УДК 536.2.01

ИССЛЕДОВАНИЕ ОСНОВНЫХ ПАРАМЕТРОВ ВЛИЯНИЯ НА НЕЛИНЕЙНЫЕ СОБСТВЕННЫЕ КОЛЕБАНИЯ ЛОКАЛЬНО-НЕРАВНОВЕСНОГО ТЕПЛОВОГО ПОЛЯ

И.А. КОНЦЕВОЙ

(Гомельский государственный технический университет им. П.О. Сухого)

Изучены собственные колебания температуры и теплового потока в образце материала с отчетливо выраженными локально-неравновесными тепловыми свойствами для трех вариантов граничных условий, определяющих тип теплового резонатора. Начальный перепад температур между границами образца оказывает значительное влияние на всплески температуры и теплового потока. Рассмотрены основные факторы влияния: начальный температурный профиль, нелинейные теплофизические свойства материала, релаксация теплового потока. Количественные свойства колебаний зависят от параметра нелинейности. Параметр нелинейности среды в значительной степени влияет на амплитуды колебаний температуры и теплового потока в полуоткрытом и открытом резонаторе; в закрытом резонаторе влияние этого параметра выражено в меньшей степени.

Введение. В настоящее время проблемы термической генерации звука в вязком теплопроводном газе изучены в разнообразных аспектах. Продолжаются исследования акустических резонаторов с учетом нелинейных эффектов (колебания большой амплитуды, физические свойства среды, механизм диссипации и др.) [1, 2]. В работе [3] дано теоретическое обоснование возможности создания нелинейного теплового резонатора. С физической точки зрения эта возможность обусловлена существованием материалов, обладающих достаточно большим временем тепловой релаксации. В качестве примера такого материала укажем высокотемпературную сверхпроводящую керамику [4]. В работах [5 – 7] изучены большие собственные колебания теплового резонатора и установлены следующие результаты:

- 1) неоднородное по координате начальное тепловое поле $T^0(x)$ возбуждает нелинейные собственные колебания большой амплитуды. Их свойства обусловлены неравновесностью процесса и взаимодействием тепловых волн с границами образца;
- 2) толщина образца один из основных факторов влияния на процесс. Для тонкой и толстой пластин имеем соответственно высокую и низкую частоты колебаний;
- 3) равновесный теплоперенос (модель Фурье) обладает классическим свойством: векторы q и $grad\ T$ направлены противоположно друг другу. В локально-неравновесных условиях может возникнуть неклассический вариант [1]: q и $grad\ T$ направлены одинаково;
- 4) три типа резонаторов (закрытый, полуоткрытый, открытый) различаются между собой структурой температурной неоднородности. В каждом сечении образца наблюдается чередование во времени классической ($q \cdot grad\ T < 0$) и неклассической ($q \cdot grad\ T > 0$) ситуаций.

Данная работа является продолжением этих исследований и имеет следующие цели: изучить влияние нелинейности среды (параметр n_1), времени релаксации γ и начального теплового поля $T^0(x)$ (параметр B) на амплитуду свободных колебаний для каждого типа резонатора.

Постановка и решение задачи. Уравнение энергии и уравнение для теплового потока эволюционного (релаксационного) типа имеют вид:

$$\frac{\partial u}{\partial t} + \frac{\partial q}{\partial x} = 0 ; (1)$$

$$\frac{q}{\gamma} + \frac{\partial q}{\partial t} + \frac{\partial V}{\partial x} = 0; \qquad (2)$$

$$u = \int_{0}^{T} c(T)dT \; ; \; V = \int_{0}^{T} \frac{\lambda(T)}{\gamma(T)} dT = \int_{0}^{u} w^{2}(u) du \; ; \; w^{2} = \frac{\lambda}{c\gamma} \; ,$$

где x — декартова координата; t — время; T — температура; q — удельный тепловой поток; λ — коэффициент теплопроводности; c — объемная теплоемкость; γ — время релаксации теплового потока; w — скорость распространения тепловых возмущений. Искомые функции: T(x,t), q(x,t), $x \in [0,x_w]$, $t \ge 0$; x_w — толщина слоя материала.

20 ст ул сл га ре

Современные методы исследования локально-неравновесной модели теплопереноса (1), (2) представлены в [3]; там же проведен подробный анализ возникновения градиентной катастрофы и свойств ударных тепловых волн. В соответствии с этими результатами присоединяем к левой части уравнения (1) слагаемое

$$\Psi \frac{\rho}{\gamma} \frac{\partial}{\partial x} \left(\frac{1}{u} \frac{\partial q}{\partial x} \right),$$

где ρ – плотность; Ψ – коэффициент искусственной диссипации. Этот коэффициент является аналогом газодинамического коэффициента искусственной вязкости и применяется для того, чтобы при численном решении сглаживать сильные разрывы, которые могут появляться в ходе эволюции теплового поля.

Собственные колебания большой амплитуды изучаем для трех типов резонаторов:

- закрытый резонатор:

$$q(x=0,t) = q_0, \quad q(x=x_w,t) = q_w;$$
 (3)

допускается вариант, когда $q_0 = q_w = 0$;

- полуоткрытый резонатор:

$$q(x=0,t) = q_0, \quad T(x=x_w,t) = T_w;$$
 (4)

- открытый резонатор:

$$T(x=0,t) = T_0, \quad T(x=x_w,t) = T_w;$$
 (5)

допускается вариант, когда $T_0 = T_w$. Здесь q_0 , q_w , T_0 , T_w — постоянные величины. Для всех трех вариантов (3) — (5) начальные условия берем в виде:

$$T(x, t = 0) = T^{0}(x), \quad q(x, t = 0) = 0.$$
 (6)

Ясно, что выбор $T^0(x)$ определяет зависимость от координаты начальной скорости изменения теплового потока $(dq/dt)_{t=0}$.

Далее работаем с безразмерными величинами. При обезразмеривании применяем масштабы величин (они отмечены нижним индексом b), которые обеспечивают инвариантность размерной и безразмерной форм записи уравнений и краевых условий: $\lambda_b = x_b^2 c_b / t_b$, $q_b = \lambda_b T_b / x_b$ и т.п. Решение краевых задач (1) – (6) выполняем численным методом интегральных соотношений А.А. Дородницына; применяем гиперболический вариант алгоритма построения расчетной схемы [8]. Подробное описание численного алгоритма и вопросы контроля точности расчетов изложены в [7].

Результаты расчетов и их обсуждение. Теплофизические свойства материала принимаем в виде:

$$\lambda(T) = \lambda_0 \exp(n_1 T)$$
; $c(T) = c_0 \exp(n_2 T)$; $\gamma \equiv const$,

где λ_0 , c_0 , n_1 , n_2 — константы.

При обработке результатов расчетов применяем следующие критерии:

- безразмерный тепловой поток $Q = \frac{q \, x_{w}}{T_{w}^{0} \, \lambda(T_{w}^{0})}$;
- безразмерный градиент температуры $g=rac{x_{_{W}}}{T_{_{...}}^{...}}igg(rac{\partial T}{\partial x}igg);$
- параметр энергии $E \equiv \frac{cT}{\rho w^2} = \frac{c_p T}{w^2}$;

параметр неравновесности $\Omega^{-2} = \frac{q^2}{u^2 w^2}$;

- параметр нелинейности среды $D = \frac{T}{w^2} \frac{d(w^2)}{dT}$;
- амплитуда температуры $A_T \equiv A_T(x_i,t) = \frac{T(x_i,t)}{T_w^0}$;

- PolotskSl
- амплитуда теплового потока $A_{a} \equiv q(x_{i},t)$;
- добротность $K = \frac{1}{x_w} \left(\frac{\lambda \gamma}{c}\right)^{1/2}$;

Здесь параметры K и Z являются тепловыми аналогами добротности и волнового сопротивления, применяемых для расчета электрических контуров и линий передач.

Закрытый резонатор. Начальный профиль температуры, монотонный по координате:

$$T^{0}(x) = 10 + B\cos(\pi x/x_{w}), \quad x \in [0, x_{w}], \tag{7}$$

где 2B — начальный перепад температуры между левой и правой границами ($B \equiv const$). Если B < 0 , то $dT^0/dx \ge 0$; если B > 0 , то $dT^0/dx \le 0$.

Влияние свойств среды было рассмотрено для различных комбинаций знаков производных $d\lambda/dT$, dc/dT. Как и следовало ожидать, количественные свойства колебаний (параметры E, Ω^{-2} , A_T , A_q) в значительной степени зависят от параметра нелинейности D, т.е. от вида функции $w^2(T)$. При этом хорошо выражено влияние показателя степени n_1 функции $\lambda(T)$; влияние показателя степени n_2 функции c(T) менее существенно (далее принимаем c=const). На рисунке 1 показаны на нескольких фазовых плоскостях характерные закономерности колебаний для $x=x_1=x_w/6$ при $dT^0/dx>0$ и $n_1<0$. При $dT^0/dx\leq 0$ фазовые портреты проявляют себя аналогичным образом.

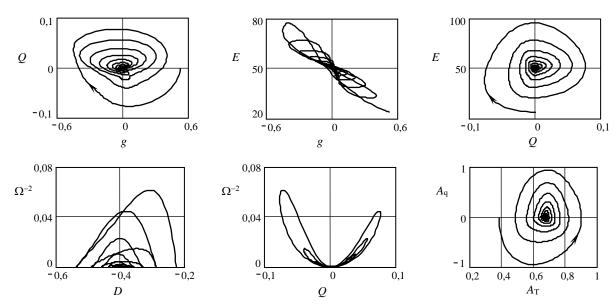


Рис. 1. Фазовые портреты свободных колебаний в закрытом тепловом резонаторе Расчеты показывают, что в данном процессе в каждои фиксированной точке x при $t \ge 0$ происходит чередование классической и неклассической ситуаций. На фазовой плоскости (g,Q) (см. рис. 1) имеем в I и III квадрантах Qg>0, во II и IV -Qg<0.

Отметим отличия во взаимосвязи энергии γ с тепловым потоком и градиентом температуры. На плоскости (Q,E) (см. рис. 1) типичным является устойчивый фокус. Стрелка указывает направление движения точки вдоль фазовой траектории с течением времени; это направление не зависит от знака параметра B . Зависимость E от g в фиксированной точке x имеет гистерезисный характер.

При $T^0(x)=10-5\cos(\pi x/x_w)$ и для значений параметров среды c=1, $n_1=-0.04$, c=1, $\gamma=5$, соответствующих вариантам расчета на рисунке 1, также имеем: волновое сопротивление Z — монотонно убывающая функция амплитуды температуры A_T (при $n_1>0$ зависимость $Z(A_T)$ монотонно возрастающая, при $n_1=0$ — Z=const). Зависимость Ω^{-2} от D на каждом отдельном периоде колебаний немонотонная, имеет максимум, и этот максимум смещается с течением времени в сторону больших или

М д д в в с д и к к т т с с т с т с т с с т с т с с т с т с с т с т с с т с т с с т с

меньших по модулю значений параметра нелинейности D. Связи Q и Ω^{-2} присущи характерные петли динамического гистерезиса. На фазовой плоскости (A_T,A_q) имеем устойчивый фокус, причем каждый виток спирали соответствует периоду колебаний, как и на плоскостях (g,Q) и (Q,E). Период колебаний слабо реагирует на изменение вида аналитических зависимостей $\lambda(T)$, c(T). Основное значение здесь имеют количественные характеристики теплофизических свойств $\lambda(T_*)$, $c(T_*)$, γ , где T_* — температура, которая устанавливается в образце при $t \to \infty$. От этих величин зависит и число периодов, в течение которых происходит затухание колебаний.

Влияние волнового механизма теплопереноса наиболее выразительно проявляется в свойствах температуры $T_0(t)$ и $T_w(t)$ на левой (x=0) и правой ($x=x_w$) теплоизолированных границах соответственно, а также теплового потока $q_3(t)$ в точке $x=x_3=x_w/2$ — середина образца (рис. 2).

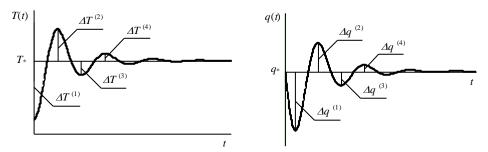


Рис. 2. Свободные колебания: отсчет отклонений температуры и теплового потока от асимптотических значений

В таблицах 1-3 даны сведения об амплитудах температуры и теплового потока для каждого из первых четырех полупериодов колебаний при $dT^0(x)/dx \ge 0$. Было принято $T^0(x) = 10 + B\cos(\pi x/x_w)$, $\lambda = \lambda_0 \exp(n_1 T)$ (причем $\lambda(10) = 1$), $\gamma = const$, c = 1. Указаны алгебраические величины $\Delta T^{(1)}$, ..., $\Delta T^{(4)}$ и $\Delta q^{(1)}$, ..., $\Delta q^{(4)}$ отклонений температуры и теплового потока от их асимптотических (при $t \to \infty$) значений в фиксированной точке образца (см. рис. 2). Величина температуры, по отношению к которой вычисляются ΔT , обозначается T_* ; во всех вариантах $T_* \approx 10$. Аналогично и для величин Δq ; во всех вариантах $q_* = 0$.

Таблица 1 Влияние параметра нелинейности среды на свойства амплитуд колебаний в закрытом резонаторе

		<i>x</i> =	= 0		$x = x_w/2$					
n_1	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{\scriptscriptstyle (1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{^{(4)}}$		
	$dT^{0}(x)/dx \ge 0$, $B = -5$, $T^{0}(x) = 10 - 5\cos(\pi x/x_{w})$, $c = 1$, $\gamma = 1$									
0,08	-5,00	3,16	-1,73	1,20	-3,97	2,37	-1,37	0,81		
0,04	-5,00	3,09	-1,75	1,14	-3,97	2,38	-1,40	0,84		
0	-5,00	3,03	-1,79	1,11	-3,98	2,40	-1,44	0,87		
-0,04	-5,00	2,98	-1,85	1,12	-4,00	2,37	-1,41	0,83		
-0,08	-5,00	2,94	-1,92	1,18	-4,02	2,31	-1,35	0,75		
		dT^{0} (.	$(x)/dx \ge 0, B =$	$=-5, T^0(x)=$	$10 - 5\cos(\pi x/$	(x_w) , $c=1$, γ	=0,5			
0,08	-5,00	2,58	-1,09	0,63	-5,18	2,49	-1,16	0,55		
0,04	-5,00	2,50	-1,12	0,60	-5,17	2,49	-1,19	0,57		
0	-5,00	2,44	-1,15	0,59	-5,19	2,50	-1,21	0,58		
-0,04	-5,00	2,38	-1,18	0,59	-5,21	2,49	-1,19	0,57		
-0,08	-5,00	2,33	-1,24	0,62	-5,24	2,45	-1,15	0,52		

Из таблицы 1 видим: для фиксированной величины γ при $n_1>0$ величина амплитуды температуры $\Delta T^{(2)}$ немного больше, а $\Delta T^{(3)}$ немного меньше соответствующих значений линейного варианта, когда $n_1=0$. Это объясняется тем, что при $n_1>0$ коэффициент теплопроводности $\lambda(T)$ — монотонно возрастающая функция и, следовательно, при более высоких температурах происходит лучшая передача тепла. При $n_1<0$ получаем противоположный результат — зависимость $\lambda(T)$ монотонно убывает и, следовательно, величина амплитуды температуры $\Delta T^{(2)}$ немного меньше, а $\Delta T^{(3)}$ немного больше соответ-

ствующих значений линейного варианта. Так, согласно таблице 2, для B=-9 имеем: при $n_1=-0,04-\Delta T^{(2)}=5,31$; при $n_1=0-\Delta T^{(2)}=5,46$; при $n_1=0,04-\Delta T^{(2)}=5,65$. Амплитуды теплового потока слабо реагируют на знак и величину параметра n_1 , но в значительной степени зависят от величины B. Таким образом, при больших по модулю величинах B получаем: колебания теплового потока, как и колебания температуры, происходят в более широком интервале (см. табл. 2); в большей степени выражено влияние параметра n_1 ; в образце дольше устанавливается температура T_* и тепловой поток T_*

Считаем, что процесс затухания колебаний закончен, когда в фиксированной точке x_i выполнены неравенства $|\Delta T| \leq 10^{-2} \, |\Delta T|_{\rm max}$, $|\Delta q| \leq 10^{-2} \, |\Delta q|_{\rm max}$, где индекс тах относится к наибольшему по модулю достигаемому в задаче значению. Длительность полного затухания, когда в образце устанавливается постоянная температура T_* и постоянный тепловой поток q_* , обозначим t_∞ ; тогда n_∞ — соответствующее число полупериодов колебаний. Фазовую частоту колебаний температуры и теплового потока обозначим ν .

Таблица 2 Влияние начального перепада температуры между левой и правой границами на свойства амплитуд колебаний в закрытом резонаторе

		x =	= 0		$x = x_{w}/2$								
В	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{(1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{(4)}$					
		$dT^{0}(x)/dx \ge 0$, $T^{0}(x) = 10 + B\cos(\pi x/x_{w})$, $c = 1$, $\gamma = 1$, $n_{1} = -0.04$											
-1	-1,00	0,60	-0,36	0,22	-0,80	0,48	-0,29	0,17					
-3	-3,00	1,80	-1,09	0,67	-2,40	1,43	-0,86	0,51					
-5	-5,00	2,98	-1,85	1,12	-4,00	2,37	-1,41	0,83					
-7	-7,00	4,15	-2,62	1,59	-5,61	3,28	-1,94	1,11					
_9	-9,00	5,31	-3,42	2,10	-7,23	4,18	-2,45	1,37					
	$dT^{0}(x)/dx \ge 0$, $T^{0}(x) = 10 + B\cos(\pi x/x_{w})$, $c = 1$, $\gamma = 1$, $n_{1} = 0$												
-1	-1,00	0,61	-0,36	0,22	-0,80	0,48	-0,29	0,17					
-3	-3,00	1,82	-1,08	0,67	-2,39	1,44	-0,87	0,52					
-5	-5,00	3,03	-1,79	1,11	-3,98	2,40	-1,44	0,87					
-7	-7,00	4,24	-2,51	1,56	-5,58	3,36	-2,02	1,22					
-9	-9,00	5,46	-3,23	2,00	-7,17	4,32	-2,60	1,56					
		$dT^{0}(x)$	$(x)/dx \ge 0, T^0$	$(x) = 10 + B \operatorname{co}$	$s(\pi x/x_w)$, $c=$	$1, \ \gamma = 1, \ n_1 =$	-0,04						
-1	-1,00	0,61	-0,36	0,22	-0,80	0,48	-0,29	0,17					
-3	-3,00	1,84	-1,06	0,68	-2,39	1,44	-0,86	0,52					
-5	-5,00	3,09	-1,75	1,14	-3,97	2,38	-1,40	0,84					
-7	-7,00	4,37	-2,44	1,63	-5,55	3,31	-1,93	1,15					
_9	-9,00	5,65	-3,13	2,12	-7,13	4,26	-2,45	1,43					

Таблица 3 Влияние времени релаксации на свойства амплитуд колебаний в закрытом резонаторе

γ		<i>x</i> =	= 0			x = 3	$x_w/2$	
Y	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{\scriptscriptstyle (1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{^{(4)}}$
		$dT^{0}(x)$	$/dx \ge 0$, $B =$	-5 , $T^0(x) = 10$	$0-5\cos(\pi x/x)$	$(v_{v}), c=1, n_{1}=$	-0,04	
0,1	-5,00	0,81	-0,10	0,05	-8,67	1,37	-0,21	0,03
0,2	-5,00	1,49	-0,44	0,17	-7,10	2,12	-0,63	0,19
0,5	-5,00	2,38	-1,18	0,59	-5,21	2,49	-1,19	0,57
1	-5,00	2,98	-1,85	1,12	-4,00	2,37	-1,41	0,83
2	-5,00	3,49	-2,49	1,76	-3,01	2,06	-1,43	0,97
5	-5,00	4,01	-3,22	2,65	-2,02	1,57	-1,23	0,94
10	-5,00	4,30	-3,66	3,26	$-1,\!47$	1,22	-1,02	0,82
		$dT^{0}(x$	$)/dx \ge 0$, $B =$	-5 , $T^0(x) = 1$	$0-5\cos(\pi x/x)$	$(c_w), c = 1, n_1$	= 0,04	
0,1	-5,00	0,85	-0,11	0,04	-8,61	1,36	-0,22	0,03
0,2	-5,00	1,58	-0,43	0,16	-7,05	2,12	-0,63	0,19
0,5	-5,00	2,50	-1,12	0,60	-5,17	2,49	-1,19	0,57
1	-5,00	3,09	-1,75	1,14	-3,97	2,38	-1,40	0,84
2	-5,00	3,57	-2,40	1,77	-2,99	2,07	-1,41	0,98
5	-5,00	4,04	-3,17	2,60	-2,00	1,58	-1,22	0,95
10	-5,00	4,29	-3,64	3,14	-1,46	1,23	-1,00	0,83

PolotskSl

Из таблицы 3 видим: для $n_1=-0.04$ при $\gamma=0.1$ получаем отношение $\Delta T^{(3)}/\Delta T^{(1)}=0.02$; при $\gamma=10$ — $\Delta T^{(3)}/\Delta T^{(1)}=0.732$. Из этого следует, что при увеличении γ для полного затухания требуется большее число периодов. При $\gamma=0.1$ числовые расчеты дают $n_{\infty}=4$, $t_{\infty}=1.115$, v=8.566; при $\gamma=10$ — $n_{\infty}=30$, $t_{\infty}=90.1$, v=0.495. При $n_1=0.04$ — результат аналогичный (например, при $\gamma=10$ — $n_{\infty}=31$, $t_{\infty}=95.8$, v=0.495. Таким образом, при увеличении величины γ уменьшается фазовая частота v, увеличиваются время t_{∞} и число полупериодов n_{∞} . Параметр p0 оказывает влияние на величины p1 и не влияет на величину p3. Параметр p4 оказывает влияние на p5 и не влияет на p7 и не влияет на p8 оказывает влияние на p9 и не влияет на p9 и не вли на p9 и не вли на

Полуоткрытый резонатор. Начальный профиль температуры монотонный по координате:

$$T^{0}(x) = T_{w} + B\cos(\pi x/2x_{w}), \quad x \in [0, x_{w}],$$
(8)

где $B \equiv const$ — начальный перепад температуры между левой и правой границами. Если B < 0, то $dT^0/dx \ge 0$; если B > 0, то $dT^0/dx \le 0$. Колебания температуры происходят относительно величины $T_* = T_w$, колебания теплового потока — относительно $q_* = q_0 = 0$.

В фазовых плоскостях зависимости между основными критериями следующие. Волновое сопротивление $Z(A_T)$ — монотонно убывающая функция амплитуды температуры. В каждой фиксированной точке $x=x_i$ при $t\geq 0$ происходит, как и в закрытом резонаторе, чередование классической и неклассической ситуаций (на фазовой плоскости (g,Q) в I и III квадрантах Qg>0, во II и IV Qg<0). Зависимость Ω^{-2} от D на каждом отдельном периоде колебаний немонотонная. Характерные петли динамического гистерезиса присущи связи Q и Ω^{-2} . Устойчивые фокусы на плоскостях (A_T,A_q) и (Q,E) типичны для изучаемых колебаний. Зависимость E от g в фиксированной точке x проявляет незначительно выраженный динамический гистерезис — монотонно убывающая. Период и частота колебаний, как и в закрытом резонаторе, определяются количественными характеристиками теплофизических свойств $\lambda(T_*)$, $c(T_*)$, γ .

Влияние волнового механизма теплопереноса наиболее выразительно проявляется в свойствах температуры $T_0(t)$ на левой теплоизолированной границе образца, а также теплового потока $q_w(t)$ — на правой изотермической границе. В таблицах 4-6 даны сведения об амплитудах температуры и теплового потока для каждого из первых четырех полупериодов колебаний. Было принято $T^0(x) = 10 + B\cos(\pi x/2x_w)$, $\lambda = \lambda_0 \exp(n_1 T)$ (причем $\lambda(10) = 1$), $\gamma = const$, c = 1.

 Таблица 4

 Влияние параметра нелинейности среды на свойства амплитуд колебаний в полуоткрытом резонаторе

10		<i>x</i> =	= 0		$x = x_w$							
n_1	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{(1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{_{(4)}}$				
1	2	3	4	5	6	7	8	9				
		$dT^{0}(x)/dx \ge 0$, $T_{w} = 10$, $B = -9$, $T^{0}(x) = 10 - 9\cos(\pi x/2x_{w})$, $c = 1$, $\gamma = 5$										
0,08	-9,00	4,39	-3,28	1,90	-2,72	1,76	-1,10	0,72				
0,04	-9,00	4,97	-3,45	2,08	-2,95	1,92	-1,19	0,77				
0	-9,00	5,73	-3,65	2,32	-3,28	2,09	-1,33	0,85				
-0,04	-9,00	6,74	-3,85	2,62	-3,66	2,26	-1,47	0,92				
-0,08	-9,00	8,11	-4,01	2,93	-4,09	2,43	-1,60	0,97				
	$dT^{0}(x)/dx \ge 0$, $T_{w} = 10$, $B = -9$, $T^{0}(x) = 10 - 9\cos(\pi x/2x_{w})$, $c = 1$, $\gamma = 1$											
0,08	-9,00	2,41	-0,94	0,33	4,72	1,67	0,58	0,21				
0,04	-9,00	2,74	-1,02	0,35	5,28	1,87	0,65	0,23				
0	-9,00	3,14	-1,09	0,38	5,93	2,06	0,72	0,25				
-0,04	-9,00	3,65	-1,19	0,42	6,69	2,28	0,80	0,28				
-0,08	-9,00	4,30	-1,30	0,46	7,60	2,48	0,88	0,31				
		$dT^{0}(x)/dx$	$dx \le 0 \ , \ T_{w} = 10$	$B = 9, T^0$	$x) = 10 + 9\cos\theta$	$(\pi x/2x_w)$, $c=$	$=1$, $\gamma=5$					
0,08	9,00	-8,10	4,01	-2,94	4,07	-2,42	1,59	-0,99				
0,04	9,00	-6,74	3,85	-2,62	3,65	-2,26	1,47	-0,92				
0	9,00	-5,72	3,64	-2,31	3,27	-2,08	1,33	-0,84				
-0,04	9,00	-4,97	3,45	-2,08	2,95	-1,92	1,19	-0,77				
-0,08	9,00	-4,38	3,28	-1,90	2,71	-1,76	1,10	-0,72				

9,00

							Продола
1	2	3	4	5	6	7	8
		$dT^{0}(x)/dx$	$dx \le 0 , T_w = 1$	$0, B=9, T^0$	$(x) = 10 + 9\cos$	$(\pi x/2x_w)$, $c=$	$=1$, $\gamma=1$
0,08	9,00	-4,29	1,29	-0,46	7,55	-2,49	0,88
0,04	9,00	-3,65	1,19	-0,42	6,69	-2,28	0,80
0	9,00	-3,13	1,09	-0,38	5,91	-2,05	0,71
-0.04	9.00	-2.74	1.02	-0.35	5.26	-1.87	0.65

-2,41

0,94

Продолжение таблицы 4

0,65

0,58

Таблица 5

9

-0,30

-0,28

-0,25

-0,23

-0,21

Влияние начального перепада температуры между левой и правой границами на свойства амплитуд колебаний в полуоткрытом резонаторе

-0,33

5,26

4,71

-1,87

-1,67

В		<i>x</i> =	= 0		$x = x_w$						
D	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{\scriptscriptstyle (1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{(4)}$			
		$dT^{0}(x)/dx \ge 0$, $T_{w} = 10$, $T^{0}(x) = 10 - B\cos(\pi x/2x_{w})$, $c = 1$, $\gamma = 5$, $n_{1} = -0.04$									
-1	-1,00	0,65	-0,41	0,26	-0,37	0,23	-0,15	0,10			
-3	-3,00	2,01	-1,24	0,81	-1,13	0,72	-0,46	0,29			
-5	-5,00	3,48	-2,09	1,38	-1,93	1,214	-0,78	0,49			
-7	-7,00	5,05	-2,96	1,98	-2,77	1,728	-1,12	0,71			
-9	-9,00	6,74	-3,85	2,62	-3,65	2,26	-1,47	0,92			
		$dT^{0}(x)/dx$	≥ 0 , $T_w = 10$,	$T^0(x) = 10 - 1$	$B\cos(\pi x/2x_w)$, $c=1$, $\gamma=5$	$n_1 = 0.04$				
-1	-1,00	0,63	-0,40	0,25	-0,36	0,23	-0,15	0,09			
-3	-3,00	1,81	-1,19	0,74	-1,05	0,67	-0,43	0,27			
-5	-5,00	2,93	-1,96	1,21	-1,72	1,10	-0,70	0,45			
-7	-7,00	3,98	-2,72	1,66	-2,35	1,51	-0,95	0,61			
-9	-9,00	4,97	-3,45	2,08	-2,95	1,92	-1,19	0,77			

Таблица 6 Влияние времени релаксации на свойства амплитуд колебаний в полуоткрытом резонаторе

2/		<i>x</i> =	= 0		$x = x_w$					
γ	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{\scriptscriptstyle (1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{^{(4)}}$		
	$dT^{0}(x)/dx \ge 0$, $T_{w} = 10$, $B = -9$, $T^{0}(x) = 10 - 9\cos(\pi x/2x_{w})$, $c = 1$, $n_{1} = -0.04$									
0,5	-9,00	2,16	-0,41	0,08	-8,29	1,71	-0,35	0,07		
1	-9,00	3,65	-1,19	0,42	-6,69	2,28	-0,80	0,28		
2	-9,00	5,08	-2,27	1,14	-5,24	2,46	-1,22	0,58		
5	-9,00	6,74	-3,85	2,67	-3,65	2,26	-1,47	0,92		
10	-9,00	7,76	-4,96	3,96	-2,72	1,93	-1,43	1,03		
		$dT^{0}(x)/dx$	≥ 0 , $T_{w} = 10$,	$B = -9 , T^0(x)$	$(2) = 10 - 9\cos(2\theta)$	$(tx/2x_w), c=1$	$n_1 = 0.04$			
0,5	-9,00	1,61	-0,35	0,07	-6,48	1,32	-0,28	0,06		
1	-9,00	2,74	-1,02	0,35	-5,28	1,87	-0,65	0,23		
2	-9,00	3,80	-1,97	0,93	-4,17	2,07	-0,98	0,48		
5	-9,00	4,97	-3,45	2,08	-2,95	1,92	-1,19	0,77		
10	-9,00	5,66	-4,55	3,07	-2,22	1,65	-1,17	0,86		

Пусть l и L есть соответственно точная нижняя и точная верхняя границы значений начальной температуры $T^0(x)$, $x \in [0, x_w]$. В ходе волнового процесса возможна одна из ситуаций:

- 1) происходит всплеск нагрева, T/L > 1 (при $dT^0(x)/dx \ge 0$); температура импульсивно повышается до значений, превышающих верхнюю границу L; отношение T/L тем больше, чем меньше параметр n_1 ;
- 2) происходит всплеск охлаждения, T/l < 1; температура становится меньше нижней границы l(если $dT^0(x)/dx \le 0$); отношение T/l тем меньше, чем больше параметр n_1 .

Д 20 М и ЯП И та П та Т та

Согласно таблице 4 имеем:

- при $dT^{0}(x)/dx \ge 0$, B = -9, $\gamma = 5$, $n_{1} = -0.08$ в отдельные моменты времени T/L = 1.811;
- при $dT^{0}(x)/dx \le 0$, B = 9, $\gamma = 5$, $n_{1} = 0.08 T/l = 0.19$.

Таким образом, взаимодействие тепловых волн с границами области приводит к значительному размаху колебаний температуры на границах области. При этом параметр n_1 оказывает существенное влияние и на амплитуду температуры, и на амплитуду теплового потока, в отличие от закрытого резонатора.

Начальный перепад температуры B между границами образца и время релаксации γ также влияют на амплитуды температуры и теплового потока: чем больше величины B и γ , тем в более широких интервалах происходят колебания температуры и теплового потока (см. табл. 5-6). При увеличении B и γ увеличивается время t_{∞} затухания колебаний и число полупериодов n_{∞} на интервале $[0,t_{\infty}]$. Частота и период колебаний теплового поля определяются величиной γ , а от параметра B не зависят. Так, при B=-1 и $\gamma=5$ получаем $\nu=0,696$, $n_{\infty}=7$, $t_{\infty}=24,22$; при B=-9 и $\gamma=5-\nu=0,696$, $n_{\infty}=12$, $t_{\infty}=46,83$; при B=-9 и $\gamma=10-\nu=0,494$, $n_{\infty}=16$, $t_{\infty}=93,8$. Таким образом, при увеличении γ уменьшается ν (период колебаний увеличивается), увеличиваются n_{∞} и t_{∞} ; при увеличении β n_{∞} и δ и δ и также увеличиваются. Необходимо отметить, что при любых фиксированных значениях δ (δ), δ 0 и δ 1 для закрытого и полуоткрытого резонатора частота δ 1 колебаний теплового поля – одна и та же величина.

Открытый резонатор. Начальный профиль температуры немонотонный по координате:

$$T^{0}(x) = T_{w} + B\sin(\pi x/x_{w}), \quad x \in [0, x_{w}],$$
 (8)

где $B \equiv const$ — начальный перепад температуры между серединой образца и его левой (правой) границей. Если B>0 , то $T_3^0=T_{\max}^0$; при B<0 получаем $T_3^0=T_{\min}^0$.

В фазовых плоскостях имеем следующие зависимости. Волновое сопротивление $Z(A_T)$ — монотонно убывающая функция амплитуды температуры. Устойчивые фокусы на плоскостях (g,Q), (A_T,A_q) и (Q,E) типичны для изучаемых колебаний. При $t\geq 0$ происходит чередование классической и неклассической ситуаций (как и для ранее рассмотренных резонаторов, на фазовой плоскости (g,Q) в I и III квадрантах Qg>0, во II и IV Qg<0). Зависимость E(g) близка к линейной, монотонно возрастающая. Петли динамического гистерезиса присущи связи $\Omega^{-2}(Q)$. Зависимость Ω^{-2} от D на каждом отдельном периоде колебаний немонотонная, имеет максимум.

Влияние волнового механизма теплопереноса наиболее выразительно проявляется в свойствах теплового потока $q_0(t)$ и $q_w(t)$ на левой и правой изотермических границах и температуры $T_3(t)$ посредине образца. В таблицах 7-9 даны сведения об амплитудах температуры и теплового потока для $dT^0(x)/dx \ge 0$. Было принято $T^0(x) = 10 + B\sin(\pi x/x_w)$, $\lambda = \lambda_0 \exp(n_i T)$ (причем $\lambda(10) = 1$), c = 1, $\gamma = const$.

 Таблица 7

 Влияние параметра нелинейности среды на свойства амплитуд колебаний в открытом резонаторе

10		$x = x_w/2$				x = 0						
n_1	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{\scriptscriptstyle (1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{(4)}$				
		$T^{0}(x_{w}/2) = T_{\min}^{0}, \ T_{0}^{0} = T_{w}^{0} = 10, \ B = -5, \ T^{0}(x) = 10 - 5\sin(\pi x/x_{w}), \ c = 1, \ \gamma = 1$										
0,08	-5,00	2,55	-1,64	0,91	3,56	-2,26	1,24	-0,76				
0,04	-5,00	2,75	-1,70	0,96	3,84	-2,37	1,31	-0,81				
0	-5,00	3,01	-1,78	1,06	4,09	-2,50	1,43	-0,87				
-0,04	-5,00	3,31	-1,86	1,13	4,29	-2,61	1,50	-0,92				
-0,08	-5,00	3,60	-1,91	1,19	4,66	-2,83	1,59	-0,96				
		$T^0(x_w/2) = T$	T_{\min}^{0} , $T_{0}^{0} = T_{w}^{0} =$	=10, $B=-5$,	$T^0(x) = 10 - 5$	$\sin(\pi x/x_w)$, c	$=1, \gamma = 0,5$					
0,08	-5,00	2,04	-1,03	0,47	4,66	-2,29	1,02	-0,49				
0,04	-5,00	2,19	-1,07	0,49	4,98	-2,44	1,08	-0,52				
0	-5,00	2,40	-1,14	0,54	5,32	-2,59	1,19	-0,58				
-0,04	-5,00	2,64	-1,20	0,57	5,61	-2,72	1,25	-0,61				
-0,08	-5,00	2,86	-1,24	0,60	6,10	-2,94	1,33	-0,64				

В открытом резонаторе возможно появление областей импульсного нагрева и охлаждения. Как и в полуоткрытом резонаторе, возможны варианты, когда T/L>1 и T/l<1. В случае B<0 происходит всплеск нагрева, а при B>0 — всплеск охлаждения. При этом параметр n_1 , как и в полуоткрытом резонаторе, оказывает существенное влияние на амплитуды температуры и теплового потока. Согласно таблице 7 имеем при $\gamma=1$, $n_1=-0.04$ в отдельные моменты времени T/L=1.636.

Параметр B также влияет на амплитуды температуры и теплового потока: чем больше B, тем в более широких интервалах происходят колебания температуры и теплового потока (см. табл. 8). При увеличении B увеличивается время t_{∞} затухания колебаний и число полупериодов n_{∞} на интервале $[0,t_{\infty}]$.

Таблица 8 Влияние начального перепада температуры между левой и правой границами на свойства амплитуд колебаний в открытом резонаторе

В		x = x	$c_w/2$		x = 0						
D	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{\scriptscriptstyle (1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{\scriptscriptstyle (4)}$			
		$T^{0}(x_{w}/2) = T_{\min}^{0}$, $T_{0}^{0} = T_{w}^{0} = 10$, $T^{0}(x) = 10 + B\sin(\pi x/x_{w})$, $c = 1$, $\gamma = 1$, $n_{1} = -0.04$									
-1	-1,00	0,61	-0,36	0,21	0,83	-0,51	0,29	-0,17			
-3	-3,00	1,91	-1,10	0,66	2,53	-1,54	0,89	-0,54			
-5	-5,00	3,31	-1,86	1,13	4,29	-2,61	1,50	-0,92			
-7	-7,00	4,80	-2,64	1,63	6,22	-3,78	2,17	-1,32			
-9	-9,00	6,36	-3,41	2,11	8,28	-5,02	2,83	-1,72			
		$T^0(x_w/2) = T$	$T_{\min}^{0}, T_{0}^{0} = T_{w}^{0} =$	10, $T^0(x) = 1$	$0 + B\sin(\pi x/x)$	(c_w) , $c=1$, $\gamma=$	$=1$, $n_1 = 0.04$				
-1	-1,00	0,59	-0,35	0,20	0,81	-0,50	0,27	-0,17			
-3	-3,00	1,70	-1,03	0,59	2,36	-1,46	0,81	-0,49			
-5	-5,00	2,75	-1,70	0,96	3,84	-2,37	1,31	-0,81			
-7	-7,00	3,73	-2,35	1,32	5,23	-3,23	1,80	-1,10			
-9	-9,00	4,65	-2,98	1,67	6,55	-4,05	2,26	-1,38			

Таблица 9 Влияние времени релаксации на свойства амплитуд колебаний в открытом резонаторе

2/		x = x	$c_w/2$		x = 0			
γ	$\Delta T^{(1)}$	$\Delta T^{(2)}$	$\Delta T^{(3)}$	$\Delta T^{(4)}$	$\Delta q^{\scriptscriptstyle (1)}$	$\Delta q^{(2)}$	$\Delta q^{(3)}$	$\Delta q^{^{(4)}}$
		$T^{0}(x_{w}/2) = T_{\min}^{0}$	$T_0^0 = T_w^0 = 1$	0, B = -5, T	$x^{0}(x) = 10 - 5 \operatorname{si}$	$n(\pi x/x_w)$, $c=$	$=1, n_1 = -0.04$	
0,1	-5,00	0,84	-0,12	0,02	9,41	-1,51	0,22	-0,03
0,2	-5,00	1,63	-0,46	0,13	7,68	-2,32	0,66	-0,19
0,5	-5,00	2,63	-1,20	0,57	5,66	-2,76	1,26	-0,61
1	-5,00	3,31	-1,86	1,13	4,29	-2,61	1,50	-0,92
2	-5,00	3,87	-2,51	1,80	3,22	-2,29	1,53	-1,09
5	-5,00	4,41	-3,23	2,71	2,15	-1,73	1,34	-1,09
10	-5,00	4,76	-3,70	3,34	1,56	-1,37	1,11	-0,97
		$T^0(x_w/2) = T_n^0$	$T_{\min}^{0}, T_{0}^{0} = T_{w}^{0} = 0$	10 , B = -5, T	$T^0(x) = 10 - 5$ s	$in(\pi x/x_w)$, c	$=1$, $n_1=0.04$	
0,1	-5,00	0,66	-0,10	0,01	8,21	-1,20	0,18	-0,02
0,2	-5,00	1,33	-0,39	0,11	6,76	-2,00	0,54	-0,15
0,5	-5,00	2,19	-1,07	0,49	4,98	-2,44	1,08	-0,52
1	-5,00	2,75	-1,70	0,96	3,84	-2,37	1,31	-0,81
2	-5,00	3,21	-2,33	1,53	2,89	-2,10	1,36	-0,98
5	-5,00	3,67	-3,09	2,30	1,94	-1,62	1,20	-0,99
10	-5,00	3,92	-3,56	2,81	1,42	-1,26	1,01	-0,89

Частота (период) колебаний теплового поля не зависит от параметров n_1 и B, а определяется величиной γ : при увеличении γ уменьшается ν (период колебаний увеличивается), увеличиваются t_{∞} и n_{∞} . При этом, если $\gamma=10$, то $\nu=0,982$. Таким образом, частота колебаний теплового поля, как и для двух ранее рассмотренных резонаторов, определяется величинами теплофизических свойств $\lambda(T_*)$, c, γ , но отличается от частоты колебаний закрытого (полуоткрытого) резонатора примерно в 2 раза.

Заключение. Изучено влияние начального температурного профиля, нелинейных теплофизических свойств материала, релаксации теплового потока на собственные колебания теплового поля в образце материала, обладающего локально-неравновесными тепловыми свойствами. Рассмотрены три типа резонаторов (закрытый, полуоткрытый, открытый), различающиеся между собой структурой температурной неоднородности.

Параметр нелинейности среды n_1 в значительной степени влияет на амплитуды $\Delta T^{(i)}$ и $\Delta q^{(i)}$ колебаний температуры и теплового потока в полуоткрытом и открытом резонаторе. При этом в случае $dT^0(x)/dx \geq 0$ на интервале $x \in [0, x_{_W}/2]$ (когда в образце в начальный момент происходит импульсный нагрев) чем больше параметр n_1 , тем меньше величины $\Delta T^{(i)}$ и $\Delta q^{(i)}$. В случае $dT^0(x)/dx \leq 0$, $x \in [0, x_{_W}/2]$ — противоположный результат: при увеличении n_1 величины $\Delta T^{(i)}$, $\Delta q^{(i)}$ увеличиваются. В закрытом резонаторе влияние параметра n_1 выражено в меньшей степени. При этом с увеличением величины n_1 имеем: если $dT^0(x)/dx \geq 0$, то амплитуды $\Delta T^{(i)}$ становятся больше; если $dT^0(x)/dx \leq 0$, то амплитуды $\Delta T^{(i)}$ становятся меньше; на величины $\Delta q^{(i)}$ параметр n_1 существенно не влияет.

Начальный перепад температур между границами образца оказывает значительное влияние на всплески температуры и теплового потока. Чем больше величина B, тем в более широких интервалах происходят колебания температуры и теплового потока, тем больше величины $\Delta T^{(i)}$ и $\Delta q^{(i)}$. При этом в полуоткрытом и открытом резонаторах возможны случаи, когда температура в фиксированной точке $x=x_i$ становится значительно выше (ниже) величины T_{\max}^0 (T_{\min}^0).

С увеличением времени релаксации γ величины амплитуд $\Delta T^{(i)}$, $\Delta q^{(i)}$ увеличиваются, а также уменьшается частота ν колебаний теплового поля в каждом из резонаторов. Частота и период колебаний определяются величинами теплофизических свойств $\lambda(T_*)$, $c(T_*)$, γ и не зависят от параметров n_1 и B. При фиксированных значениях $\lambda(T_*)$, $c(T_*)$, γ величины ν в открытом и закрытом (полуоткрытом) резонаторах отличаются примерно в 2 раза.

Работа выполнена под научным руководством профессора О.Н. Шабловского.

ЛИТЕРАТУРА

- 1. Галиуллин, Р.Г. Резонансные колебания газа в закрытой трубе в области перехода к ударным волнам / Р.Г. Галиуллин [и др.] // ИФЖ. 2000. Т. 73, № 2. С. 370 375.
- 2. Руденко, О.В. Рост энергии и добротности нелинейного резонатора с усилением его потерь / О.В. Руденко [и др.] // ДАН. -2002. -T. 383, № 3. -C. 330 333.
- 3. Шабловский, О.Н. Релаксационный теплоперенос в нелинейных средах / О.Н. Шабловский. Гомель: ГГТУ им. П.О. Сухого, 2003. 382 с.
- 4. Voronel, A.V. Heat capacity and equilibration time near T_c of YBa₂Cu₃O₇ / A.V. Voronel [etc.] // Phisica C153-155. 1988. P. 1086 1088.
- Shablovsky, O.N. Free oscillations of large amplitude in a heat resonator / O.N. Shablovsky, I.A. Kontsevoy // Physics of Shock Waves, Combustion, Detonation and Non-Equilibrium Processes. Minsk, 2005. – P. 157 – 158.
- 6. Шабловский, О.Н. Нелинейные собственные колебания локально-неравновесного теплового поля / О.Н. Шабловский, И.А. Концевой // Проблемы газодинамики и тепломассообмена в энергетических установках. М.: Изд-во МЭИ, 2005. Т. 2. С. 379 382.
- 7. Шабловский, О.Н. Большие собственные колебания теплового резонатора / О.Н. Шабловский, И.А. Концевой // Материалы, технологии, инструменты. 2006. Т. 11, № 2. С. 9 14.
- 8. Коробейников, В.П. Задачи теории точечного взрыва / В.П. Коробейников. М.: Наука, 1985. 400 с.

Поступила 18.01.2007