

УДК 519.6: 532.5

1

О роли профиля скорости на верхнем отрезке в гидродинамической задаче для прямоугольной каверны

Волосова Н.К., аспирант; Басараб М.А., профессор, д.ф. - м.н. Московский государственный технический университет МГТУ им. Н.Э. Баумана, г. Москва Волосов К.А., профессор, д.ф. - м.н.; Волосова А.К., к.ф.- м.н. Российский Университет Транспорта (МИИТ), г. Москва Пастухов Д.Ф., к. ф.-м. н., доцент; Пастухов Ю.Ф., к. ф.-м. н., доцент Полоцкий государственный университет

Аннотация. Описан алгоритм решения классической гидродинамической задачи с использованием конечного матричного алгоритма решения уравнения Пуассона. Исследованы особенности кусочно-линейного профиля скорости на структуру вихрей в решении задачи. Получено что поле функции тока и поле линий тока различают вихри первого порядка (совпадают детали обоих полей). Меньшие вихри второго порядка определяются полем линий тока. Градиент скорости кусочно-линейного профиля на верхней стороне прямоугольной каверны определяет число вихрей в торого порядка и их расположение. При небольшом градиенте (равном 2) с профилем "равнобедренный треугольник" появляется один вторичный вихрь справа и снизу. При достаточно большем градиенте (равном 10) с профилем "равнобедренная трапеция" имеем два симметричных вихря второго порядка справа и слева у дна. Увеличение градиента профиля скорости и_{тах}, а уменьшение

градиента к смещению центра вихря первого порядка вдоль $\,u_{
m max}^{}$.

Ключевые слова: классическая гидродинамическая задача в прямоугольной каверне, гидродинамика, поле линий тока.

About role of the profile to velocities on upper side in gidrodinamic problem for rectangular cavity

Volosova N.K., Basarab M.A., Volosov K.A., Volosova A.K., Pastuhov D.F., Pastuhov YU.F.

Постановка задачи. Рассмотрим классическую гидродинамическую задачу в прямоугольной области с системой уравнений в частных производных и начальными и краевыми условиями для физических полей[1]. Обозначим (u(x, y), v(x, y)) вектор скорости жидкой частицы. Начало прямоугольной системы координат расположим в нижнем левом угле прямоугольника, направим ось у-вверх, ось х-вправо.

$$\begin{aligned} &\psi_{xx} + \psi_{yy} = -w(x, y), \ 0 < x < L, \ 0 < y < R , \\ &w = v_x - u_y, \\ &u = \psi_y; v = -\psi_x, \\ &w_t + u \cdot w_x + v \cdot w_y = v \Big(w_{xx} + w_{yy} \Big), \\ &\psi|_{\Gamma} = 0, \Gamma = (x = 0, 0 \le y \le R) \cup (x = L, 0 \le y \le R) \cup (0 \le x \le L, y = 0) \cup (0 \le x \le L, y = R), \\ &v|_{\Gamma} = 0, \\ &u|_{\Gamma_1} = 0, \Gamma_1 = (x = 0, 0 \le y \le R) \cup (x = L, 0 \le y \le R) \cup (0 \le x \le L, y = 0), \\ &u|_{\Gamma_1} = 0, \Gamma_1 = (x = 0, 0 \le y \le R) \cup (x = L, 0 \le y \le R) \cup (0 \le x \le L, y = 0), \\ &u|_{\Gamma_1} = 0, \\ &u|_{\Gamma_2} = 0, \\ &u|_{\Gamma_1} = 0, \\ &u|_{\Gamma_2} = 0, \\ &u|_{$$

Где в системе уравнений(1) обозначена $w = v_x - u_y$ функция вихря, $\psi(x, y)$ функция тока, определяющая поле скоростей формулой $u = \psi_y; v = -\psi_x, \psi|_{_{\Gamma}} \equiv 0$. Вертикальная компонента скорости на границе каверны отсутствует $v|_{_{\Gamma}} \equiv 0$, а горизонтальная имеет постоянное максимальное значение на верхней стороне прямоугольника u_{\max} и направлена направо, а на остальной части границы равна нулю (условие прилипания). Для инициализации задачи(1) необходимо задать начальные физические поля (достаточно задать начальное поле горизонтальной и вертикальной компонент скорости), а также связь граничных значений вихря с приграничными значениями функции тока и краевыми значениями скорости.

Преобразуем систему уравнений(1), введя безразмерные переменные

$$\begin{aligned} \overline{\psi}_{\overline{xx}} + \overline{\psi}_{\overline{yy}} &= -\overline{w}(\overline{x}, \overline{y}), \ 0 < \overline{x} = \frac{x}{L} < 1, \ 0 < \overline{y} = \frac{y}{L} < k = \frac{R}{L}, \ \overline{\psi} = \frac{\psi}{\psi_{\max}}, \ \psi_{\max} = Lu_{\max} \\ \overline{w} &= \overline{v_x} - \overline{u_y}, \ \overline{u} = \frac{u}{u_{\max}}, \ \overline{v} = \frac{v}{u_{\max}}, \ \overline{w} = \frac{w}{w_{\max}}, w_{\max} = \frac{u_{\max}}{L} \\ \overline{u} &= \overline{\psi}_{\overline{y}}; \ \overline{v} = -\overline{\psi}_{\overline{x}}, \\ \overline{w}_{\overline{i}} + \overline{u} \cdot \overline{w_x} + \overline{v} \cdot \overline{w_y} = \frac{1}{Re} \left(\overline{w_{\overline{xx}}} + \overline{w_{\overline{yy}}} \right) 0 < \overline{t} = \frac{t}{T}, \ T = \frac{L}{u_{\max}}, \ Re = \frac{u_{\max}L}{v} \\ \overline{\psi} \Big|_{\Gamma} \equiv 0, \ \overline{v} \Big|_{\Gamma} \equiv 0, \ \overline{u} \Big|_{\Gamma_{V}} = 1 \end{aligned}$$

$$(2)$$

В дальнейшем штрихи над переменными и функциями в задаче(2) из соображения удобства опускаем. К=1 если прямоугольник-квадрат. Опишем численный алгоритм решения задачи(2).

1.Инициализация.

Зададим кусочно-линейный профиль скорости в виде равнобедренной трапеции на верхней стороне прямоугольника (k=1 – в классической задаче для прямоугольной каверны) из соображения непрерывности по формуле.

$$u(x,k) \equiv u_0(x) = \begin{cases} \frac{x}{\tau}, 0 \le x \le \tau, \\ 1, \tau \le x \le 1 - \tau, \\ \frac{1-x}{\tau}, 1 - \tau \le x \le 1, \end{cases}$$
(3)

Профиль скорости с формулой(3) на передней плоскости у=1 представлен на рисунке 1.

Начальное поле горизонтальной скорости определим профилем горизонтальной скорости на верхнем отрезке прямоугольника, на котором оно постоянно с линейно уменьшающейся амплитудой к нулю на его нижней стороне y=0. Поле скорости в формуле(4) изменяет знак в интервале $0 \le y_m \le 1$.

$$u(x_n, y_m) = -u_0(x_n) \left(\frac{y_m}{k}\right) \sin\left(\frac{3\pi y_m}{2k}\right), x_n = nh_1, y_m = mh_2, h_1 = \frac{1}{n_1}, h_2 = \frac{k}{n_2}, \tau = \frac{n_0}{n_1}.$$
(4)

Если бы поле горизонтальной скорости(4) не меняло знак, то все частицы жидкости одновременно двигались бы слева направо, мы используем модель несжимаемой жидкости с постоянной геометрической формой прямоугольной кюветы. Тогда за любой промежуток времени центр масс жидкости переместится вправо, т.е. получим противоречие с тем, что центр масс жидкости стационарен, по крайней мере, это верно для установившегося движения. А задача инициализации для ускорения решения задачи заключается именно в таком выборе начальных полей, которые наиболее близки к полям установившегося течения. Найдем начальное поле вертикальной скорости несжимаемой жидкости, используя интегральную формулу трапеции

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \Leftrightarrow v(x_n, y_m) = -\int_0^{y_m} \frac{\partial u}{\partial x}(x_n, y) dy \Leftrightarrow v(x_n, y_m) = -h_2 \left(\frac{1}{2} \frac{\partial u}{\partial x}(x_n, y_m) + \sum_{k=1}^{m-1} \frac{\partial u}{\partial x}(x_n, y_k)\right) = -h_2 \left(\frac{1}{2} \frac{u(x_{n+1}, y_m) - u(x_{n-1}, y_m)}{2h_1} + \sum_{k=1}^{m-1} \frac{u(x_{n+1}, y_k) - u(x_{n-1}, y_k)}{2h_1}\right), m = \overline{2, n_2 - 1}, n = \overline{1, n_1 - 1}$$

$$v(x_n, y_1) = -h_2 \frac{\partial u}{\partial x}(x_n, y_1), n = \overline{1, n_1 - 1}$$
(5)

Для интегрирования начального поля горизонтальной компоненты скорости использовано условие прилипания частиц жидкости на дне. На следующем этапе инициализации можно вычислить поле вихря во внутренних точках прямоугольника по начальному полю скоростей.

$$w = v_x - u_y \Leftrightarrow w(x_n, y_m) = \frac{v(x_{n+1}, y_m) - v(x_{n-1}, y_m)}{2h_1} - \frac{v(x_n, y_{m+1}) - v(x_n, y_{m-1})}{2h_2}, n = \overline{1, n_1 - 1}, m = \overline{1, n_2 - 1}$$
(6)

В работе[2,3]использовалась следующая аппроксимирующая формула

$$\frac{1}{h^{2}} \left(\frac{-10}{3} u_{m,n} + \frac{2}{3} \left(u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} \right) + \frac{1}{6} \left(u_{m-1,n-1} + u_{m+1,n-1} + u_{m-1,n+1} + u_{m+1,n+1} \right) \right) = f_{m,n} + \frac{h^{2}}{12} \left(f_{xx} + f_{yy} \right) + h^{4} \left(\frac{1}{360} \left(f_{x}^{(4)} + f_{y}^{(4)} \right) + \frac{1}{90} f_{xxyy}^{(4)} \right) + O(h^{6}), \quad n = \overline{1, n_{1} - 1}, m = \overline{1, n_{2} - 1}$$

Если в правой части отбросить производные шестого порядка (из-за невозможности их аппроксимации на минимальном 9-точечном шаблоне), а лапласиан $f_{xx} + f_{yy}$ аппроксимировать на 5-ти точечном шаблоне крест, то имеем

$$\frac{1}{h^{2}} \left(\frac{-10}{3} u_{m,n} + \frac{2}{3} \left(u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} \right) + \frac{1}{6} \left(u_{m-1,n-1} + u_{m+1,n-1} + u_{m-1,n+1} + u_{m+1,n+1} \right) \right) = f_{m,n} + \frac{h^{2}}{12h^{2}} \left(f_{m-1,n} + f_{m,n-1} + f_{m,n-1} + f_{m,n+1} - 4f_{m,n} \right) \Leftrightarrow \left(\frac{-10}{3} u_{m,n} + \frac{2}{3} \left(u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} \right) + \frac{1}{6} \left(u_{m-1,n-1} + u_{m+1,n-1} + u_{m-1,n+1} + u_{m+1,n+1} \right) \right) = \frac{h^{2}}{12} \left(f_{m-1,n} + f_{m,n-1} + f_{m,n+1} + 8f_{m,n} \right)$$

Для решения Пуассона $\psi_{xx} + \psi_{yy} = -w(x, y)$ за конечное число элементарных операций матричным методом[3,4] нужно модифицировать его правую часть в 4 угловых узлах

$$\frac{-10}{3}\psi_{1,n,-1} + \frac{2}{3}\left[\psi_{2,n,-1} + \psi_{1,n,-2} + \psi_{1,n} + \psi_{0,n,-1}\right] + \frac{1}{6}\left[\psi_{2,n,-2} + \psi_{0,n,-2} + \psi_{2,n} + \psi_{0,n,1}\right] = \frac{-h^2}{12}\left[8w_{1,n,-1} + w_{0,n,-1} + w_{2,n,-1} + w_{1,n,-2} + w_{1,n}\right]$$

$$\frac{-10}{3}\psi_{n,-1,1} + \frac{2}{3}\left[\psi_{n,-2,1} + \psi_{n,-1,2} + \psi_{n,-1,0} + \psi_{n,1}\right] + \frac{1}{6}\left[\psi_{n,-2,2} + \psi_{n,2,2} + \psi_{n,2,2} + \psi_{n,2,0}\right] = \frac{-h^2}{12}\left[8w_{n,-1,1} + w_{n,2,1} + w_{n,2,-1,0} + w_{n,2,-1,0}\right]$$

$$\frac{-10}{3}\psi_{n,-1,1} + \frac{2}{3}\left[\psi_{n,2,-2,1} + \psi_{n,2,-1,0} + \psi_{n,2,-1,0}\right] + \frac{1}{6}\left[\psi_{n,-2,2} + \psi_{n,2,2,0} + \psi_{n,2,0}\right] = \frac{-h^2}{12}\left[8w_{n,-1,1} + w_{n,2,-1,0} + w_{n,2,-1,0} + w_{n,2,-1,0}\right]$$

$$\frac{-10}{3}\psi_{n,-1,1} + \frac{2}{3}\left[\psi_{n,2,-2,n,-1} + \psi_{n,2,-1,0} + w_{n,2,-1,0}\right] + \frac{1}{6}\left[\psi_{n,2,-2,n,-2} + \psi_{n,2,-2,0} + \psi_{n,2,0} + w_{n,2,0}\right]$$

$$\frac{-10}{3}\psi_{n,2,-1,n,-1} + \frac{2}{3}\left[\psi_{n,2,-2,n,-1} + \psi_{n,2,-1,n,-1} + \psi_{n,2,-1,n,-1}\right] + \frac{1}{6}\left[\psi_{n,2,-2,n,-2} + \psi_{n,2,-2,n,-1} + \psi_{n,2,-2,n,-1} + w_{n,2,-1,-1} + w_{n,2,-1,-1} + w_{n,2,-1,-1}\right]$$

$$\frac{-10}{3}\psi_{1,1} + \frac{2}{3}\left[\psi_{2,1} + \psi_{1,2} + \psi_{1,0} + \psi_{0,1}\right] + \frac{1}{6}\left[\psi_{2,2} + \psi_{2,0} + \psi_{0,0}\right] = \frac{-h^2}{12}\left[8w_{1,1} + w_{0,1} + w_{2,2} + \psi_{1,2,-2,n,-1} + w_{1,2,-1,-1}\right]$$

$$\frac{-10}{3}\psi_{1,1} + \frac{2}{3}\left[\psi_{2,1} + \psi_{1,2} + \psi_{1,0} + \psi_{0,1}\right] + \frac{1}{6}\left[\psi_{2,2} + \psi_{2,0} + \psi_{0,0}\right] = \frac{-h^2}{12}\left[8w_{1,1} + w_{0,1} + w_{2,1} + w_{1,0} + w_{1,2}\right]$$

$$\frac{-10}{12}\left[8w_{1,1} + w_{0,1} + w_{2,1} + w_{1,0} + w_{1,2}\right] + \frac{1}{6}\left[\psi_{2,2} + \psi_{2,0} + \psi_{2,0} + \psi_{0,0}\right] = \frac{-h^2}{12}\left[8w_{1,1} + w_{0,1} + w_{2,1} + w_{1,0} + w_{1,2}\right]$$

И в граничных узлах, расположенных на 4 граничных отрезках

$$\begin{aligned} &-\frac{10}{3}\psi_{1,n} + \frac{2}{3}\left(\psi_{1,n-1} + \psi_{2,n} + \psi_{1,n+1} + \psi_{0,n}\right) + \frac{1}{6}\left(\psi_{2,n-1} + \psi_{2,n+1} + \psi_{0,n-1} + \psi_{0,n+1}\right) = -\frac{h^{2}}{12}\left(8w_{1,n} + w_{0,n} + w_{2,n} + w_{1,n-1} + w_{1,n+1}\right) \\ &\overline{w_{1,n}} = -\frac{h^{2}}{12}\left(8w_{1,n} + w_{0,n} + w_{2,n} + w_{1,n-1} + w_{1,n+1}\right) - \frac{2}{3}\psi_{0,n} - \frac{1}{6}\left(\psi_{0,n-1} + \psi_{0,n+1}\right)n = \overline{2,n_{1}-2} \\ &-\frac{10}{3}\psi_{n_{2}-1,n} + \frac{2}{3}\left(\psi_{n_{2}-1,n-1} + \psi_{n_{2}-2,n} + \psi_{n_{2}-1,n+1} + \psi_{n_{2},n}\right) + \frac{1}{6}\left(\psi_{n_{2}-2,n-1} + \psi_{n_{2}-2,n+1} + \psi_{n_{2},n+1} + \psi_{n_{2},n+1}\right) = -\frac{h^{2}}{12}\left(8w_{n_{2}-1,n} + w_{n_{2}-2,n} + w_{n_{2}-1,n-1} + w_{n_{2}-1,n+1} + \psi_{n_{2}-2,n+1} + \psi_{n_{2}-2,n+1} + \psi_{n_{2},n+1} + \psi_{n_{2},n+1}\right)n = \overline{2,n_{1}-2} \\ &-\frac{10}{3}\psi_{n_{2}-1,n} + \frac{2}{12}\left(8w_{n_{2}-1,n} + w_{n_{2}-2,n} + w_{n_{2}-1,n-1} + w_{n_{2}-1,n+1}\right) - \frac{2}{3}\psi_{n_{2},n} - \frac{1}{6}\left(\psi_{n_{2},n-1} + \psi_{n_{2},n+1}\right)n = \overline{2,n_{1}-2} \\ &-\frac{10}{3}\psi_{m,1} + \frac{2}{3}\left(\psi_{m-1,1} + \psi_{m,2} + \psi_{m+1,1} + \psi_{m,2}\right) + \frac{1}{6}\left(\psi_{m-1,2} + \psi_{m+1,2} + \psi_{m-1,0} + \psi_{m+1,0}\right)n = \overline{2,n_{1}-2} \\ &-\frac{10}{3}\psi_{m,1} + \frac{2}{3}\left(\psi_{m-1,n-1} + \psi_{m-1,1} + w_{m,2}\right) - \frac{2}{3}\psi_{m,0} - \frac{1}{6}\left(\psi_{m-1,0} + \psi_{m+1,0}\right)n = \overline{2,n_{2}-2} \\ &-\frac{10}{3}\psi_{m,n-1} + \frac{2}{3}\left(\psi_{m-1,n-1} + \psi_{m,n-2} + \psi_{m+1,n-1} + \psi_{m,n}\right) + \frac{1}{6}\left(\psi_{m-1,n-2} + \psi_{m+1,n-2} + \psi_{m-1,n} + \psi_{m+1,n}\right)n = \overline{2,n_{2}-2} \\ &-\frac{10}{3}\psi_{m,n-1} + \frac{2}{3}\left(w_{m,n-1} + w_{m-1,n-1} + w_{m+1,n-1} + w_{m,n-2} + w_{m,n}\right) - \frac{2}{3}\psi_{m,n} - \frac{1}{6}\left(\psi_{m-1,n} + \psi_{m-1,n} + \psi_{m+1,n}\right)n = \overline{2,n_{2}-2} \\ &-\frac{10}{3}\psi_{m,n-1} + \frac{2}{12}\left(8w_{m,n} + w_{m-1,n} + w_{m+1,n-1} + w_{m,n-2} + w_{m,n}\right) + \frac{1}{6}\left(\psi_{m-1,n-2} + \psi_{m-1,n-2} + \psi_{m-1,n} + \psi_{m+1,n}\right)n = \overline{2,n_{2}-2} \\ &-\frac{10}{3}\psi_{m,n-1} + \frac{2}{12}\left(8w_{m,n} + w_{m-1,n} + w_{m+1,n-1} + w_{m,n-2} + w_{m,n}\right) - \frac{2}{3}\psi_{m,n} - \frac{1}{6}\left(\psi_{m-1,n} + \psi_{m+1,n}\right)n = \overline{2,n_{2}-2} \\ &-\frac{10}{3}\psi_{m,n-1} + \frac{2}{12}\left(8w_{m,n} + w_{m-1,n} + w_{m+1,n-1} + w_{m,n-1} + w_{m,n-1}\right) + \frac{1}{6}\psi_{m-1,n-2} + \frac{1}{3}\psi_{m-1,n} + \frac{1}{3}\psi_{m-1,n-1} + \frac{1}{3}\psi_{m-1,n-1} + \frac{1}{3}\psi_{m$$

Далее находим поле функции тока согласно работам[3,4] то есть матричные коэффициенты прогонки вперед

$$\psi_1^T = -A^{-1}B\psi_2^T + A^{-1}\overline{w_1^T} \Leftrightarrow \lambda_1 = -A^{-1}B, v_1 = A^{-1}\overline{w_1^T},$$
(9)

www.esa-conference.ru

$$\int_{\text{TDE }a_{m,n}} = \begin{cases} -\frac{10}{3}, m = n; m = \overline{1, n_1 - 1}, n = \overline{1, n_1 - 1} \\ 2, m = n + 1 \lor m = n - 1 \end{cases}, \qquad b_{m,n} = \begin{cases} \frac{2}{3}, m = n; m = \overline{1, n_1 - 1}, n = \overline{1, n_1 - 1} \\ \frac{1}{2}, m = n + 1 \lor m = n - 1 \end{cases}$$
(10)

$$\lambda_{m} = -(B\lambda_{m-1} + A)^{-1}B, v_{m} = (B\lambda_{m-1} + A)^{-1} \left(\overline{w_{m}^{T}} - Bv_{m-1}\right)m = \overline{2, n_{2} - 2}$$
(11)

Находим предпоследнюю строку матрицы поля функции тока

$$\psi_{n_2-1}^T = \left(B\lambda_{n_2-2} + A\right)^{-1} \left(\overline{\psi_{n_2-1}^T} - B\nu_{n_2-2}\right)$$
(12)

Найдем все остальные строки матрицы поля функции тока по формулам прогонки назад

$$\psi_m^T = \lambda_m \psi_{m+1}^T + \nu_m, m = \overline{n_2 - 2, 1}$$
(13)

Итак, все начальные поля получены. Переходим к циклу.

2.Описание циклической части алгоритма

1. Задать краевые условия для полей

$$\psi^{k}_{0,n} = \psi^{k}_{n_{2},n} = \psi^{k}_{m,0} = \psi^{k}_{m,n_{1}} = 0, n = \overline{0, n_{1}}, m = \overline{0, n_{2}}, v^{k}_{0,n} = v^{k}_{n_{2},n} = v^{k}_{m,0} = v^{k}_{m,n_{1}} = 0, n = \overline{0, n_{1}}, m = \overline{0, n_{2}}$$
$$u^{k}_{0,n} = u^{k}_{m,0} = u^{k}_{m,n_{1}} = 0, u^{k}_{n_{2},n} = u_{0}(n), n = \overline{0, n_{1}}, m = \overline{0, n_{2}}$$

2.Модифицировать правую часть уравнения Пуассона для функции вихря $w^{k}_{m,n}$ по формулам (7),(8). Решить уравнение Пуассона, или найти поле функции тока $\psi^{k+1}_{m,n}$ во внутренних точках по формулам (9)-(13).

3.Найти поле скорости на следующем временном шаге во внутренних точках $u^{k+1}(x_n, y_m) \equiv u_{m,n}^{k+1}, v_{m,n}^{k+1}, m = \overline{1, n_2 - 1}, n = \overline{1, n_1 - 1}$ по формулам(14)

$$v = -\psi_x \Leftrightarrow v_{m,n}^{k+1} = -\frac{\psi^{k+1}_{m,n+1} - \psi^{k+1}_{m,n-1}}{2h_1}, u = \psi_y \Leftrightarrow u_{m,n}^{k+1} = \frac{\psi^{k+1}_{m+1,n} - \psi^{k+1}_{m-1,n}}{2h_2}, m = \overline{1, n_2 - 1}, n = \overline{1, n_1 - 1}$$
(14)

4. Найти граничные значения функции вихря в граничных точках согласно[1] со вторым порядком точности

$$\begin{cases} w^{k+1}_{m,0} = \frac{7\psi^{k+1}_{m,0} - 8\psi^{k+1}_{m,1} + \psi^{k+1}_{m,2}}{2h_1^2} - 3\frac{v^{k+1}_{m,0}}{h_1}, m = \overline{1, n_2 - 1} \\ w^{k+1}_{m,n_1} = \frac{7\psi^{k+1}_{m,n_1} - 8\psi^{k+1}_{m,n_1 - 1} + \psi^{k+1}_{m,n_1 - 2}}{2h_1^2} + 3\frac{v^{k+1}_{m,n_1}}{h_1}, m = \overline{1, n_2 - 1} \\ w^{k+1}_{n,n} = \frac{7\psi^{k+1}_{n,n} - 8\psi^{k+1}_{n,n_1} + \psi^{k+1}_{2,n}}{2h_2^2} + 3\frac{u^{k+1}_{n,n_1}}{h_2}, n = \overline{1, n_1 - 1} \\ w^{k+1}_{n_2,n} = \frac{7\psi^{k+1}_{n_2,n} - 8\psi^{k+1}_{n_2 - 1,n} + \psi^{k+1}_{n_2 - 2,n}}{2h_2^2} - 3\frac{u^{k+1}_{n_2,n}}{h_2}, n = \overline{1, n_1 - 1} \\ w^{k+1}_{n_2,n} = \frac{\psi^{k+1}_{n_2,n} - 8\psi^{k+1}_{n_2 - 1,n} + \psi^{k+1}_{n_2 - 2,n}}{2h_2^2} - 3\frac{u^{k+1}_{n_2,n_2}}{h_2}, w^{k+1}_{n_2,n_2} = \frac{w^{k+1}_{n_2,n_1 - 1} + w^{k+1}_{n_2 - 1,n_1}}{2} \end{cases}$$
(15)

Покажем, например, что первая формула(15) дает второй порядок погрешности аппроксимации.

$$\begin{split} \psi_{m,1} &= \psi_{m,0} + \psi_x \big|_{m,0} h_1 + \psi_{xx} \big|_{m,0} \frac{h^{-1}_{-1}}{2} + \psi_{xxx} \big|_{m,0} \frac{h^{-1}_{-1}}{6} + O(h^{4_1}), \\ \psi_{m,2} &= \psi_{m,0} + \psi_x \big|_{m,0} 2h_1 + \psi_{xx} \big|_{m,0} \frac{4h^{2_1}_{-1}}{2} + \psi_{xxx} \big|_{m,0} \frac{8h^{3_1}_{-1}}{6} + O(h^{4_1}), \\ v_{m,0} &= -\psi_x \big|_{m,0}, \end{split}$$

$$\begin{aligned} \frac{7\psi_{m,0} - 8\psi_{m,1} + \psi_{m,2}}{2h_1^2} - 3\frac{v_{m,0}}{h_1} &= \frac{7\psi_{m,0} - 8\left(\psi_{m,0} + \psi_x \big|_{m,0} h_1 + \psi_{xx} \big|_{m,0} \frac{h^{2_1}_{-1}}{2} + \psi_{xxx} \big|_{m,0} \frac{h^{3_1}_{-1}}{6} + O(h^{4_1})\right) + \\ \frac{+\psi_{m,0} + \psi_x \big|_{m,0} 2h_1 + \psi_{xx} \big|_{m,0} \frac{4h^{2_1}_{-1}}{2} + \psi_{xxx} \big|_{m,0} \frac{8h^{3_1}_{-1}}{6} + O(h^{4_1}) + 3\frac{\psi_x \big|_{m,0}}{h_1} = -\psi_{xx} \big|_{m,0} + O(h^{2_1}) \end{split}$$

Так как на границе $\psi_{xx} + \psi_{yy} = -w(x, y) \Rightarrow \psi_{xx}|_{m,0} = -w_{m,0}$, то имеем

$$w^{k+1}_{m,0} = \frac{7\psi^{k+1}_{m,0} - 8\psi^{k+1}_{m,1} + \psi^{k+1}_{m,2}}{2h_1^2} - 3\frac{v^{k+1}_{m,0}}{h_1} + O(h_1^2), m = \overline{1, n_2 - 1}.$$

www.esa-conference.ru

Аналогично доказываются остальные формулы(15). Отметим, что вторую формулу(15) можно получить формально из первой(4-ую из 3-ей) проведя замену $h_1 \rightarrow -h_1$ и изменив начало отсчета $n = 0 \rightarrow n = n_1$. Имея поле вихря в граничных точках, можно решить параболическое уравнение динамики вихря $w^{k+1}_{m,n}$ на следующем временном слое k+1 во внутренних точках $n = \overline{1, n_1 - 1}, m = \overline{1, n_2 - 1}$.

$$5. w_{t} + v \cdot w_{x} + u \cdot w_{y} = \frac{1}{\text{Re}} \Big(w_{xx} + w_{yy} \Big) \Leftrightarrow w^{k+1}_{m,n} = w^{k}_{m,n} + \frac{\tau}{\text{Re} \cdot h^{2}} \Big(-\frac{10}{3} w^{k}_{m,n} + \frac{2}{3} \Big(w^{k}_{m-1,n} + w^{k}_{m+1,n} + w^{k}_{m,n-1} + w^{k}_{m,n+1} \Big) + \frac{1}{6} \Big(w^{k}_{m-1,n-1} + w^{k}_{m-1,n+1} + w^{k}_{m+1,n-1} + w^{k}_{m+1,n+1} \Big) \Big) - \tau \Big(u^{k+1}_{m,n} \cdot w^{k}_{x} + v^{k+1}_{m,n} \cdot w^{k}_{y} \Big)$$
(16)

Где первые производные функции вихря в формуле(16) определяются формулами

$$w_{x}^{k}{}_{m,n} = \begin{cases} \frac{1}{12h} \left(w_{m,n-2}^{k} - w_{m,n+2}^{k} + 8 \left(w_{m,n+1}^{k} - w_{m,n-1}^{k} \right) \right) + O(h^{4}), m = \overline{2, n_{2} - 2}, n = \overline{2, n_{1} - 2} \\ \frac{1}{2h} \left(w_{m,n+1}^{k} - w_{m,n-1}^{k} \right) + O(h^{2}), (m = 1 \lor n_{2} - 1) \lor (n = 1 \lor n_{1} - 1) \end{cases}$$

$$w_{y}^{k}{}_{m,n} = \begin{cases} \frac{1}{12h} \left(w_{m-2,n}^{k} - w_{m+2,n}^{k} + 8 \left(w_{m+1,n}^{k} - w_{m-1,n}^{k} \right) \right) + O(h^{4}), m = \overline{2, n_{2} - 2}, n = \overline{2, n_{1} - 2} \\ \frac{1}{2h} \left(w_{m+1,n}^{k} - w_{m-1,n}^{k} \right) + O(h^{2}), m = (1 \lor n_{2} - 1) \lor n = (1 \lor n_{1} - 1) \end{cases}$$

$$(17)$$

Для устойчивого интегрирования уравнения(16) нужно использовать достаточно малый временной шаг $\tau \leq \frac{\text{Re} \cdot h^2}{4}$ [1], мы использовали шаг $\tau = \frac{\text{Re} \cdot h^2}{100}$ и 5000 интервалов в цикле на сетке $n_1 = n_2 = 100$.

6. Наконец, новому индексу поля вихря нужно присвоить старый индекс и перейти к пункту 1 цикла.

$$w^{k+1}_{m,n} \rightarrow w^{k}_{m,n}, k \rightarrow k+1, m = \overline{0, n_2}, n = \overline{0, n_1}, k = 0, n_0 - 1$$

Рис. 1. Зависимость горизонтальной компоненты скорости $u(x_n, y_m)$ при Re=1000

На Рисунке 2 приведено поле функции тока для числа Рейнольдса Re=1. Это поле полностью совпадает с аналогичным рисунком в статье Romanio[5,fig9, p22] при Re=1.

Рис. 2. Поле функции тока с параметром Рейнольдса Re=1

Рис. 3. Поле линий тока и функции тока для Re=1000 для профиля скорости "равнобедренная трапеция" с соотношением кусочно-линейных областей как 1:8:1

Рис. 4. Поле линий тока и функции тока для Re=1000 для профиля скорости равнобедренный треугольник" с соотношением кусочно-линейных областей как 5:0:5 «

Дифференциал найденному дуги линии тока определяется по полю скоростей $u^{n_0}(x_n, y_m) \equiv u^{n_0}_{m,n}, v^{n_0}_{m,n}, m = \overline{1, n_2 - 1}, n = \overline{1, n_1 - 1}$ на конечном временном слое n_0 дифференциальным уравнением

$$\frac{dx}{u(x,y)} = \frac{dy}{v(x,y)} \tag{18}$$

Поле скоростей всех точках прямоугольника (x, y), BO не совпадающих узлами $(x_n, y_m), n = 1, n_1 - 1, m = 1, n_2 - 1, x_n \le x \le x_{n+1}, y_m \le y \le y_{m+1},$ линейно интерполируется по формуле

$$\begin{cases} u(x,y) = \left(u_{m,n}\frac{(x_{n+1}-x)}{h_1} + u_{m,n+1}\frac{(x-x_n)}{h_1}\right)\frac{(y_{m+1}-y)}{h_2} + \left(u_{m+1,n}\frac{(x_{n+1}-x)}{h_1} + u_{m+1,n+1}\frac{(x-x_n)}{h_1}\right)\frac{(y-y_m)}{h_2} \\ v(x,y) = \left(v_{m,n}\frac{(x_{n+1}-x)}{h_1} + v_{m,n+1}\frac{(x-x_n)}{h_1}\right)\frac{(y_{m+1}-y)}{h_2} + \left(v_{m+1,n}\frac{(x_{n+1}-x)}{h_1} + v_{m+1,n+1}\frac{(x-x_n)}{h_1}\right)\frac{(y-y_m)}{h_2} \end{cases}$$
(19)

Используя(18),(19), получим связь соседних точек линии тока (h_3 -дифференциал дуги линии тока – геометрический шаг, который не связан с шагом основной равномерной сетки) по формуле

$$x^{l+1} = x^{l} + h_{3} \frac{u(x, y)}{\sqrt{u(x, y)^{2} + v(x, y)^{2}}}, y^{l+1} = y^{l} + h_{3} \frac{v(x, y)}{\sqrt{u(x, y)^{2} + v(x, y)^{2}}}, l = 1, 2, \dots$$
(20)

Сравнивая полученные поля линий тока и функции тока конечного решения (Рис.3, Рис.4) видно, что Функция тока определяет вихри первого порядка (совпадают детали левого и правого рисунков). 2. Меньшие вихри второго порядка определяются полем линий тока (левые рисунки).

3. Градиент скорости кусочно-линейного профиля на верхней стороне прямоугольной каверны определяет число вихрей второго порядка и их расположение. При небольшом градиенте (равном 2) с профилем «равнобедренный треугольник» (Рис.4) имеем один вторичный вихрь справа-снизу. При достаточно большем градиенте (равном 10) с профилем «равнобедренная трапеция» (Рис.3)имеем два симметричных вихря второго порядка справа и слева у дна[1,5,6].

4.Увеличение градиента профиля скорости (Рис.3) приводит к смещению центра вихря первого порядка противоположно вектору скорости, а уменьшение к смещению вдоль $u_{\max} = 1$ (Рис.4).

7

Отбрасывание слагаемых с производными 6 порядка в формулах(7),(8) с конечным алгоритмом решения уравнения Пуассона, приводит к уменьшению порядка аппроксимации. Но простота формул (7),(8) с неизвестной аналитически правой частью дает малую скорость накопления ошибки округления (на сетке 200*200 норма Чебышева для невязки уравнения Пуассона равна 10⁻¹⁰). Конечный матричный метод для уравнения Пуассона без потери точности увеличивает быстродействие алгоритма в десятки раз. Различие деталей в полях линий тока и функции тока напоминает применение уравнения Пуассона в задачах стеганографии [7],[8].

Литература:

1. A. Salih Streamfunction - Vorticity Formulation//Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram-Mach 2013. p.10.

2. Пастухов Д.Ф. Аппроксимация уравнения Пуассона на прямоугольнике повышенной точности / Д.Ф. Пастухов, Ю.Ф. Пастухов // Вестник Полоцкого университета. Серия С. Фундаментальные науки. – 2017. – № 12. – С. 62–77.

3. Волосова Н.К., Басараб М.А., Волосов К.А., Волосова А.К., Пастухов Д.Ф., Пастухов Ю.Ф. Модифицированное разностное уравнение К.Н. Волкова для уравнения Пуассона на прямоугольнике с шестым порядком погрешности// Евразийское Научное Объединение. – 2020. № 3-1 (61). С. 4-11.

4. Волосова Н.К. О конечных методах решения уравнения Пуассона на прямоугольнике с краевым условием Дирихле/ Н.К. Волосова, К.А. Волосов, А.К. Волосова, Д.Ф. Пастухов, Ю.Ф. Пастухов // Вестник Полоцкого университета. Серия С. Фундаментальные науки. – 2020. – № 4. – С. 78–92.

5. Hendrik C. Kuhlmann and Franchesco Romano The lid – driven cavity, p 85.

6. Д.Б. Гуров, Т.Г. Елизарова, Ю.В. Шеретов. Численное моделирование течений жидкости в каверне на основе квазигидродинамической системы уравнений// Математическое моделирование.1996. том 8, № 7, С. 33-44.

7. Вакуленко С.П., Волосова Н.К., Пастухов Д.Ф. Способы передачи QR-кода в стеганографии / С.П. Вакуленко, Н.К. Волосова, Д.Ф. Пастухов //Мир транспорта. – 2018. Т.16. № 5(78). С. 14-25.

8. Пастухов Д.Ф., Волосова Н.К., Волосова А.К. Некоторые методы передачи QR-кода в стеганографии/ Д.Ф. Пастухов, Н.К. Волосова, А.К. Волосова //Мир транспорта. – 2019. Т.17. № 3(82). С. 16-39.