ФУНДАМЕНТАЛЬНЫЕ НАУКИ. Химия

ХИМИЯ

УДК 535.33: 548.0

ВЛИЯНИЕ ВОЗБУЖДЕННЫХ КОНФИГУРАЦИЙ НА ИНТЕНСИВНОСТИ АБСОРБЦИОННЫХ ПЕРЕХОДОВ ИОНА Er³⁺ В KYb(WO₄)₂

канд. физ.-мат. наук, доц. Е.Б. ДУНИНА, д-р физ.-мат. наук, проф. А.А. КОРНИЕНКО (Витебский государственный технологический университет), Л.А. ФОМИЧЁВА (Институт технической акустики НАН Беларуси, Минск)

Установлено, что возбужденные конфигурации существенно влияют на интенсивности абсорбционных переходов иона эрбия в двойных вольфраматах. Наиболее корректно влияние возбужденных конфигураций можно учесть в приближении промежуточного конфигурационного взаимодействия. Применение метода Джадда – Офельта, или модифицированных теорий интенсивности, правомерно только к изотропным средам.

Показано, что в анизотропных средах результаты измерения абсорбционных переходов должны быть усреднены; более адекватным для описания абсорбционных переходов является приближение промежуточного конфигурационного взаимодействия.

Введение. В настоящее время большой практический интерес вызывает проблема создания компактных лазеров, излучающих в инфракрасной области вблизи 1,5 и 3,0 мкм. Такие лазеры применяются в медицине и средствах коммуникации. Твердотельные лазеры оптимальные кандидаты для большинства приложений из-за их прочности, относительной простоты и удобного применения [1]. При диодной накачке они обладают хорошей эффективностью излучения в области 6667 и 3333 мкм. Кристалл КYb(WO₄)₂, активированный ионами Er³⁺, является оптимальной активной средой для конструирования вышеупомянутых лазеров. В связи с этим было выполнено экспериментальное исследование оптических характеристик этого кристалла [1].

Описание экспериментальных результатов по интенсивностям абсорбционных переходов встречает трудности принципиального характера. Обычно описание выполняют в приближении Джадда – Офельта [2, 3], справедливом для оптически изотропных сред и для ионов, у которых энергия возбужденных конфигураций существенно больше энергии мультиплетов основной конфигурации. Для исследуемого кристалла ни одно из этих условий не выполняется – кристалл KYb(WO₄)₂ обладает сильной оптической анизотропией и энергия возбужденной конфигурации $4f^{N-1}5d$ иона Er^{3+} сравнима по величине с энергией высоколежащих мультиплетов. В связи с этим исследование границ применимости различных приближений для описания экспериментальных результатов является актуальной задачей.

В данной работе показано, что для анизотропных сред, прежде чем применять метод Джадда – Офельта [2, 3] или модифицированные теории интенсивностей [4, 5], необходимо выполнить усреднение по принципиальным направлениям. Особенно это важно, если учитывается влияние возбужденных конфигураций. Учет возбужденных конфигураций позволяет значительно улучшить точность описания интенсивности абсорбционных переходов.

Основные теоретические положения. Интенсивности межмультиплетных переходов можно характеризовать вероятностями спонтанных переходов из возбужденного мультиплета *J* [6]:

$$A_{JJ'} = \frac{8 \cdot \pi^2 e^2 n^2 \sigma^2}{mc} f_{JJ'},$$
 (1)

где e – заряд электрона; n – показатель преломления среды; σ – среднее волновое число в см⁻¹; m – масса электрона; c – скорость света.

Сила осциллятора $f_{JJ'}$ зависит от силы линии перехода $S_{JJ'}$ следующим образом:

$$f_{JJ'} = \frac{8\pi^2 mc\sigma}{3(2J+1)he^2} \left[\frac{(n^2+2)^2}{9n} S_{JJ'}^{ed} + nS_{JJ'}^{md} \right].$$
 (2)

125

Силу линии магнитных дипольных переходов S_{JJ}^{md} с хорошей точностью можно вычислить по формуле:

$$S_{JJ'}^{md} = \frac{e^2 h^2}{16\pi^2 m^2 c^2} \left\langle n f^N \alpha J \| \vec{L} + 2\vec{S} \| n f^N \alpha' J' \right\rangle^2.$$
(3)

Здесь $\langle nf^N \alpha J \| \vec{L} + 2\vec{S} \| nf^N \alpha' J' \rangle$ – приведенный матричный элемент оператора $\vec{L} + 2\vec{S}$, вычисленный на функциях мультиплетов $| nf^N \alpha J \rangle$ в приближении свободного иона.

Что касается силы линий межмультиплетных электрических дипольных переходов $S_{JJ'}^{ed}$, то ситуация более сложная. Электрические дипольные переходы между состояниями конфигурации $4f^N$ свободного иона запрещены. Для ионов в кристалле этот запрет частично снимается из-за примеси состояний возбужденных конфигураций. Результаты наших исследований [7, 8] показывают, что наиболее значимыми будут возбужденные конфигурации противоположной четности типа $4f^{N-1}5d$ (их примесь осуществляется кристаллическим полем нечетной симметрии) и конфигурации с переносом заряда или эффекты ковалентности.

Основным определением силы линии перехода является

$$S_{JJ'}^{ed} = \sum_{M,M'} \left| \left\langle \gamma JM \left\| \vec{D} \right\| \gamma' J'M' \right\rangle \right|^2 = \sum_{\pi,M,M'} (-1)^{\pi} \left\langle \gamma JM \left| D_{\pi}^1 \right| \gamma' J'M' \right\rangle \left\langle \gamma' J'M' \left| D_{\pi}^1 \right| \gamma JM \right\rangle,$$
(4)

где $|\gamma JM\rangle$ – функции иона-активатора в кристалле; D_{π}^{1} – оператор электрического дипольного момента.

На основе определения (4) в зависимости от приближения, в котором учитывается действие возбужденных конфигураций, получаются различные выражения для S_{II}^{ed} .

В приближении слабого конфигурационного взаимодействия справедливо следующее выражение:

$$S_{JJ'} = e^2 \sum_{k=2,4,6} \Omega_k \left\langle \gamma J \left\| U^k \right\| \gamma' J' \right\rangle^2,$$
(5)

где Ω_k – параметры интенсивности; $\langle \gamma J \| U^k \| \gamma' J' \rangle$ – приведенные матричные элементы единичного тензора U^k , вычисленные на функциях свободного иона. Согласно микроскопическим моделям параметры интенсивности не могут принимать отрицательное значение: $\Omega_k \ge 0$. Приближение слабого конфигурационного взаимодействия справедливо, когда энергия возбужденных конфигураций значительно превосходит энергии мультиплетов конфигурации $4f^N$ или когда энергетические зазоры между возбужденной конфигурацией и любым мультиплетом основной конфигурации можно считать одинаковыми. В этом приближении набор параметров $\Omega_2, \Omega_4, \Omega_6$ – единый для всех переходов конфигурации $4f^N$. Кроме того, следует иметь в виду, что формула (4) переходит в простое выражение (5) только после суммирования по проекциям: π, M, M' , которое возможно только для изотропных сред.

В приближении промежуточного по силе конфигурационного взаимодействия учитывается, что влияние возбужденной конфигурации на мультиплет тем сильнее, чем меньше энергетический зазор между ними [4, 9]:

$$S_{JJ'} = e^2 \sum_{k=2,4,6} \underbrace{\Omega_k \left[1 + 2R_k \left(E_J + E_{J'} - 2E_f^0 \right) \right]}_{\widetilde{\Omega}_k} \langle \gamma J \| U^k \| \gamma' J' \rangle^2, \tag{6}$$

где R_k – дополнительные параметры, зависящие от типа возбужденной конфигурации; $E_J, E_{J'}$ – энергии мультиплетов, включенных в переход; E_f^0 – энергия центра тяжести конфигурации $4f^N$. Знак параметров R_k может быть любым. В этом приближении $\tilde{\Omega}_k$ линейно зависят от энергии мультиплетов, включенных в переход. В некоторых случаях, когда определяющим оказывается действие только возбужден-

ной конфигурации противоположной четности для параметров R_k , можно применить следующее простое соотношение:

$$R_2 = R_4 = R_6 = \frac{1}{2\left|\Delta_{df}\right|},$$

где Δ_{df} – энергетический зазор между конфигурациями противоположной четности $4f^{N-1}5d$ и основной $4f^N$.

В некоторых лазерных материалах могут реализоваться условия сильного конфигурационного взаимодействия. К таким средам, например, относятся стекла, активированные лантаноидами и актиноидами.

В случае сильного конфигурационного взаимодействия для силы линии межмультиплетного перехода будет более адекватным выражение [5]:

$$S_{JJ'} = e^{2} \sum_{k=2,4,6} \underbrace{\Omega_{k} \left[\frac{\Delta}{\Delta - E_{\gamma J}} + \frac{\Delta}{\Delta - E_{\gamma' J'}} \right]^{2}}_{\overline{\Omega_{k}}} \left\langle \gamma J \| U^{k} \| \gamma' J' \right\rangle^{2}, \tag{7}$$

где Δ – энергия возбужденной конфигурации. В этом приближении параметры интенсивности $\overline{\Omega}_k$ зависят от энергии мультиплетов по более сложному закону, чем $\widetilde{\Omega}_k$ в формуле (6).

Приведенные выше формулы позволяют вычислить важные люминесцентные характеристики:

- излучательное время жизни возбужденного мультиплета J:

$$\tau_J = \frac{1}{\sum_{J'} A_{JJ'}};\tag{8}$$

- коэффициенты ветвления люминесценции с этого уровня:

$$\beta_{JJ'} = \tau_J A_{JJ'} \quad . \tag{9}$$

В формулах (8) и (9) через j' обозначены мультиплеты, имеющие меньшую энергию, чем уровень J.

Сравнение с экспериментом. Интенсивности абсорбционных переходов монокристаллов типа KYb(WO₄)₂ измеряются отдельно для каждого принципиального направления: N_g , N_m , N_p [1, 10].

Затем каждый набор данных отдельно обрабатывается согласно формуле (5) и определяются три набора параметров интенсивности. Набор параметров интенсивности, необходимый для вычисления люминесцентных характеристик, берется как среднее из этих трех наборов. С точки зрения принципов микроскопической модели такой подход не оправдан. Как упоминалось выше, формулы (5), (6) и (7) справедливы только для изотропных сред и не применимы отдельно для каждого принципиального направления, так как при их получении выполнено усреднение по всем направлениям и поляризациям. Формулы (5), (6) и (7) было бы корректным применять для описания интенсивностей абсорбционных переходов пакета из трех одинаковой толщины пластин, вырезанных определенным образом из монокристалла для создания модели изотропной среды. С другой стороны, сила линии перехода линейно зависит от параметров интенсивности. Следовательно, между средним значением силы линии и средними параметрами интенсивности должно существовать взаимно однозначное соответствие. В итоге параметры интенсивности, применяемые для вычисления люминесцентных характеристик, должны получаться одинаковыми при корректном и некорректном способе определения.

Однако на практике этот вывод не всегда подтверждается. В этом можно убедиться, анализируя результаты описания экспериментальных значений сил осцилляторов абсорбционных переходов, представленных в таблице 1.

Описание было выполнено в приближении слабого конфигурационного взаимодействия по формулам (2), (5) и в приближении промежуточного конфигурационного взаимодействия по формулам (2), (6). Результаты представлены в таблице 2.

Формулы (5) и (6) содержат разное количество свободно варьируемых параметров, поэтому для сравнения точности описания и для выводов об адекватности приближения удобно воспользо-

ваться понятием среднеквадратичного отклонения вычисленных значений сил осцилляторов от экспериментальных:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (f_{\exp rt}(i) - f_{calc}(i))^{2}}{n - p}},$$
(10)

где *n* – число экспериментальных уровней; *p* – число варьируемых параметров.

Таблица 1

Экспериментальные силы осцилляторов [1] абсорбционных переходов ${}^4I_{15/2} \rightarrow {}^{2S+1}L_J$

$^{2S+1}L_{J} \\$	$f_{ m exp}$ · 10 ⁶							
	N _g	N_m	N_p	$(N_{g} + N_{m} + N_{p})/3$				
${}^{4}I_{13/2}$	2,2132	5,0889	2,8095	3,3705				
⁴ F _{9/2}	2,7293	7,6167	4,1962	4,8474				
${}^{4}S_{3/2}$	0,2729	1,8947	0,9575	1,0417				
${}^{2}H_{11/2}$	11,0708	70,6222	35,4221	39,0383				
${}^{4}F_{7/2}$	2,1625	4,6311	2,2903	3,0280				
${}^{4}F_{5/2} + {}^{4}F_{3/2}$	0,6574	1,9723	0,6126	1,0808				
${}^{2}H_{9/2}$	0,6210	2,2649	0,7489	1,2116				
$^{4}G_{11/2}$	27,0592	144,0785	71,5980	80,9119				
${}^{4}G_{9/2} + {}^{2}K_{15/2}$	2,0436	13,9839	17,5201	11,1825				

Таблица 2

Результаты описания абсорбционных переходов в приближении слабого (формулы (2), (5), вариант I) и промежуточного (формулы (2), (6), вариант II) конфигурационного взаимодействия

	Принципиальное направление									
Параметры	Ng		N _m		N _p		$(N_g + N_m + N_p)/3$			
	Ι	II	Ι	II	Ι	II	Ι	II		
$\Omega_2 \cdot 10^{20}$, см ²	6,959	19,121	38,776	52,256	16,573	20,566	20,767	34,082		
$Ω_4 \cdot 10^{20}$, cm ²	1,085	0,827	6,161	19,050	7,949	32,482	5,064	15,497		
$\Omega_6 \cdot 10^{20}$, см ²	0,970	2,308	2,150	2,743	0,800	2,855	1,308	1,940		
$R_2 \cdot 10^{-4}$, см	_	0,077	_	0,033	-	0,030	-	0,049		
$R_4 \cdot 10^{-4}$, см	_	0,000	-	0,079	-	0,085	-	0,077		
$R_6 \cdot 10^{-4}$, см	_	0,054	_	0,010	_	0,072	_	0,029		
$\sigma \cdot 10^6$	1,372	0,844	3,486	1,914	3,690	2,302	2,464	1,0861		
		Средние значения параметров интенсивности,								
	вычисленные по полученным результатам, для N_g , N_m и N_p									
		Ι			II					
$\Omega_2 \cdot 10^{20}$, см ²	20,769				30,648					
$\Omega_4 \cdot 10^{20}$, см ²	5,065				17,453					
$\Omega_6 \cdot 10^{20}, \ \mathrm{cm}^2$	1,307				2,635					
$R_2 \cdot 10^{-4}$ см					0,047					
$R_4 \cdot 10^{-4}$, см	-				0,055					
$R_6 \cdot 10^{-4}$, см	-				0,045					

Прежде всего, можно сделать вывод, что более адекватным для описания абсорбционных переходов является приближение промежуточного конфигурационного взаимодействия: значение σ в этом приближении на 38...56 % меньше, чем в приближении слабого конфигурационного взаимодействия. Что касается значения параметров Ω_k и R_k , то по данным таблицы 2 легко убедиться, что средние значения параметров Ω_k , вычисленные по результатам для направлений N_g , N_m и N_p , совпадают со значениями соответствующих параметров интенсивности из последних двух столбцов таблицы 2 только в приближении слабого конфигурационного взаимодействия. При более точном описании, в приближении промежуточного конфигурационного взаимодействия, вопрос об усреднении имеет большое значение, так как при усреднении на разных этапах получаются существенно различные результаты.

Заключительные замечания

Описание интенсивностей абсорбционных межмультиплетных переходов выполнено в приближении слабого и промежуточного по силе межконфигурационного взаимодействия. Результаты расчетов показывают, что отдельно для каждого принципиального направления N_g , N_m , N_p и для усредненных данных ($N_g + N_m + N_p$)/3 в приближении промежуточного конфигурационного взаимодействия описание получается лучше 38...56 %, чем в приближении слабого конфигурационного взаимодействия. Таким образом, возбужденные конфигурации существенным образом влияют на интенсивности межмультиплетных электрических дипольных переходов. В приближении сильного конфигурационного взаимодействии заметного улучшения описания достигнуто не было. Поэтому наиболее адекватным для описания интенсивностей абсорбционных переходов в двойных вольфраматах является приближение промежуточного конфигурационного взаимодействия.

Применение метода Джадда – Офельта [2, 3] или модифицированных теорий интенсивности [4, 5] правомерно только к изотропным средам. Поэтому интенсивности абсорбционных переходов, измеренные для разных принципиальных направлений в анизотропных кристаллах, должны быть усреднены.

ЛИТЕРАТУРА

- 1. Mateos X. [etc.] // Phys. Rev. B. 2002. Vol. 66. 214104 214116.
- 2. Judd B.R. // Phys. Rev. 1962. V. 127, № 3. P. 750 761.
- 3. Ofelt G.S. // J. Chem. Phys. 1962. V. 37, № 3. P. 511 520.
- 4. Kornienko, A.A., Kaminskii A.A., and Dunina E.B. // Phys. Stat. Sol.(b). 1990. V. 157, № 1. P. 267 273.
- Корниенко А.А., Дунина Е.Б., Янкевич В.Л. // Оптика и спектроскопия. 1996. Т. 80, Вып. 6. С. 951–955.
- 6. Гайдук, М.И. Спектры люминесценции европия / М.И. Гайдук, В.Ф. Золин, Л.С. Гейгерова. М.: Наука, 1974. 195 с.
- 7. Корниенко А.А., Дунина Е.Б. // Оптика и спектроскопия. 2004. Т. 97, Вып. 1. С. 75 82.
- 8. Дунина Е.Б., Корниенко А.А., Каминский А.А. // ФТТ. 2006. Т. 48, Вып. 5. С. 634 637.
- 9. Дунина Е.Б. [и др.] // ФТТ. 1990. Т. 32, Вып. 5. С. 1568 1570.
- 10. Malinowski M. [etc.] // J. Alloys Compounds. 2001. V. 323 324. P. 214 217.

Поступила 22.12.2006