Имплантация ионами Ag⁺ с энергией 30 кэВ в интервале доз $2,5 \cdot 10^{16} - 1 \cdot 10^{17}$ см⁻² в режиме постоянного ионного тока (плотность тока j = 4 мкА/см⁻²) проводилась при комнатной температуре в остаточном вакууме не хуже 10^{-5} Па на имплантаторе ИЛУ-3. Во избежание перегрева и деструкции образца в процессе имплантации использовалась кассета, обеспечивающая эффективный сток ионного заряда с поверхности полимера и плотный контакт с металлическим основанием, охлаждаемым водой.

Спектры НПВО структур фоторезист – кремний в диапазоне v = 400–4000 см⁻¹ регистрировались при комнатной температуре ИК-Фурье спектрофотометром *ALPHA* (*Bruker Optik GmbH*). Разрешение составляло 2 см⁻¹, количество сканов – 24. Коррекция фона проводилась перед каждым измерением. Согласно измерениям методом атомно-силовой микроскопии рельеф поверхности пленки был достаточно гладким, для исходных и имплантированных пленок средняя арифметическая шероховатость R_a поверхности не превышала 2 нм.

Экспериментальные результаты. После ионной имплантации новых полос ИК-поглощения обнаружено не было (рисунок 1). Однако в процессе ИИ происходила трансформация ИК-спектра НПВО пленок диазохинонноволачного резиста: имело место снижение интенсивности ряда полос, сопровождавшееся исчезновением ряда слабых полос; наблюдалось смещение максимумов ряда полос и перераспределение интенсивностей между максимумами расположенных рядом полос, что свидетельствует о структурных и конформационных изменениях полимерной пленки при ионной имплантации.

Рисунок 1. – Спектры НПВО исходной (1) и имплантированной Ад⁺ дозой 1·10¹⁷ (2) пленок ФП9120

При анализе экспериментальных данных необходимо учитывать следующее. При записи ИКспектров НПВО глубина проникновения $d_{3\phi}$ светового луча в образец зависит от длины волны λ , показателей преломления призмы n_2 и образца n_1 , угла падения α [11] и рассчитывается по формуле

$$d_{s\phi} = \frac{\left(\frac{n_1}{n_2}\right)^2 \frac{\lambda}{n_1} \cos \alpha}{\pi \left[1 - \left(\frac{n_1}{n_2}\right)^2\right] \left[\sin^2 \alpha - \left(\frac{n_1}{n_2}\right)^2\right]^{\frac{1}{2}}}.$$
(1)

В условиях нашего эксперимента материал призмы – алмаз ($n_2 = 2,42$) [13], угол падения 40°, показатель преломления фоторезиста $n_1 = 1,4$ [7]. Следовательно, согласно формуле (1) глубина проникновения излучения в фоторезистивную пленку составляет $d_{3\phi} \sim 0,5 \lambda$. Таким образом, эффективная толщина поглощающей среды (в нашем случае фоторезиста) сравнима, а при волновых числах менее 3000 см⁻¹ существенным образом превышает геометрическую толщину исследуемых пленок. Поэтому ИК-спектр НПВО формируется за счет поглощения молекулярных фрагментов во всем объеме ФР, а не только с приповерхностного слоя полимерной пленки.

Кроме того, проецированный пробег ионов Ag⁺ с энергией 30 кэВ в пленке фоторезиста равен ~40 нм [6]. Это составляет около 2,5% толщины исследованных пленок ФР. Вследствие этого вклад имплантированного слоя в спектры НПВО незначителен. Это подтверждается тем, что после ИИ новых интенсивных полос поглощения, связанных с имплантированными атомами, не наблюдалось (см. рисунок 1). Вышесказанное позволяет утверждать, что основной вклад в спектры НПВО пленок вносит слой фоторезиста за областью пробега ионов. Таким образом, в нашем эксперименте наблюдалась модификация структуры ФР за областью пробега ионов.

Полос, обусловленных валентными колебаниями свободных О–Н-групп, в спектрах НПВО как исходных, так и имплантированных пленок не наблюдалось. В области валентных колебаний О–Н-групп, связанных водородной связью [14], наблюдалась широкая полоса в диапазоне волновых чисел от 3000 до 3700 см⁻¹ с максимумом ~3310 см⁻¹ (рисунок 2). Имплантация приводила к снижению ее интенсивности и смещению максимума указанной полосы в низкоэнергетическую область. Отметим, что также снижалась интенсивность полосы с максимумом ~1360 см⁻¹, обусловленной деформационными колебаниями О–Н-групп [12]. Уменьшение концентрации О–Н-групп за областью внедрения ионов может быть обусловлено протеканием реакций окисления до соответствующих карбонильных соединений или превращения в эфирные фрагменты. Смещение максимума валентных колебаний связанных О–Н-групп в низкоэнергетическую область может свидетельствовать об увеличении концентрации карбоксильных групп. Так, частота колебаний у фенольных О–Н-групп равна ~3390 см⁻¹, а у карбоксильных О–Н-групп она существенно ниже и составляет ~3075 см⁻¹ [15].

Рисунок 2. – Спектры НПВО имплантированных ионами Ag⁺ пленок фоторезиста ФП9120 в области валентных колебаний О–Н-связей. Доза, 10¹⁶ см⁻²: 1 – 2,5; 2 – 5,0; 3 – 7,5; 4 – 10

При ИИ наблюдалась трансформация полосы с максимумом ~1720 см⁻¹, обусловленной валентными колебаниями C=O в альдегидах и карбоновых кислотах [12; 14]. Она расширяется и смещается в высокоэнергетическую область; ее интенсивность слабо снижается (см. рисунок 1). Это может свидетельствовать об увеличении после ИИ концентрации карбоксильных групп, поскольку частота валентных колебаний C=O в них обычно выше, чем в альдегидах [15–17]. Эти результаты хорошо согласуются с приведенными выше экспериментальными данными по поглощению O–H-групп.

При имплантации изменяется структура широкой полосы в диапазоне волновых чисел 1140–1220 см⁻¹. Указанная полоса является суперпозицией нескольких полос (по крайней мере 4-х, с максимумами при 1231, 1199, 1175 и 1150 см⁻¹ [18]) и обусловлена колебаниями С–О–Н групп в ароматических соединениях [14]. После ИИ усиливается максимум 1175 см⁻¹; он становится ярко выраженным. Остальные максимумы сглаживаются, их интенсивность снижается. Это свидетельствует о трансформации окружения этих групп.

Отметим, что после ИИ наблюдалось снижение интенсивности полос поглощения остаточного формальдегида, непрореагировавшего при формировании фоторезиста, в частности, полосы 1650 см⁻¹, обусловленной валентными колебаниями С=О в формальдегиде [14]. Полосы с максимумами при 1130 см⁻¹ и 1453 см⁻¹, связанные с деформационными колебаниями в формальдегиде, исчезают из спектров после имплантации. Вероятнее всего, избыточный формальдегид частично испаряется при имплантации в вакууме. Не исключено, что он реагирует с компонентами фоторезиста.

Имплантация Ag⁺ замедляет «старение» фоторезиста. В имплантированных пленках фоторезиста ФП9120, хранившихся в течение 5 лет, не обнаружено обусловленных кетеном полос поглощения, которые наблюдаются во всех необлученных пленках при хранении более 3 лет. Этот эффект обусловлен, вероятнее всего, формированием при ионной имплантации у поверхности фоторезиста компактного механически устойчивого углеродистого слоя, препятствующего проникновению видимого излучения и газов из атмосферы [19]. В заключение отметим, что процессы, протекающие за слоем внедрения при имплантации ионов Ag^+ , существенным образом отличаются от аналогичных процессов, наблюдавшихся нами в работе [18] при внедрении ионов бора и сурьмы. Так, при имплантации B^+ в спектрах НПВО появляются интенсивные полосы с максимумами при 2151 и 2115 см⁻¹, обусловленные валентными колебаниями двойных кумулятивных связей, в частности, C=C=O, что связано с радиационно-индуцированным деазотированием O-нафтохинондиазида. При имплантации Ag^+ таких полос в настоящей работе не наблюдалось. Это различие может быть обусловлено тем, что в [18] и настоящей работе использовались разные имплантаторы. «Везувий-6», использовавшийся в работе [18], является имплантатором барабанного типа. Облучение на таком ускорителе является импульсным и облучаемая пластина при этом не разогревается существенным образом. В настоящей же работе использовался имплантатор ИЛУ-3, у которого облучаемая пластина постоянно находится под пучком ионов. Это приводит к более сильному разогреву пластины (до 70–90 °C). Нами установлено, что интенсивность полос с максимумами при 2151 и 2115 см⁻¹ снижается при термообработке. Так, эти полосы исчезают в спектрах НПВО при термообработке 90 °C длительностью 4 часа. Таким образом, указанная особенность имплантации Ag^+ обусловлена более высокой температурой фоторезистивного слоя при использовании ИЛУ-3.

Заключение. В процессе имплантации ионами Ag⁺ структур фоторезист – кремний происходит трансформация спектра НПВО, выражающаяся в перераспределении интенсивности колебаний С–О–Нгрупп, смещении в высокоэнергетическую область и расширении полосы, обусловленной валентными колебаниями С=О. Имплантация приводит к снижению интенсивности полосы связанных валентных колебаний О–Н-группы и смещению максимума указанной полосы в низкоэнергетическую область. Отмечено снижение интенсивности полос поглощения остаточного формальдегида, обусловленное его испарением при имплантации в вакууме. Имплантация Ag⁺ замедляет «старение» фоторезиста, что обусловлено, вероятнее всего, формированием при ионной имплантации у поверхности фоторезиста компактного механически устойчивого углеродистого слоя, препятствующего проникновению видимого излучения и газов из атмосферы.

ЛИТЕРАТУРА

- 1. Просолович, В.С. Основы современных технологических процессов : курс лекций / В.С. Просолович, Ю.Н. Янковский, Д.И Бринкевич. Минск : БГУ, 2011. 135 с.
- Моро, У. Микролитография. Принципы, методы, материалы : в 2-х ч. / У. Моро. М. : Мир, 1990. Ч. 2. – 632 с.
- Kondyurin, A. Ion beam treatment of polymers: application aspects from medicine to space / A. Kondyurin, M. Bilek. – Amsterdam : Elsevier, 2015. – 256 p.
- Ion implantation of positive photoresists / D.I. Brinkevich [et al.]. // Russian Microelectronics. 2014. V. 43, № 3. – P. 194–200.
- 5. Модификация приповерхностной области пленки полиимида имплантацией ионов бора / А.А. Харченко [и др.]. // Поверхность. Рентген., синхротр. и нейтрон. исслед. – 2015. – № 1. – С. 94–99.
- Radiation-induced modification of reflection spectra beyond the ion path region in polyimide films / D.I. Brinkevich [et al.]. // J. of Surface Investigation. X-ray, synchrotron and neutron techniques – 2017. – V. 11, № 4. – P. 801–806.
- 7. Reflection spectra modification of diazoquinone-novolak photoresist implanted with B and P ions / D.I. Brinkevich [et al.]. // Russian Microelectronics. 2019. V. 48, № 3. P. 197–201.
- Адгезия к монокристаллическому кремнию пленок диазохинон-новолачного фоторезиста, имплантированных ионами бора и фосфора / С.А. Вабищевич [и др.]. // Химия высоких энергий. – 2020. – Т. 54, № 1. – С. 54–59
- 9. Электронная проводимость в имплантированном ионами Р⁺ позитивном фоторезисте / А.Н. Олешкевич [и др.]. // Микроэлектроника. 2020 Т. 49, № 1. С. 58–65.
- ЭПР спектроскопия имплантированных ионами Р⁺ и В⁺ пленок диазохинон-новолачного фоторезиста / Д.И. Бринкевич [и др.]. // Химия высоких энергий. – 2020. – Т.54, № 2. – С. 126–134.
- 11. Беккер, Ю. Спектроскопия / Ю. Беккер. М. : Техносфера, 2009.
- 12. Преч, Э. Определение строения органических соединений. Таблицы спектральных данных / Э. Преч, Ф. Бюльманн, К. Аффольтер М. : Мир : Бином, 2006. 438 с.
- Физико-химические свойства полупроводниковых веществ : справочник / А.В. Новоселова [и др.]. М. : Наука, 1979. – 340 с.
- 14. Тарасевич, Б.Н. ИК спектры основных классов органических соединений : справ. материалы / Б.Н. Тарасевич М. : МГУ, 2012. 54 с.
- Инфракрасные спектры и структура молекулярных комплексов ароматических кислот / М.В. Бельков [и др.]. // Журнал прикладной спектроскопии. – 2011. – Т. 78, № 6. – С. 851–858.

- 16. Инфракрасные спектры бензальдегида и его производных в разных агрегатных состояниях / Г.Б. Толсторожев [и др.]. // Оптика и спектроскопия. – 2012. – Т. 113, № 2. – С. 202–207.
- 17. Водородные связи и противовирусная активность производных бензальдегида / Г.Б. Толсторожев [и др.]. // Журнал прикладной спектроскопии. 2011. Т. 79, № 4. С. 658–663.
- Спектры НПВО имплантированных ионами бора пленок диазохинонноволачного фоторезиста на кремнии / В.С. Просолович [и др.]. // Взаимодействие излучений с твердым телом : материалы 13-й Междунар. конф., Минск, 30 сент.–3 окт. 2019 г. – Минск : Изд. ц-р БГУ, 2019. – С. 169–171.
- 19. Грасси, Н. Деструкция и стабилизация полимеров / Н. Грасси, Дж. М. Скотт. М. : Мир, 1988. 446 с.

Поступила 11.03.2020

RADIATION-INDUCED PROCESSES IN FILMS OF DIAZOQUINONE-NOVOLAC RESIST ON SILICON DURING IMPLANTATION OF Ag⁺ IONS

S. VABISHCHEVICH, N. VABISHCHEVICH, G.A. ESPINOZA de los MONTEROS, D. BRINKEVICH, V. PROSOLOVICH

The method of IR Fourier transform spectroscopy of impaired total internal reflection (ATR) was used to study 1,8 µm thick FP9120 diazoquinone-lacquer photoresist films implanted with 30 keV silver ions with doses of 2,5 $\cdot 10^{16}$ –1 $\cdot 10^{17}$ cm⁻². It was shown that during the implantation of photoresist-silicon structures with Ag⁺ ions, the ATR spectrum transforms, which is manifested in the redistribution of the vibration intensity of the C–O–H groups; displacement into the high-energy region and broadening of the band due to stretching vibrations C=O. It has been established that implantation leads to a decrease in the intensity of the band of coupled stretching vibrations of the OH group and a shift of the maximum of this band to the low-energy region. A decrease in the intensity of the absorption bands of residual formaldehyde due to its evaporation during implantation in vacuum was found. Ag⁺ implantation slows down the "aging" of the photoresist, which is most likely due to the formation of a compact mechanically stable carbon layer during ion implantation at the photoresist surface, which prevents the penetration of visible radiation and gases from the atmosphere.

Keywords: diazoquinone-novolac resist; implantation; silver ions; spectra of impaired total internal reflection.

УДК 537.533; 621.384

ВОЗМОЖНОСТЬ ПОВЫШЕНИЯ ПЕРВЕАНСА В ПЛАЗМЕННЫХ ЭМИССИОННЫХ СИСТЕМАХ НА ОСНОВЕ РАЗРЯДА В СКРЕЩЕННЫХ *Е×Н* ПОЛЯХ

С.Н. АБРАМЕНКО, канд. техн. наук, доц. Д.А. АНТОНОВИЧ, д-р. техн. наук, проф. В.А. ГРУЗДЕВ, П.Н. СОЛДАТЕНКО (Полоцкий государственный университет)

Анализ известных конструкций плазменных источников заряженных частиц и основных физических процессов в них показывает, что существует возможность модификации этих структур с целью создания более эффективных условий формирования плазмы и получения тока эмиссии без существенного усложнения конструкции и изменения систем электропитания. В работе представлен макет конструкции плазменного источника заряженных частиц в скрещенных E×H полях с повышенным первеансом. Приведена его электродная структура, предложен механизм работы источника, приведены основные характеристики, показана перспективность для дальнейшей разработки на его основе высокопервеансного источника для промышленного применения

Ключевые слова: первеанс, плазменные эмиссионные системы, плазменный эмиттер, импульсы тока пучка, разряд в скрещенных *E*×*H* полях, системы электропитания плазменных эмиссионных систем.

Введение. Развитие промышленности требует создания деталей с поверхностными слоями, обладающими комплексом заданных свойств. К наиболее распространенным методам поверхностной обработки применительно к конструкционным материалам можно отнести ионное модифицирование и электроннолучевое воздействие. Одним из путей существенного повышения эксплуатационных свойств поверхностей является использование комбинированных методов их инженерии. При этом сочетание двух способов обработки, как правило, приводит к появлению новых эффектов, не обеспечиваемых каждым из способов в отдельности. Накопленный опыт свидетельствует о перспективности использования плазменных источников заряженных частиц на основе разряда в скрещенных $E \times H$ полях для реализации таких комбинированных технологий обработки поверхностных слоев, поскольку плазменные источники не утрачивают работоспособности при воздействии паров металлов, в том числе тугоплавких, и газовых выбросов из зоны термического воздействия, имеют больший ресурс, удобны в эксплуатации не содержат редких и дорогостоящих материалов. Совокупность этих свойств не только позволяет использовать источники с плазменным эмиттером в традиционных электронно-лучевых технологиях, но и разрабатывать на их основе новые технологии термического воздействия на материалы. [1–3].

Существуют основания предполагать, что создание новых конструкций источников с плазменным эмиттером для реализации комбинированных ресурсосберегающих технологий электронно-ионно-плазменной обработки поверхностных слоев на их основе позволит снизить себестоимость продукции за счет сокращения длительности процесса ионно-плазменной обработки, снизить энергозатраты, а также повысить эксплуатационные характеристики изделий путем создания поверхностного покрытия с требуемыми свойствами. Для решения этой задачи представляется перспективной разработка высокопервеансных источников низко- и высокоэнергетичных (в зависимости от области применения) пучков заряженных частиц.

Первеанс P является мерой интенсивности потока заряженных частиц, характеризует влияние объемного заряда на пучок заряженных частиц и равен отношению тока I пучка частиц к эквивалентному ускоряющему напряжению U в степени три вторых в данной точке [4]:

$$P = \frac{I}{U^{\frac{3}}{2}}$$

Современные теория и опыт применения плазменных источников ионных и электронных пучков показывают, что диодные структуры с плазменными эмиттерами зарядов автоматически обеспечивают повышенный первеанс при заданной плотности эмиссионного тока [5]. Это обусловлено невозможностью формирования ленгмюровского минимума потенциала вблизи плазменного эмиттера вследствие возможности одновременной эмиссии из плазмы как электронов, так и ионов [6]. Эта возможность приводит к автоматическому перемещению каждого элемента поверхности эмитирующей плазмы до реализации условия нулевого градиента потенциала на всей поверхности. Таким образом, диод с плазменным эмиттером работает в режиме насыщения, когда ток эмиссии равен току анода диодного промежутка.

Дальнейшее повышение первеанса в диоде с плазменным эмиттером возможно за счет компенсации объемного заряда тока в диоде (электронном или ионном) зарядами другого типа во всем диодном промежутке. Такая ситуация реализуется, в частности, в возникающих при определенных условиях в плазме