)) = T(f)T(g)  

for any f, g UО : The image *(f, g) is denoted by * .
T

f g  

Let g  be an element in algebra V.  

Definition 2.2. A bilinear map * : U × U : → U is called the convolution with weight-element g  for T,  

if T(* (f, g)) = g T(f)T(g) for any f, g UО : The image *(f, g) is denoted by * .
T

f g
g

 

Each of the identities in Definitions 2.1, 2.2 is called the factorization identity (see [2, 9, 12, 16, 18]). 

Let U1, U2, U3 be the linear spaces on κ. Suppose that K1 1( , )L U  VО , 
2 2( , ),K L U  VО  

3 3( , )K L U  VО  

are the linear operators from U1, U2, U3 to V respectively. 

Definition 2.3. A bilinear map * : U1 × U2: → U3 is called the convolution with weight-element g  for K3, K1, K2 

(that in order) if K3(*(f, g)) = g K1(f)K2(g) for any 
1 2, .f U  g UО О  

The image *(f, g) is denoted by f 213
, ,

*
K K K

g

g. If g  is unit of V, we say briefly the convolution for K3, K1, K2. 

If U1 = U2 = U3 and K1 = K2 = K3, the convolution is denoted simply 
1

* ,
K

f g
g

 and 
1

*
K

f g if is unit of V (see [6, 14]). 

Remark 2.1. If operator K3 is injective, the convolution f
1 23

, ,
*

K K K

g

g is formal determined, since  

 f 1 23
, ,

*
K K K

g

g = 1

3 1 2( ( ) ( ))K K f K g- g for any 
1 2, .f U  g UО О  

In the next subsections, we consider Uk = L1( dЎ ) (k = 1, 2, 3) with the integral by Lebesgue’s mean, and V 

the algebra of all functions (real or complex) defined on dЎ . 

2.2. Convolutions for Tc, Ts 

There are four convolutions for Tc, Ts in this subsection. 

Theorem 2.1. If  f, g 1( ),dLО Ў then 

2

1
( * )( ) [ ( ) ( )] ( )

2(2 )
d

c
dT

f g x f x u x u g u du= - + +

p
т
Ў

                                         (2.1) 

defines the convolution for Tc, and the factorization identity is 

( * )( ) ( )( )( )( ).
c

c c c
T

T f g x T f x T g x=  

Proof. We prove ( * )
c

c
T

T f g 1( )dLО Ў . We have 

2

1
( * )( ) [ ( ) ( )] ( )

2(2 )
d d d

c
dT

f g x dx f x u x u g u du dx= - + + Ј

p
т т т
Ў Ў Ў

 

 

2 2

1 1
( ) ( ) ( ) ( ) ( ) < .

2(2 ) (2 )
d d d d dd d

g u du f x u dx f x u dx g u du f x dxй щЈ - + + Ј + Ґк ъл ы
p p

т т т т т
Ў Ў Ў Ў Ў
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We now prove the factorization identity. We have 

1
( )( )( )( ) cos cos υ ( ) (υ) υ

(2 ) d dc c d
T f x T g x xu x f u g dud= =

p т т
Ў Ў

 

= [ ]
1

cos ( υ) cos ( υ) ( ) (υ) υ
2(2 ) d dd

x u x u f u g dud+ + - =
p т т

Ў Ў
 

= [ ]
2

1 1
cos ( ) ( ) ( ) (υ) cos ( * )( ) ( * )( ).

2(2 )
(2 )

d d d
c c

cd d T T
xt f t y f t y g y g dydt xt f g t dt T f g x- + + = =

p
p

т т т
Ў Ў Ў

 

The theorem is proved. 

Corollary 2.1. We have 

(i)                                              
1

( * )( ) ( * )( ) ( *ğ)( ) .
2cT F F

f g x f g x f xй щ= +к ъл ы
   

 

(ii)                                             
1

( * )( ) ( * )( ) ( *ğ)( ) .
2 c cF T T

f g x f g x f x
й щ

= +к ъ
л ы

 

 

Theorem 2.2. If  f, g 1( )dLО Ў , then 

, ,
2

1
( * )( ) [ ( ) ( )] ( )

2(2 )
d

c s s
dT T T

f g x f x u f x u g u du= - - + +

p
т
Ў

                                    (2.2) 

 

defines the convolution of for Tc, and the factorization identity is 

, ,
( * )( ) ( )( )( )( ).

c s s
c s s

T T T
T f g x T f x T g x=  

Proof.  The fact that 
, ,
*

c s sT T T
f  g 1( )dLО Ў is proved similarly as the proof of 

Theorem 2.1. We prove the factorization identity. We have 

1
( )( )( )( ) sin sin υ ( ) (υ) υ

(2 ) d ds s d
T f x T g x xu x f u g dud= =

p т т
Ў Ў

 

= [ ]
1

cos ( υ) cos ( υ) ( ) (υ) υ
2(2 ) d dd

x u x u f u g dud- + + - =
p т т

Ў Ў
 

[ ]
1

cos ( ) ( ) ( )
2(2 ) d dd

xt f t y f t y g y dydt= - - + + =
p т т

Ў Ў
 

, , , ,
2

1
cos ( * )( ) ( * )( ).

(2 )
d

c s s c s s
cd T T T T T T

xt f g t dt T f g x= =

p
т
Ў

 

The theorem is proved. 

Corollary 2.2. We have 

(i)                                       
, ,

1
( * )( ) ( * )( ) ( *ğ)( ) .

2c s sT T T F F
f g x f g x f xй щ= - +к ъл ы

 

(ii)                                      
,,

1
( * )( ) ( * )( ) ( *ğ)( ) .

2 c s s cF T T T T
f g x f g x f x

й щ
= - +к ъ

к ъл ы
  

Theorem 2.3. If  f, g 1( ),dLО Ў  then 

    
, ,

2

1
( * )( ) [ ( ) ( )] ( )

2(2 )
d

s c s
dT T T

f g x f x u f x u g u du= - - +

p
т
Ў

                                     (2.3) 
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defines the convolution for Ts Tc, Ts, and the factorization identity is 

, ,
( * )( ) ( )( )( )( ).

s c s
s c c

T T T
T f g x T f x T g x=  

Proof. It sufices to prove the factorization identity. We have 

1
( )( )( )( ) cos sin υ ( ) (υ) υ =

(2 ) d dc c d
T f x T g x xu x f u g dud=

p т т
Ў Ў

 

[ ]
1

sin ( υ) sin ( υ) ( ) (υ) υ
2(2 ) d dd

x u x u f u g dud= + - - =
p т т

Ў Ў
 

[ ]
1

sin ( ) ( ) ( )
2(2 ) d dd

xt f t y f t y g y dydt= - - + =
p т т

Ў Ў
 

, , , ,
2

1
sin ( * )( ) ( * )( ).

(2 )
d

s c s s c s
sd T T T T T T

xt f g t dt T f g x= =

p
т
Ў

 

The theorem is proved. 

Corollary 2.3. We have 

(i)                                                      
, ,

1
( * )( ) ( * )( ) ( *ğ)( ) .

2s c sT T T F F
f g x f g x f xй щ= -к ъл ы

 

(ii)                                                   
, , , ,

1
( * )( ) ( * )( ) ( * ğ)( ) .

2 s c s s c sF T T T T T T
f g x f g x f x

й щ
= -к ъ

л ы
   

 

Theorem 2.4. If  f, g 1( ),dLО Ў then 

       
, ,

2

1
( * )( ) [ ( ) ( )] ( )

2(2 )
d

s s c
dT T T

f g x f x u f x u g u du= - + +

p
т
Ў

                                      (2.4) 

 

defines the convolution for Ts, Ts, Tc, and the factorization identity is 

, ,
( * )( ) ( )( )( )( ).

s s c
s s c

T T T
T f g x T f x T g x=  

Proof. It suffices to prove the factorization identity. We have 

1
( )( )( )( ) sin cos υ ( ) (υ) υ =

(2 ) d ds c d
T f x T g x xu x f u g dud=

p т т
Ў Ў

 

[ ]
1

sin ( υ) sin ( υ) ( ) (υ) υ
2(2 ) d dd

x u x u f u g dud= + + - =
p т т

Ў Ў
 

[ ]
1

sin ( ) ( ) ( )
2(2 ) d dd

xt f t y f t y g y dydt= - + + =
p т т

Ў Ў
 

, , , ,
2

1
sin ( * )( ) ( * )( ).

(2 )
d

s s c s s c
sd T T T T T T

xt f g t dt T f g x= =

p
т
Ў

 

The theorem is proved. 
 

Corollary 2.4. We have 

(i)                                                  
, ,

1
( * )( ) ( * )( ) ( *ğ)( ) .

2s s cT T T F F
f g x f g x f xй щ= -к ъл ы

 

(ii)                                               
, , , ,

1
( * )( ) ( * )( ) ( * ğ)( ) .

2 s s c s s cF T T T T T T
f g x f g x f x

й щ
= +к ъ

л ы
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Remark 2.2. The non-triviality of the convolutions in this subsection is proved as follows. Transforms Tc 

and Ts are the linear maps defined on X := 1( )dL Ў .We see that X \ ker Tc ≠ 0, and X / ker Ts ≠ 0. For convolutions 

(2.1); (2.2), and (2.3); (2.4) we choose f, gО X \ ker Tc; f, gО X \ ker Ts, and fО X \ ker Tc, gО X \ ker Ts; fО X \ ker 

Ts, gО X / ker Tc, respectively. The non-triviality of each of the convolutions now follows from its 

factorization identity. 

3. Applications 

3.1. Normed ring structures on 1( )dL Ў  

Definition 3.1. (see Naimark [10]) A vector space V with a ring structure and a vector norm is called the 

normed ring if υω υ ωЈ , for all υ,ω .VО  

If V has a multiplicative unit element e, it is also required that e = 1. 

Let X denote the linear space 1( )dL Ў . Now we define norms for f О X. For convolutions (2.1), (2.2), 

(2.3), (2.4), the norm is 

2

1
( ) .

(2 )
dd

f f x dx=

p
т
Ў

 

Theorem 3.1. X, equipped with each of the convolution multiplications listed above, becomes a non-

commutative normed ring having no unit. 

Proof. The proof for the first statement is divided into two steps. 

Step 1. X has a normed ring structure. It is clear that X, equipped with each of the above listed convolution 

multiplications, has a ring structure. We have to prove the multiplicative inequality. We now prove that for 

convolution (2.3), the proof that for the others is similar. We have 

, ,
2

1 1
( * )( ) ( ) ( ) ( )

(2 )
(2 )

d d d
s c s

d dT T T
f g x dx f x u f x u g u dudxЈ - - + Ј

p
p

т т т
Ў Ў Ў

 

1 1
( ) ( ) ( ) ( )

2(2 ) 2(2 )d d d dd d
f x u g u dxdu f x u g u dxduЈ - + + =

p pт т т т
Ў Ў Ў Ў

 

1 1
( ) ( ) ( ) ( )

2(2 ) 2(2 )d d d dd d
g u du f x u dx g u du f x u dx= - + + =

p pт т т т
Ў Ў Ў Ў

 

2 2

1 1 1
( ) ( ) ( )

2
(2 ) (2 )

d dd d
g u du f x u d x u

ж цж цч чз зч чз зч чз з= - - +ч чз зч чз зч чз зч чч чз зp pи ши ш
т т
Ў Ў

 

2 2

1 1 1
( ) ( ) ( ) .

2
(2 ) (2 )

d dd d
g u du f x u d x u f g

ж цж цч чз зч чз зч чз з+ + + = Чч чз зч чз зч чз зч чч чз зp pи ши ш
т т
Ў Ў

 

Thus 
3

1

* .
T

f g f g
g

Ј Ч  

Step 2. X has no unit. For briefness of our proof, let us use the common symbols: * for the convolutions 

listed above. First, we prove Ts
0 0F є and 0 0 ,cT F = F  where 

21

2
0 ( ) .

x

x e
-

F =  Indeed, it is easy to check that 

0( )( ) 0.sT xF є On the other hand, we have 1

0 0 0( )( ) ( )( ) ( )F x F x x-F = F = F  (see [11, Lemma 7.6]). This implies 

0 0 0( ) ( ) .c s c sT iT T iT- F = + F = F Since 
0 0.cT F = F  

Suppose that there exists an eО X such that f = f * e = e * f for every f О X. By choosing 0( ) ( )f x x= F we 

have 0 0 0* * .e eF = F = F  
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(i) Convolution (2.1). By the factorization identity of convolutions, we have 
0 0 .c c cT T T eF = F  Since 

0 0 ,cT F = F  

we get 
0 0 .cT eF = F  By 

0 ( ) 0xF № for every x dО Ў , we obtain ( )cT e x = 1 for every x dО Ў . The last identity 

contradicts to the Riemann-Lebesgue as lim ( ) 0c
x

T e x
® Ґ

= (see [1, Theorem 31]). 

(ii) Convolution (2.2). By the factorization identity
0 0( )( ).c s sT T T eF = F  

Using the above proved identity for
0F , we have 

0 0.F =  This fails. 

(iii) Convolutions (2.3), (2.4). By the factorization identities, we get 
0 0 .s c sT T T eF = F  It follows 

0 0.c sT T eF =  

By 
0 0( )( ) ( ) 0cT x xF = F № for every x dО Ў , we get 0.sT e є Inserting this identity into the factorization identity 

we get that Tsf = 0 for every f XО , which contradicts to 0sT № on X. 

Hence, X has no unit. 

We now prove the last conclusions of the theorem. 

To end the proof we prove the non-commutativity of convolutions (2.1), (2.2), (2.3), (2.4). Suppose that 

one of them is commutative, i.e. * * ,f g g f= for any f,  g .XО  Changing variables : , :x y t x y t- = + = in each 

of the integral terms in the left-side of the identities * * ,f g g f=  (for four convolutions), we find 

( ) ( ) ( ) ( ) ,
d d

g x u f u du g x u f u du- + = +т т
Ў Ў

 for almost every x dО Ў                      (3.1) 

and for every f, g 1 dLО Ў Write 

{ }: : [0,1], 1,...,d

ix x i dW = О О =Ў  

the d-dimension box in dЎ . We set two functions f, g 1( )dLО Ў as follows 

1, ,
( )

0, ,

      if  x
f x

     if  x

м О Wпп= н
п П Wпо

 

and                                                             1

1
... ,

( ) 2

0, .

dd
x x ,      if  x

g x

                 if  x

мпп О Wп= н
пп П Wпо

  

 

By integrating, we get 

2

1

2

1

( 1) , ( 1,0], 1,..., ,

( ) ( ) (1 ), (0,1], 1,..., ,

0, otherwise,

d

d

i i
i

d

i i
i

x     x i d

g x u f u du x     x i d

                 

=

=

мппХ + О - " =ппппппп+ = Х - О " =н
пппппппппо

т
Ў

 

2

1

2

1

(1 ), ( 1,0], 1,..., ,

( ) ( ) ( 1) , (0,1], 1,..., ,

0, otherwise,

d

d

i i
i

d

i i
i

x     x i d

g x u f u du x     x i d

                 

=

=

мппХ - О - " =ппппппп- + = Х - + О " =н
пппппппппо

т
Ў

 

The identity (3.1) fails in this case. The theorem is proved completely. 

Remark 3.1. This theorem shows a fact that the convolution for one transform can be non-commutative. 

Namely, convolution (2.1) for Tc, Tc,Tc is noncommutative. 
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3.2 Integral equations of convolution type 

Consider the convolution integral equation with the mixed Toeplitz-Hankel kernel  

1 2

2

1
( ) [ ( ) ( )] ( ) ( ),

(2 )
dd

x k x y k x y y dy p xl j + + + - j =

p
т
Ў

                                  (3.2) 

where l О Ј  is predetermined, k1, k2, p are given, φ(x) is to be determined. 

Since the convolutions in Section 2 are considered in 1 ( )dL Ў (not yet considered in 2 ( )dL Ў ), given 

functions are assumed in 1( )dL Ў , and unknown function will be determined there. In what follows, the function 

identity f(x) = g(x) means that it is valid for almost every .dx О Ў  However, if the functions f, g are continuous, 

there should be emphasis that the identity f(x) = g(x) is true for every .dx О Ў  

Now let us write 

2

, 2 1 2 2 1 1 2 2 1( ) : 2 ( )( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( )),
c sT T c c c s sD x T k x T k x k x T k x k x T k x k x T k x k x= l + l + + - + + -    (3.3) 

2 1 2 1( ) : ( ) ( ( ) ( )) ( ) ( ( ) ( )) ( ),
cT c c c s sD x T p x T k x k x T p x T k x k x T p x= l + - + -                             (3.4) 

1 2 1 2( ) : ( ) ( ( ) ( )) ( ) ( ( ) ( )) ( ).
sT s c s s cD x T p x T k x k x T p x T k x k x T p x= l + + - +                           (3.5) 

Theorem 3.2. (a) Assume that one the following conditions are fulfilled: 

(i)                                    , ( )
c sT TD x ≠ 0 for every x ,dО Ў  and 1

,

( ).c s

c s

T T d

T T

D iD
L

D

-
О Ў  

(ii)                                  , ( )
c sT TD x ≠ 0 for every x dО Ў ; and 1

,

( ).c s

c s

T T d

T T

D iD
L

D

+
О Ў  

If equation (3.2) has solution in 1( )dL Ў then it is solvable in a closed form: 

1

, ,

( ) ( ), ( ) ( )c s c s

c s c s

T T T T

T T T T

D iD D iD
x F x    x F x

D D

-
ж ц ж ц- +ч чз зч чj = j =з зч чз зч чч чз зи ш и ш

                                            (3.6) 

according to conditions (i), (ii). 

(b) Assume that conditions (i) and (ii) are fulfilled. Then equation (3.2) has 

solution in 1( )dL Ў if and only if  

 1

1

, ,

( ).c s c s

c s c s

T T T T d

T T T T

D iD D iD
F F L

D D

-
ж ц ж ц- +ч чз зч ч= Оз зч чз зч чч чз зи ш и ш

Ў                                                     (3.7) 

Proof. We prove item (a). From convolutions (2.1), (2.2) it follows that 

, ,
2

1
( ) ( ) ( * )( ) ( * )( ),

(2 )
d

c c s s
d T T T T

f x u g u du f g x f g x+ = +

p
т
Ў

 

, ,
2

1
( ) ( ) ( * )( ) ( * )( ).

(2 )
d

c c s s
d T T T T

f x u g u du f g x f g x- = -

p
т
Ў

 

By the factorization identities of Theorems 2.1, 2.2 we get 

 

2

1
( ) ( ) ( ) ( ) ( ) ( ),

(2 )
dc c c s sd

T f x u g u du T f x T g x T f x T g x
ж цчз + = +чз чз чз ччз pи ш

т
Ў

                                 (3.8) 

                      

2

1
( ) ( ) ( ) ( ) ( ) ( ),

(2 )
dc c c s sd

T f x u g u du T f x T g x T f x T g x
ж цчз - = -чз чз чз ччз pи ш

т
Ў

                                  (3.9) 

for any f, g 1( ).dLО Ў  
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Suppose that equation (3.2) has a solution 
1( ).dLj О Ў Applying Tc to both sides of equation (3.2), using (3.8) 

and (3.9) we obtain 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).c c c s s c c s s cT x T k x T x T k x T x T k x T x T k x T x T p xl j + j + j + j - j =             (3.10) 

On the other hand, from convolutions (2.3) and (2.4) it follows 

, , , ,
2

1
( ) ( ) ( * )( ) ( * )( ),

(2 )
d

s s c s c s
d T T T T T T

f x u g u du f g x f g x- = +

p
т
Ў

 

, , , ,
2

1
( ) ( ) ( * )( ) ( * )( ).

(2 )
d

s s c s c s
d T T T T T T

f x u g u du f g x f g x+ = -

p
т
Ў

 

By the factorization identities of these convolutions we have 

2

1
( ) ( ) ( ) ( ) ( ) ( ),

(2 )
ds s c c sd

T f x u g u du T f x T g x T f x T g x
ж цчз - = +чз чз чз ччз pи ш

т
Ў

                             (3.11) 

2

1
( ) ( ) ( ) ( ) ( ) ( ),

(2 )
ds s c c sd

T f x u g u du T f x T g x T f x T g x
ж цчз + = -чз чз чз ччз pи ш

т
Ў

                            (3.12) 

for any f, g 1( ).dLО Ў Applying Ts to both sides of equation (3.2), using (3.11) and (3.12) we get 

 
1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).s s c c s s c c s sT x T k x T x T k x T x T k x T x T k x T x T p xl j + j - j + j + j =              (3.13) 

Therefore, we have the system of two linear equations 

 
1 2 1 2

1 2 2 1

( )[ ( )( )] ( )[ ( )( )] ( ),

( )[ ( )( )] ( )[ ( )( )] ( ),

c c s s c

c s s c s

T x T k k x T x T k k x T p x

T x T k k x T x T k k x T p x

м j l + + + j - =пппн
п j + + j l + - =ппо

                            (3.14) 

where Tcφ(x), Tsφ(x) are unknown functions. The determinants of system (3.14):  

DTc,Ts(x), DTc(x), DTs(x) as in (3.3), (3.4), (3.5). 

Since DTc,Ts(x) ≠ 0 for every x ,dО Ў  it is easy to find (Tcφ)(x), (Tsφ)(x). 

Unfortunately, Tc and Ts have no inversion transforms. Now, we use the inversion transforms of the Fourier 

integral transform (see [11, Theorm 7.7]) to obtain function φ(x) as follows. 

Proof of conditions (i), (ii). Since DTc,Ts(x) ≠ 0 for every x ,dО Ў  we get 

, ,

( ) ( )
( ) , ( ) .

( ) ( )

c s

c s c s

T T

c s

T T T T

D x D x
T x    T x

D x D x
j = j =  

Hence 

1

, ,

( ) ( ) ( ) ( )
( )( ) , ( )( ) .

( ) ( )

c s c s

c s c s

T T T T

T T T T

D x iD x D x iD x
F x    F x

D x D x

-
- +

j = j =  

Using the assumptions (i), (ii) and the inversion theorem of the Fourier integral transform, we get (3.6). Item (a) 

is proved. Now we prove item (b). 

Necessity. Suppose that (3.2) has solution  1( ).dLj О Ў By the proof of item (a),  

1

, ,

( ) ( ) ( ) ( )
( )( ) , ( )( ) .

( ) ( )

c s c s

c s c s

T T T T

T T T T

D x iD x D x iD x
F x     F x

D x D x

-
- +

j = j =  

Now we can apply the inversion theorem of the Fourier transform to obtain 

1

, ,

( ) ( ), and ( ) ( ).c s c s

c s c s

T T T T

T T T T

D iD D iD
x F x     x F x

D D

-
ж ц ж ц- +ч чз зч чj = j =з зч чз зч чч чз зи ш и ш
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The necessity is proved. 

Sufficiency. Consider the function 

1

, ,

( ) ( ) ( )c s c s

c s c s

T T T T

T T T T

D iD D iD
x F x F x

D D

-
ж ц ж ц- +ч чз зч чj = =з зч чз зч чч чз зи ш и ш

 

(this function belongs to 1( )).dL Ў By the inversion theorem of the Fourier trans form, we get 

1

, ,

, .c s c s

c s c s

T T T T

T T T T

D iD D iD
F    F

D D

-
- +

j = j =  

Since F = Tc – iTs and F–1 = Tc + iTs, we find two functions 

, ,

( ) ( )
( ) , ( ) ,

( ) ( )

c s

c s c s

T T

c s

T T T T

D x D x
T x    T x

D x D x
j = j =                                               (3.15) 

and they satisfy (3.14). Furthermore, we have 

1 2

1 2

,

[ ( )( )] ( )
[ ( )( )] ( ) ,

( )
s

c Tc

c c

Tc T

T k k x D x
T k k x T x

D x

l + +
l + + j =  

1 2

1 2

,

( )( ) ( )
( )( ) ( ) .

( )
s

s Ts

s s

Tc T

T k k x D x
T k k x T x

D x

-
- j =  

Then 

1 2 1 2( )[ ( )( )] ( )[ ( )( )] ( ).c c s s cT x T k k x T x T k k x T p xj l + + + j - =  

Hence 

1 2 1 2
, ,

[ ( )* ( ) * ( ) ( )] 0.
c c s s

c
T T T T

T k k k k x p xl j + + j + - j - =  

By the similar procedure for the second function in we obtain 

1 2 2 1
, , , ,

[ ( ) * ( ) * ]( ) ( ).
s s c s c s

s s
T T T T T T

T k k k k x T p xl j + + j + - j =  

Using (3.8), (3.9), (3.10), (3.11), (3.12), (3.13) and F = Tc – iTs we get 

1 2

2

1
( ) [ ( ) ( )] ( ) ( ).

(2 )
dd

F x k x y k x y y dy Fp x
й щ
к ъl j + + + - j =
к ъ
к ъpл ы

т
Ў

 

Hence, 

1 2

2

1
( ) [ ( ) ( )] ( ) ( ) 0.

(2 )
dd

F x k x y k x y y dy p x
й щ
к ъl j + + + - j - =
к ъ
к ъpл ы

т
Ў

 

By the inversion theorem of the Fourier transform, the function φ(x) satisfies equation (3.2) for almost every  

x 1( ).dLО Ў The theorem is proved completely. 
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