МАТЕМАТИКА

УДК 512.542

О КОНЕЧНЫХ ГРУППАХ С ХОЛЛОВЫМИ {2, r} -ПОДГРУППАМИ

д-р физ.-мат. наук, проф. Э.М. ПАЛЬЧИК, С.Ю. БАШУН, канд. физ.-мат. наук А.В. КАПУСТО (Полоцкий государственный университет)

Известно, что если конечная группа X имеет холловы $\{2,r\}$ -подгруппы, где r пробегает все конечные простые делители порядка группы, то группа разрешима. Если же r пробегает хотя бы на один нечетный простой делитель порядка группы X меньше, то появляются конечные простые неабелевы группы. Например, это группы $L_2(p)$, $p \in \{5,7,8\}$, $L_2(2^{2^k})$, где $2^{2^k}+1$ – простое число, $L_3(3)$.

Hекоторые вопросы теории конечных групп сводятся к необходимости знать все простые неабелевы группы, у которых r пробегает нечетные простые делители порядка группы, отличные от двух из них.

B данной статье описываются такие простые неабелевы группы из множества Chev(2).

1. Введение

Пусть X – конечная группа четного порядка, t и s – различные простые нечетные делители ее порядка X, σ – множество остальных нечетных простых делителей числа X. Пусть X имеет холловы $\{2,r\}$ -подгруппы, где x пробегает множество x. Что можно сказать о строении группы x? В этой статье мы рассмотрим часть этой задачи, когда x x0.

В работе используются стандартные обозначения и терминология теории конечных групп, которые можно найти в [1-4]. Кроме [4] для групп лиевского типа используются обозначения из [5 и 6]. Отметим, что основные результаты о существовании холловых подгрупп в конечных группах получены Φ . Холлом [7], С.А. Чунихиным [8], Φ . Гроссом [9-11], Д.О. Ревиным [12, 13], Е.П. Вдовиным и Д.О. Ревиным [14, 6].

2. Обозначения и терминология

Для удобства чтения приведем основные обозначения:

- $-\pi$ множество некоторых простых чисел;
- π' множество простых чисел, такое, что $\pi' \cap \pi = \emptyset$;
- $\pi(n)$ множество различных простых делителей натурального числа n;
- |X| порядок конечной группы X;
- $-\pi(X) = \pi(|X|)$;
- S_π -подгруппа холлова π -подгруппа A группы X, такая, что $\pi(A) \subseteq \pi$ и индекс |X:A| ее в X есть π' -число;
 - $Syl_p(X)$ множество S_p -подгрупп группы X;
 - следуя [7], будем говорить, что группа X удовлетворяет свойству (или обладает свойством): E_{π} , если она обладает холловой π -подгруппой;
 - C_{π} , если она удовлетворяет свойству E_{π} и любые две ее холловы π -подгруппы сопряжены в X;
- D_{π} , если она удовлетворяет свойству C_{π} и любая ее π -подгруппа лежит в некоторой холловой π -подгруппе;
 - [n] целая часть рационального числа n;
 - (m, n) наибольший общий делитель чисел m и n;
 - a/b a делит b ($a \times b a$ не делит b);
 - AwrB сплетение группы A с помощью группы B;
 - Z_n , D_n , E_n соответственно циклическая, диэдральная, элементарная абелева группа порядка n;
 - GF(q) поле Галуа порядка $q = p^n$, где p характеристика поля;

- под группой Шевалле понимается любая фактор-группа универсальной группы Шевалле;
- любая группа Шевалле X рассматривается над конечным полем K характеристики p и с X ассоциируется система корней Φ , обозначения типов систем корней стандартны [4, 5];
- поле K считается равным полю $GF(q^2)$, если Φ имеет тип 2A_l , 2D_l , 2E_6 ; полю $GF(q^3)$, если Φ имеет тип 3D_4 ; полю GF(q) в остальных случаях. Во всех случаях поле GF(q) называют полем определения группы X;
- всякая группа Шевалле X обладает двумя характерными подгруппами B и N такими, что X = BNB, $B = N_X(P)$, где $P \in Syl_p(X)$; $H = B \cap N$ абелева p'-группа, $B = P\lambda H$, $H \triangleleft N$, N/H = W группа Вейля системы корней Φ для X и ассоциируется далее с X. H называют подгруппой Картана, B подгруппой Бореля, а N —мономиальной подгруппой группы X. Группа W порождается s инволюциями w_i ,

 $1 \le i \le s$, с полным множеством определяющих соотношений $(w_i \cdot w_j)^{k_{ij}} = 1$, $1 \le i, j \le s$. Число s называется рангом группы W и лиевым рангом группы X;

- параболической подгруппой группы X называется любая подгруппа, содержащая $N_X(P) = B$;
- все конечные группы Шевалле с полем определения $GF(p^n) = GF(q)$ (нормальные и скрученные типы) мы обозначаем символом Chev(p). Если мы желаем подчеркнуть, что речь идет о присоединенной версии группы $X \in Chev$ (с Z(X) = 1), то условимся писать $X \in Chev^a$ (или $X \in Chev^a(p)$);
 - S^{n} симметрическая группа перестановок и символов;
 - A_n знакопеременная группа перестановок и символов;
 - X' коммутант группы X.

3. Используемые результаты

- 3.1. ЛЕММА. Пусть x натуральное число. Тогда
 - (1) $(x-1, x+1) \in \{1, 2\}$;
 - (2) $(x-1, x^2+x+1) \in \{1, 3\}$;
 - (3) $(x-1, x^2+1) \in \{1, 2\}$;
 - (4) $(x+1, x^2+1) \in \{1, 2\}$;
 - (5) $(x-1, x^2-x+1)=1$;
 - (6) $(x^2 \pm x + 1, x^2 + 1) = 1$:
 - (7) $(x+1, x^2-x+1) \in \{1, 3\}$;
 - (8) $(x+1, x^2+x+1)=1$;
 - (9) $(x^3+1, x^2+x+1)=1$.

Доказательство

Эти утверждения хорошо известны и легко доказываются. Докажем, например, (7) и (9).

Предположим, что $(x+1, x^2-x+1)=d\neq 1$. Тогда d делит их сумму: $d/(x^2+2)$. Кроме того, d делит x+1 и x^2-1 . Поэтому d делит $x^2+2-x^2+1=3$. Этим (7) доказано.

Аналогично, если $(x^3+1, x^2+x+1)=d\neq 1$, то d делит x^2-x-1 . Тогда d должно делить $(x^2+x+1)+(x^2-x-1)=2x^2$, т.е. d/2. Но это невозможно, так как x^2+x+1 есть нечетное число. Этим (9) доказано. Лемма доказана.

3.2. TEOPEMA [16].

(1) Если p — простое число, $n \ge 2$ — натуральное число, то существует простое число z такое, что $z/(p^n-1)$, но $z \setminus (p^i-1)$ для $1 \le i < n$, исключая два случая: (a) n=6, p=2; (б) n=2, $p=2^q-1$, q — простое число (z называют примитивным делителем числа p^n-1).

- 20 (3 (3) pa To k
 - (2) Если $p^m-r^n=1$, где p и r простые числа, m и n натуральные числа, то $(p^m,r^n)\in\{(3^2,2^3);(3,2);(p,2^{2^k});(2^m,r),m$ простое число, k натуральное число или k=0 }.
 - 3.3. ТЕОРЕМА [17]. Если $\frac{x^a-1}{x-1}=r^b$, где r простое число, x натуральное число, a и b натуральные числа, то a простое число, $r\equiv 1\ (\mathrm{mod}\ a)$ или a=2=r. (Отметим, что если x простое число, то это утверждение есть в [16]).
 - 3.4. ЛЕММА. Пусть p, r, s попарно различные простые числа, $q = p^k$, k натуральное число, $k \ge 1$. Предположим, что $(q+1)(q^2+q+1) = r^n \cdot s^m$, где m и n натуральные числа. Тогда
 - (1) n > 0, m > 0;
 - (2) $p^k \in \{2, 3, 8\}$.

Доказательство

(1) Предположим, что m=0 (случай n=0 исключается аналогично). Тогда $q+1=r^l$, $l\leq n$, $q^2+q+1=r^{n-l}$.

По теореме 3.2 (2) тогда

$$(r^l, p^k) \in \{(3^2, 2^3); (3, 2); (r, 2^{2^k}); (2^m, p)\}.$$
 (3.1)

Если $r \neq 2$, то по теореме 3.3 $r \equiv 1 \pmod{3}$, так как a = 3 во втором соотношении $\frac{q^3 - 1}{q - 1} = r^{n - l}$.

Поэтому в (3.1) первые две возможности отпадают. Так как $q^2 + q = r^{n-l} - 1 = (r-1)(r^{n-l-1} + \dots + 1) = q(q+1)$, то 3 делит либо q, либо q+1. Если 3/q, то в (3.1) третья возможность дает противоречие, так как p=2. Если 3/(q+1), то r=3 ввиду $q+1=r^l$. Но эти возможности из (3.1) уже исключены ранее.

Итак, пусть r=2. По теореме 3.3 тогда a=2, хотя выше показано, что a=3. Поэтому и четвертая возможность в (3.1) исключается и (1) доказано.

(2) Из леммы 3.1 (8) следует, что $q+1=s^m$, а $q^2+q+1=r^n$ (случай $q+1=r^n$, $q^2+q+1=s^m$ рассматривается аналогично). По теореме 3.2 (2)

$$(s^m, p^k) \in \{(3^2, 2^3); (3, 2); (s, 2^{2^k}); (2^m, p), m - \text{простое число}\}.$$
 (3.2)

Из $\frac{q^3-1}{q-1}=q^2+q+1=r^n$ и теоремы 3.3 следует, что $r\equiv 1\pmod 3$. Поэтому $q(q+1)=r^n-1=r^n$

 $=(r-1)(r^{n-1}+\cdots+1)$ и либо 3 делит q, либо 3/(q+1) .

Если 3/q, то из (3.2) следует, что $q = p = 3 \in \{2, 3, 8\}$.

Если 3/(q+1), то из $q+1=s^m$ следует, что s=3. Из (3.2) теперь следует, что (2) доказано. Лемма доказана.

- 3.5. ТЕОРЕМА ([11, теорема 3.1]). Пусть $X \in Chev(p)$, A- холлова π -подгруппа в X, $3 \notin \pi$, $p \in \pi$. Тогда p=2 или $2 \notin \pi$; A содержится в подгруппе Бореля из X, либо $A=X \cong {}^2B_2(2^{2k+1})$. X удовлетворяет свойству C_{π} .
- 3.6. ЛЕММА. Пусть $q = p^n$, где p простое число, n натуральное число. Пусть r и s различные простые числа, q и p натуральные числа. Предположим, что

$$\frac{q^4 - 1}{q \pm 1} = r^a \cdot s^b \,. \tag{3.3}$$

Тогда

1) a > 0, b > 0 или q = 2, q + 1 = 3, $r \cdot s = 5$;

- 2) если в (3.3) $\frac{q^4-1}{q-1} = r^a \cdot s^b$, то имеет место одна из возможностей:
 - 2.1) q = 2, s = 3, r = 5, a = 1 = b;
 - 2.2) q = p, s = 2, $q + 1 = 2^{b-1}$, $q^2 + 1 = 2 \cdot r^a$, b 1 простое число;
 - 2.3) $q = 2^{2^k}$, q+1=s, $q^2+1=r$, a=1=b, k- натуральное число;
- 3) если в (3.3) $\frac{q^4-1}{q+1} = r^a \cdot s^b$, то имеет место одна из возможностей:
 - 3.1) q = 4, r = 17, s = 3, a = 1 = b;
 - 3.2) q = 3, $s^b = 4$, $r^a = 5$;
 - 3.3) q = 9, $s^b = 2^4$, $r^a = 41$;
 - 3.4) q = p, s = 2, $s^b = 2^{2^k + 1}$ для некоторого натурального числа k, $q^2 + 1 = 2 \cdot r^a$.

Всюду r и s могут меняться ролями.

Доказательство

- 1) Предположим, что b=0 (случай a=0 рассматривается аналогично). Тогда $(q\mp 1)(q^2+1)=r^a$. По лемме 3.1 (3, 4) r=2 или q=2. Тогда или $q\mp 1=2$, а $q^2+1=2^{a-1}$, или $q\mp 1=2^{a-1}$, а $q^2+1=2$. Так как $q^2\neq 1$, то пусть $q\mp 1=2$ и q=3. Но тогда $q^2+1=10=2\cdot 5\neq 2^{a-1}$. Этим 1) доказано.
- 2) Пусть $(q+1)(q^2+1)=r^a\cdot s^b$. По теореме 3.2 (1) число q^4-1 имеет примитивный делитель t, который не делит q^2-1 , т.е. t не делит (q-1) и (q+1) .

Пусть для определенности t=r (случай t=s рассматривается аналогично). Так как $r \setminus (q+1)$, то $q+1=s^m$, $m \le b$. По теореме 3.2 (2)

$$(s^m, p^n) \in \{(3^2, 2^3); (3, 2); (s, 2^{2^k}); (2^m, p)\}.$$
 (3.4)

По лемме 3.1 (4) $(q+1,q^2+1) \in \{1,2\}$. Предположим сначала, что $(q+1,q^2+1)=1$. Тогда $q^2+1=r^a$, m=b. Из теоремы 3.2 (2) следует, что $(r^a,p^{2n}) \in \{(r,2^{2^{k+1}})\}$. Из (3.4) теперь следует, что имеем заключение 2.3). Пусть теперь $(q+1,q^2+1)=2$. Тогда, так как $t \setminus (q+1)$, то s=2. Поэтому (3.4) дает нам единственную возможность $s^m=2^m$, $p^n=p$, $q^2+1=2\cdot r^a$, $q+1=2^{b-1}$. Это дает нам заключение 2.2).

Заключение 2.1) следует из 2.3) при k=0. Тогда q=2, $s^m=s=3$, r=5, a=1, b=1.

3) Пусть теперь $(q-1)(q^2+1)=r^a\cdot s^b$. Так как $r \setminus (q-1)$, то $q-1=s^m$, $m \le b$. Из теоремы 3.2 (2) следует, что

$$(p^n, s^m) \in \{(3^2, 2^3); (3, 2); (p, 2^{2^k}); (2^n, s)\}.$$
 (3.5)

По лемме 3.1 (3) $(q-1,\ q^2+1)\in\{1,2\}$. Если $(q-1,\ q^2+1)=1$, то $q^2+1=r^a$, m=b. По теореме 3.2 (2) $(r^a,\ p^{2n})\in\{(r,2^{2^l})\}$. Вместе с (3.5) это дает, что $2^n=2^{2^{l-1}}$. Так как n – простое число, то $2^{l-1}=2$ или 1, т.е. q=4 или 2. Если q=2, то $q^2+1=5=r$, $s^b=1$, и это отмечено в заключении 1). Если q=4, то $q^2+1=17=r$, $s^m=s=3$. Этот случай имеется в заключении 3.1).

Если $(q-1, q^2+1)=2$, то $q^2+1=2\cdot r^a$, $q-1=2^{b-1}$. Из теоремы 3.2 (2) тогда следует, что $(p^n, 2^{b-1})$ находится среди первых трех возможностей, указанных в (3.5). Если q=9, то имеем заключение 3.3). Если q=3, то имеем заключение 3.2). Если q=p, то имеем заключение 3.4) леммы. Лемма доказана.

3.7. ЛЕММА. Пусть $q=2^n$, n- натуральное число. Предположим, что $q^2 \mp q + 1 = p^m$ для простого числа p и натурального числа m. Тогда m=1 .

Доказательство

Предположим сначала, что $m=2\cdot k$. Тогда $q^2\mp q=p^{2k}-1=(p^k-1)(p^k+1)$. По лемме 3.1 (1) можно считать, что $p^k-1=2\cdot a$, $p^k+1=2^{n-1}\cdot b$ для целых нечетных чисел a и b (случай $p^k-1=2^{n-1}\cdot a$, $p^k+1=2\cdot b$ аналогичен). Тогда $p^k+1=\frac{1}{2}\cdot 2^n\cdot b=\frac{1}{2}\cdot q\cdot b$, $p^k-1=p^k+1-2=\frac{1}{2}\cdot q\cdot b-2$. Тогда $q(q\pm 1)=\frac{1}{2}qb(\frac{1}{2}qb-2)$, $q\pm 1=\frac{1}{2}b(\frac{1}{2}qb-2)=\frac{1}{4}qb^2-b$,

$$q = \frac{1}{4}qb^2 - b \pm 1. {3.6}$$

Если q=2 , то $2=\frac{1}{2}b^2-b\pm 1$ и $1=\frac{1}{2}b^2-b$, $b^2-2b=2$, b(b-2)=2 (или $3=\frac{1}{2}b^2-b$, $b^2-2b=6$, b(b-2)=6), что невозможно, так как b и b-2 — нечетные числа.

Если q=4, то $4=b^2-b\pm 1$ и 3=b(b-1), (или 5=b(b-1)), что невозможно. Поэтому $q\ge 8$.

Из (3.6) видно, что $b \mp 1 = \frac{1}{4}qb^2 - q = \frac{qb^2 - 4q}{4} = \frac{1}{4}q(b^2 - 4) = \frac{1}{4}q \cdot r$, где $r = b^2 - 4$ — нечетное целое число. Итак, $\frac{1}{4}qr - b \pm 1 = 0$, $b = \frac{1}{4}qr \pm 1$, $r = b^2 - 4 = \frac{1}{16}q^2r^2 \pm 2 \cdot \frac{1}{4}qr + 1 - 4 = \frac{1}{16}q^2r^2 \pm \frac{1}{2}qr - 3$, или

$$\frac{1}{16}r^2q^2 \pm \frac{1}{2}rq - (3+r) = 0. {(3.7)}$$

Уравнение (3.7) есть квадратное уравнение относительно q с неотрицательным корнем $q = 2^n \ge 8$.

Поэтому

$$q = \frac{\mp \frac{1}{2}r + \sqrt{\frac{1}{4}r^2 + 4 \cdot \frac{1}{16}r^2(3+r)}}{\frac{1}{8}r^2} \ge 8.$$

Откуда $\frac{\mp 1 + \sqrt{r+4}}{\frac{1}{4}r} \ge 8$, $\mp 1 + \sqrt{r+4} \ge 2r$, $\sqrt{r+4} \ge 2r \pm 1$. Это противоречивое неравенство, и слу-

чай $m=2\cdot k$ исключается из рассмотрения.

Предположим теперь, что m=2k+1 . Тогда $q^2\mp q=p^{2k+1}-1=(p-1)(p^{2k}+\dots+1)$. Во второй скобке сумма четного числа слагаемых и 1 дает нам нечетное число. Поэтому $q=2^n$ делит (p-1) , т.е. $s\cdot 2^n=(p-1)$. С другой стороны, $q\mp 1=s\cdot (p^{2k}+\dots+1)$ и $q\mp 1\geq p^{2k}+\dots+1$. Итак, $p^{2k}+\dots+1< q\leq p-1$. Если $2k\neq 0$, то $p^{2k}< p-2$. Или $p^{2k}+\dots+p\leq q\leq p-1$ и $p^{2k}\leq p-1$. Это противоречие доказывает утверждение, что m=1 . Лемма доказана.

3.8. ЛЕММА. Пусть $q=p^n$, где p — простое число, n — натуральное число. Предположим, что $(q+1)(q^2-q+1)=r^a\cdot s^b$, где r и s — различные простые числа, a и b — натуральные числа. Тогда

(1)
$$a > 0$$
, $b > 0$; или $q = 2$, r^a или s^b равно 3^2 ;

(2)
$$3 \in \{r, s\}$$
, или $q = p = r^a - 1 = 2^a - 1$, $2^{2a} - 3 \cdot 2^a + 3 = s^b$;

$$(3)$$
 $r = 3$, $q = 8$, $s = 19$ (или $r = 19$, $s = 3$).

Доказательство

- (1) Предположим, что b=0 (случай a=0 аналогичен). Тогда $q^3+1=r^a$. По теореме 3.2 (2) $(r^a, p^{3n}) \in \{(3^2, 2^3)\}$ и n=1. Этим (1) доказано.
- (2) Предположим, что $3 \notin \{r, s\}$. По лемме 3.1 (7) тогда $q+1=r^a$, $q^2-q+1=s^b$ (случай $q+1=s^b$, $q^2-q+1=r^a$ рассматривается аналогично). По теореме 3.2 (2)

$$(r^a, p^n) \in \{(3^2, 2^3); (3, 2); (r, 2^{2^k}); (2^a, p)\}.$$
 (3.8)

Если q=8 или 2, то имеем противоречие с $3 \notin \{r,s\}$ после вычисления q^2-q+1 . Пусть $p^n=2^{2^k}$. Тогда $q^2-q+1=2^{2^{k+1}}-2^{2^k}+1=2^{2^k}(2-1)+1=2^{2^k}+1=s^b$ и $(s^b,2^{2^k})=(s,2^{2^k})$ по теореме 3.2 (2), так как $s\neq 3$. Тогда $q=2^{2^k}$, $q+1=2^{2^k}+1=s=r$, что невозможно. Если же $p^n=p=2^a-1$ то $q^2-q+1=2^{2a}-2\cdot 2^a+1-2^a+1+1=s^b$ и $2^{2a}-3\cdot 2^a+3=s^b$. Этим доказано (2).

(3) Если $(q+1,q^2-q+1)=1$, то, как и в случае (2), легко показывается, что q=8 или 2. Поэтому по лемме 3.1 (7) можно считать, что $q+1=3^{a-1}$, $q^2-q+1=3\cdot s^b$, или q+1=3, $q^2-q+1=3^{a-1}\cdot s^b$, или $q^2-q+1=3^{a-1}$, $q+1=3\cdot s^b$. Рассмотрим эти три случая отдельно.

Пусть $q+1=3^{a-1}$, $q^2-q+1=3\cdot s^b$. По теореме 3.2 (2) имеем первые две возможности из (3.8). При q=8 или q=2 имеем заключение 3.8 (3) или 3.8 (1).

Пусть теперь q+1=3, $q^2-q+1=3^{a-1}\cdot s^b$. Тогда q=2 и имеем 3.8 (1).

Пусть $q^2-q+1=3^{a-1}$, $q+1=3\cdot s^b$. Если $q=2^n$, то по лемме 3.7 a-1=1, q=2, и имеем заключение 3.8 (1). Пусть теперь $q=t^n$, t>2. Тогда q+1 — четное число и s=2. Тогда $q=3\cdot 2^b-1$ и $q^2-q+1=3^2\cdot 2^{2b}-2\cdot 3\cdot 2^b+1-3\cdot 2^b+1+1=3^{a-1}$. Или $3^22^{2b}-3^2\cdot 2^b+3=3^{a-1}$. Откуда $3\cdot 2^{2b}-3\cdot 2^b+1=3^{a-2}$. Поэтому a-2=0 (иначе 3 делит 1). Но тогда $2^{2b}-2^b=0$ и b=0, что исключено в 3.8 (1). Этим (3) доказано. Лемма доказана.

3.9. ТЕОРЕМА ([12, теорема 3.3]). Пусть G – группа Шевалле с полем определения GF(q) характеристики p ($q=p^n$). Пусть A – холлова π -подгруппа группы G, где π – некоторое множество простых чисел, $|\pi|>1$, $p\in\pi$. Тогда либо A содержится в некоторой подгруппе Бореля группы G, либо A является параболической подгруппой группы G.

4. Основной результат

- 4.1. ТЕОРЕМА. Пусть $X \in Chev(2)$, B ее подгруппа Бореля, $q = 2^n$. Предположим, что X имеет холловы $\{2, r\}$ -подгруппы, где r пробегает множество нечетных простых делителей числа |X|, отличных от t и s. Тогда имеет место одна из возможностей:
 - (1) $X \cong A_1(2^n)$, $2^n + 1 = t^{\alpha} \cdot s^{\beta} = |X:B|$; $X \cong {}^2B_2(q)$, $q^2 + 1 = t^{\alpha} \cdot s^{\beta}$;
 - (2) $X \cong B_2(2^n)$, $n = 2^k$, $|X:B| = t^2 \cdot s$;
 - (3) $X \cong A_2(8)$;
 - (4) $X \cong B_2(2^{2^k})$, $k \ge 0$, $|X:B| = t \cdot s$, $t = 2^{2^k} + 1$, $s = 2^{2^{k+1}} + 1$ для некоторого натурального числа k;
 - (5) $X \cong {}^{2}A_{3}(2^{2}), {}^{2}A_{2}(8^{2}).$

Доказательство

Пусть A — холлова $\{2,r\}$ -подгруппа из $X,\;\pi=\{2,r\}$. Так как $2\in\pi$, то по теореме 3.9 A либо содержится в некоторой подгруппе Бореля из X, либо является параболической подгруппой в X. Если $r\neq 3$, то по теореме 3.5 A лежит в подгруппе Бореля. Если r=3, то A лежит в подгруппе Бореля ввиду $q=2^n$

20 [1] [1] гр и от до х х ду на

[12, теорема 4.2]. Итак, в любом случае $A \subseteq N(P)$, где $P \in Syl_2(X)$. Пусть $B = N(P) = P\lambda H$, где H – подгруппа Картана в X. Ясно, что B – разрешимая группа и |X:B| делит $t^a \cdot s^b$ по условию теоремы, где t^a и s^b – порядки S_t - и S_s -подгруппы в X (по условию r пробегает все нечетные простые делители |X|, отличные от t и s, и в силу сопряженности S_r -подгрупп можно считать, что r пробегает нечетные простые делители и в |H|). Индекс |X:B| хорошо известен (смотри, например [12, доказательство леммы 2.7]).

1) Если $t \neq 3$ и $s \neq 3$, то 3/|H| (если $3 \setminus |H|$, то $3 \setminus |X|$, $X \cong {}^2B_2(2^{2k+1})$ и X не имеет собственных холловых подгрупп четного порядка, делящего $q(q^2+1)$. По теореме 4.2 в [12] X обладает холловой $\{2,3\}$ -подгруппой с $2 \in \{2,3\}$ тогда и только тогда, когда $q = 2^n = 2^{2m}$ для некоторого целого m и $X \cong A_1(q)$, $B_2(q)$, $A_2(q)$, $A_3(q)$ или $A_4(q)$, $A_4(q)$,

для
$$A_1(q)$$
 $|X:B| = \frac{q^2 - 1}{q - 1} = t^{\alpha} \cdot s^{\beta}, \ \alpha \le a, \ \beta \le b;$ (4.1)

для
$$B_2(q)$$
 $|X:B| = \frac{q^2 - 1}{q - 1} \cdot \frac{q^4 - 1}{q - 1} = t^{\alpha} \cdot s^{\beta};$ (4.2)

для
$${}^{2}A_{2}(q)$$
 $|X:B| = \frac{q^{2}-1}{q-1} \cdot \frac{q^{3}+1}{q+1} = t^{\alpha} \cdot s^{\beta};$ (4.3)

для
$${}^2A_3(q)$$
 $|X:B| = \frac{q^2-1}{q-1} \cdot \frac{q^3+1}{q+1} \cdot \frac{q^4-1}{q-1} = t^{\alpha} \cdot s^{\beta};$ (4.4)

для
$${}^{2}A_{4}(q)$$
 $|X:B| = \frac{q^{2}-1}{q-1} \cdot \frac{q^{3}+1}{q+1} \cdot \frac{q^{4}-1}{q-1} \cdot \frac{q^{5}+1}{q+1} = t^{\alpha} \cdot s^{\beta}$. (4.5)

В случае (4.1) $q+1=t^{\alpha} \cdot s^{\beta}$, что есть в заключении теоремы.

В случае (4.2) по 2) леммы 3.6 $q=2^{2^k}$, $(q+1)^2(q^2+1)=t^2\cdot s$. Эти группы есть в заключении теоремы. Случай (4.3) не может иметь места в силу леммы 3.8, так как $3 \notin \{t,s\}$. По этой же причине не могут иметь места и случаи (4.4) и (4.5).

2) Пусть теперь $3 \in \{t, s\}$. Пусть для определенности t = 3 .

По теореме 3.5 можно считать, что все холловы $\{2,r\}$ -подгруппы из X лежат в подгруппе Бореля B=N(P) . Как и выше, $\mid X:B\mid$ делит $3^a\cdot s^b$.

Рассмотрим отдельно следующие 14 возможностей ($X \not \cong {}^2B_2(2^{2k+l})$, ${}^2G_2(3^{2k+l})$).

2.1)
$$X \cong A_l(q), l \ge 1, \qquad |X:B| = \prod_{i=1}^l \frac{q^{i+1}-1}{q-1} = 3^{\alpha} \cdot s^{\beta}, 0 \le \alpha \le a, 0 \le \beta \le b.$$

Если
$$l \ge 2$$
 , то $\frac{q^2-1}{q-1} \cdot \frac{q^3-1}{q-1} = (q+1)(q^2+q+1)$ делит $3^{\alpha} \cdot s^{\beta}$. Тогда по (2) леммы $3.4 \ q \in \{2,8\}$.

Если $l \ge 3$, то по 2) леммы 3.6 q=2, s=5, r=3 (ввиду (2) леммы 3.4). $l \not \ge 4$, так как $\frac{q^5-1}{q-1}=31 \in \{3,5\}$ (ввиду (2) леммы 3.4 и 2) леммы 3.6). Итак, X может быть $A_3(2)$, $A_2(2)$, $A_2(8)$ или $A_1(q)$ с $q+1=3^{\alpha}\cdot s^{\beta}$. $1+2^n=3^{\alpha}\cdot s^{\beta}$.

Если $X \cong A_2(2)$, то $\mid \pi(X) \mid = 3$ и группа отпадает. Если $X \cong A_2(8)$, то $\mid X:B \mid = 3^2 \cdot 73$.

Если $X\cong A_3(2)$, то $\mid X:B\mid = \frac{q^2-1}{q-1}\cdot\frac{q^3-1}{q-1}\cdot\frac{q^4-1}{q-1}=3^a\cdot 5^b$ и $\frac{2^3-1}{2-1}=7$. Поэтому группа $A_3(2)$ отпадает.

α = 0 | Me | ΠЫ

2.2), 2.3)
$$X \cong B_l(q), X \cong C_l(q), l > 1, |X:B| = \prod_{i=1}^l \frac{q^{2i}-1}{q-1} = 3^{\alpha} \cdot s^{\beta}, 0 \le \alpha \le a, 0 \le \beta \le b.$$

Так как $l \ge 2$, то $\frac{q^4-1}{q-1}$ делит $3^{\alpha} \cdot s^{\beta}$. По лемме 3.6 тогда q=2 , s=5 , r=3 , $\alpha=1$, $\beta=1$, или $q=2^{2^k}$,

 $\alpha=1\;,\;\beta=1\;.\;l\geq 3\;$ невозможно, так как тогда $\frac{q^6-1}{q-1}$ делит $3^\alpha\cdot s^\beta\;$ и если $\;q=2\;,$ то $\;s=7\neq 5\;,$ а если $\;q=2^{2^k}\;,$

k>0 , то $\frac{q^6-1}{q-1}=\frac{(2^{2^k})^6-1}{2^{2^k}-1}=3^m\cdot s^n$ для некоторых натуральных чисел m и n, что невозможно по теоре-

ме 3.2 (1) и лемме 3.8. Итак, l=2, q=2, r=3, s=5 или $q=2^{2^k}$, k>0, r=q+1, $s=q^2+1$. Эти группы есть в заключении теоремы.

2.4)
$$X \cong D_l(q)$$
, $l \ge 4$, $|X:B| = \frac{q^l - 1}{q - 1} \cdot \prod_{i=1}^{l-1} \frac{q^{2i} - 1}{q - 1} = 3^{\alpha} \cdot s^{\beta}$, $0 \le \alpha \le a$, $0 \le \beta \le b$.

Так как $l \ge 4$, то $l-1 \ge 3$ и эта возможность исключается, как и в случаях 2.2) и 2.3).

2.5) $X\cong {}^2D_l(q)$, $l\geq 4$. |X:B| содержит множитель $\prod_{i=1}^{l-1}\frac{q^{2i}-1}{q-1}$, который делит $3^\alpha\cdot s^\beta$. Эта возможность исключается, как и в 2.4).

$$2.6) \ \ X \cong E_6(q) \, . \qquad | \ X : B | = \frac{q^{12} - 1}{q - 1} \cdot \frac{q^9 - 1}{q - 1} \cdot \frac{q^8 - 1}{q - 1} \cdot \frac{q^6 - 1}{q - 1} \cdot \frac{q^5 - 1}{q - 1} \cdot \frac{q^2 - 1}{q - 1} = 3^{\alpha} \cdot s^{\beta} \, . \quad \text{По Теореме } 3.2 \quad (1)$$

число $q^{12}-1$ имеет простой делитель z, который не делит q^m-1 для $1 \le m < 12$. Тогда $z \in \{3, s\}$. Точно так q^9-1 имеет простой делитель t, отличный от z, который не делит q^n-1 для $1 \le n < 9$. Ясно, что $\{t, z\} \in \{3, s\}$. Но тогда для q^8-1 нельзя найти примитивный простой делитель, так как множество $\{3, s\}$ исчерпано. Противоречие с теоремой 3.2 (1) исключает эти группы из рассмотрения.

2.7), 2.8) $X \cong E_7(q)$, $E_8(q)$. Эти группы исключаются из рассмотрения, как и в случае 2.6).

2.9) $X\cong F_4(q)$. Эти группы исключаются, как и группы в случае 2.8), так как $\frac{(q^{12}-1)(q^8-1)(q^6-1)(q^2-1)}{(q-1)^4}$ делит $3^\alpha\cdot s^\beta$, и если даже (q^6-1) не имеет своего примитивного делителя,

отличного от примитивных делителей $(q^{12}-1)$, (q^8-1) , то q=2, n=6 и s=7, что невозможно, так как $\{3,s\}$ — примитивные делители чисел $(q^{12}-1)$ и (q^8-1) .

$$2.10) \qquad X \cong G_2(q) \; , \qquad | \; X : B \; | \; = \frac{1}{(q-1)^2} (q^6-1)(q^2-1) = 3^\alpha \cdot s^\beta \; . \qquad q^6-1 = (q^3-1)(q^3+1) \; , \qquad \text{поэтому} \; = \frac{1}{(q-1)^2} (q^6-1)(q^2-1) = 3^\alpha \cdot s^\beta \; . \qquad q^6-1 = (q^3-1)(q^3+1) \; , \qquad \text{поэтому} \; = \frac{1}{(q-1)^2} (q^6-1)(q^2-1) = \frac{1}{(q-1)^2} (q^6-1)(q^3-1) = \frac{1}{(q-1)^2} (q^6-1)(q^6-1) = \frac{1}{(q-1)^2} (q^6-1)$$

 $(q^2+q+1)(q^3+1)$ делит $3^{\alpha}\cdot s^{\beta}$. По лемме 3.8 q=2 или 8. Если q=2, то $(2^2+2+1)(2^3+1)(2+1)=7\cdot 3^3$. Если q=8, то $(8^2+8+1)(8^3+1)(8+1)=(64+9)\cdot 513\cdot 9=73\cdot 3^3\cdot 171=73\cdot 3^5\cdot 19$. Это не число вида $3^{\alpha}\cdot s^{\beta}$. Поэтому $X\cong G_2(2)$, $|X:B|=7\cdot 3^3$. Но $|\pi(X)|=3$. Поэтому группа не удовлетворяет условию теоремы.

2.11)
$$X \cong {}^{2}A_{l}(q^{2}), \quad |X:B| = \prod_{i=1}^{l} \frac{q^{i+1} - (-1)^{i+1}}{q - (-1)^{i+1}} = 3^{\alpha} \cdot s^{\beta}.$$

Если $l \ge 3$, то $\frac{q^2-1}{q-1} \cdot \frac{q^3+1}{q+1} \cdot \frac{q^4-1}{q-1}$ делит $3^\alpha \cdot s^\beta$. Из лемм 3.8 и 3.6 следует, что q=2 . Тогда $3 \cdot \frac{9}{3} \cdot 15 = 3^2 \cdot 5$ и группа $^2A_3(2^2)$ удовлетворяет условию, s=5 .

Если
$$l \ge 4$$
 , то $\frac{q^5+1}{q+1} = \frac{33}{3} = 11$ не делит $3^{\alpha} \cdot 5^{\beta}$. Поэтому $l \le 3$. Пусть теперь $l = 2$. Тогда $(q+1)(q^2-q+1)$

делит $3^{\alpha} \cdot s^{\beta}$ и по лемме 3.8 q=8 . $9 \cdot (64-8+1)=9 \cdot 57=3^3 \cdot 19$ и группа $^2A_2(8^2)$ удовлетворяет условию.

2.12)
$$X \cong {}^3D_4(q^3)$$
. $|X:B| = (q+1)(q^3+1)(q^8+q^4+1) = 3^{\alpha} \cdot s^{\beta}$. Из леммы 3.8 следует, что $q=8$,

s=19. Но $(8^8+8^4+1)=(16777216+4096+1)=16781313=5593771\cdot 3=294409\cdot 19\cdot 3$ и число 294409 име-

ет простой делитель, отличный от 19. Поэтому $|X:B| \neq 3^{\alpha} \cdot 19^{\beta}$. Группа не удовлетворяет условию.

$$2.13) \ \ X \cong {}^2E_6(q^2) \, . \qquad | \ X : B | = \frac{q^{12}-1}{q-1} \cdot \frac{q^9+1}{q+1} \cdot \frac{q^8-1}{q-1} \cdot \frac{q^6-1}{q-1} \cdot \frac{q^5+1}{q+1} \cdot \frac{q^2-1}{q-1} = 3^\alpha \cdot s^\beta \, . \ \ \text{Эта группа ис-$$

ключается из рассмотрения, как и $F_4(q)$ в 2.9).

2.14)
$$X \cong {}^2E_7(q^2)$$
. $|X:B| = (q^6+1)(q^3+1)(q^2+1)(q+1) = 3^{\alpha} \cdot s^{\beta}$. Tak kak $q^3+1 = (q+1)(q^2-q+1)$,

то из леммы 3.8 следует, что q=8 , s=19 . Но это невозможно, так как $q^2+1=65=5\cdot 13$ и $13\color 3^\alpha\cdot 19^\beta$. Группа не удовлетворяет условию.

Теорема доказана.

ЛИТЕРАТУРА

- Huppert, B. Endliche Gruppen, I / B. Huppert . Berlin: Springer Verlag, 1967. 793 S.
- Huppert, B. Finite groups, III / B. Huppert, N. Blackburn. Berlin: Springer Verlag, 1982. 454 S.
- Горенстейн, Д. Конечные простые группы. Введение в их классификацию / Д. Горенстейн. М.: Mир. - 1985. - 352 c.
- Carter, R. Simple groups of Lie type / R. Carter. London: J. Wiley and Sons, 1972. 333 p.
- 5. Кондратьев, А.С. Подгруппы конечных групп Шевалле / А.С. Кондратьев // Успехи матем. наук. 1986. – T. 41, № 1. – C. 57 – 96.
- Vdovin, E.P. Hall subgroups of finite groups / E.P. Vdovin, D.O. Revin. Новосибирск, 2004. 40 с. (Препринт / Ин-т матем., Сиб. отдел. РАН; № 134).
- Hall, Ph. Theorems like Sylow's / Ph. Hall // Proc. London Math. Soc. − 1956. V. 6, № 2. P. 286 304.
- Чунихин, С.А. Подгруппы конечных групп / С.А. Чунихин. Минск: Наука и техника, 1964. 154 с.
- Gross, F. On a conjecture of Philip Hall / F. Gross // Proc. London Math. Soc. 1986. V. 52, № 3. P. 464 - 494.
- 10. Gross, F. Conjugacy of odd order Hall subgroups / F. Gross // Bull. London Math. Soc. 1987. V. 19, № 4. P. 311 – 319.
- 11. Gross, F. Hall subgroups of order not divisible by 3 / F. Gross // Rocky Mountain J. Math. 1993. -
- 12. Ревин, Д.О. Холловы π -подгруппы конечных групп Шевалле, характеристика которых принадлежит π / Д.О. Ревин // Математические труды. – 1999. – Т. 2, № 1. – С. 160 – 208.
- 13. Ревин, Д.О. Свойство D_{π} в одном классе конечных групп / Д.О. Ревин // Алгебра и логика. 2002. T. 41, \mathbb{N}_{2} 3. – C. 335 – 370.
- 14. Вдовин, Е.П. Холловы подгруппы нечетного порядка в конечных группах / Е.П. Вдовин, Д.О. Ревин // Алгебра и логика. – 2002. – Т. 41, № 1. – С. 15 – 56.
- 15. Atlas of finite groups / J.H. Conway [etc.]. London: Clarendon Press, 1985. 252 p.
- 16. Zsigmondy, K. Zur Theorie der Potenzrests / K. Zsigmondy // Monatsh. Math. Phys. 1892. V. 3, № 2. S. 265 - 284.
- 17. Suryanarayana, D. Certain Diophantine equation / D. Suryanarayana // Math. Stud. 1967 (1969). V. 35, № 1 - 4. - P. 197 - 199.

Поступила 29.01.2007