УДК 512.542

ФОРМАЦИИ ГРУПП С МАКСИМАЛЬНОЙ L -КОМПОЗИЦИОННОЙ НИЛЬПОТЕНТНОЙ ПОДФОРМАЦИЕЙ

канд. физ.-мат. наук, доц. В.Г. САФОНОВ, П.А. ЖИЗНЕВСКИЙ (Гомельский государственный университет им. Ф. Скорины)

Изучение и классификация частично композиционных формаций конечных групп неразрывно связаны с исследованием их внутренней структуры. При этом важной особенностью исследуемой формации является не только наличие в ней подформаций того или иного вида, но и их взаимное расположение, а также структурные свойства решетки подформаций определенного вида. Представлено полученное описание L-композиционных ненильпотентных формаций с максимальной L-композиционной нильпотентной подформацией.

1. Введение. В работе рассматриваются только конечные группы. Мы используем терминологию, принятую в [1 − 3]. В работах Л.А. Шеметкова, А.Н. Скибы, В.В. Аниськова, В.Г. Сафонова, Д. Джехада, В.М. Селькина и др. изучались формации различных типов, имеющие заданные ограничения на системы или решетки их подформаций. В 2000 году в работе А.Н. Скибы и Л.А. Шеметкова [3] был разработан и представлен идейный материал теории частично композиционных формаций, позволяющий использовать методы и конструкции теории насыщенных формаций, а также методы общей теории решеток при исследовании частично композиционных формаций. В дальнейшем, в работах [4, 5] были описаны минимальные ω-композиционные не H -формации, где H − формация классического типа.

В данной статье, основываясь на результатах работ [3-5], мы даем описание L -композиционных ненильпотентных формаций, имеющих максимальную L -композиционную нильпотентную подформацию.

2. Определения и обозначения. Напомним некоторые определения и обозначения.

Класс всех простых групп обозначают I . Для произвольного класса простых групп T через T' обозначают множество $I \setminus T$. Пусть L — произвольный непустой класс простых групп. Тогда любую функцию вида:

$$f: \mathsf{L} \cup \{\mathsf{L}'\} \rightarrow \{\text{формации групп}\},$$

принимающую одинаковые значения на изоморфных группах называют L -композиционным спутником.

Символом L^+ обозначают совокупность всех абелевых групп из L, а через L^- совокупность всех простых неабелевых групп из L. Для произвольного класса простых групп T символ ET обозначает класс всех таких групп, у которых все композиционные факторы принадлежат T. По определению, единичные группы принадлежат ET.

Символом K(X) обозначают совокупность всех таких простых групп A, что A; H/K для некоторого композиционного фактора H/K группы $G \in X$.

Символом $C^A(G)$ обозначается пересечение всех централизаторов таких главных факторов H/K группы G, что $A \in K(H/K)$ ($C^A(G) = G$, если группа G таковых главных факторов не имеет). Наряду с записью $C^{Z_p}(G)$ применяется более короткая запись $C^p(G)$. Если A – простая неабелева группа, то $C^A(G) = G_{E(A)'}$. Если $A = Z_p$, то $C^p(G) = G_{G_{cp}}$, где G_{cp} – класс всех таких групп, все главные p -факторы которых центральны, т.е. $H/K \le Z(G/K)$ для всех главных p -факторов группы G [3]. Если F – формация, то через G^F обозначают F -корадикал группы G , т.е. пересечение всех тех нормальных подгрупп M из G , для которых $G/M \in F$. Если F – радикальный класс, то символом G_F обозначают произведение всех нормальных EL -подгрупп группы G , т.е. всех нормальных подгрупп, у которых композиционные факторы из L . Через HX обозначают класс всех гомоморфных образов групп из X .

Для произвольного L -композиционного спутника f полагают:

$$CF_{\mathsf{L}}(f) = \{G \mid G/G_{\mathsf{FL}} \in f(\mathsf{L}') \text{ и } G/C^A(G) \in f(A) \text{ для всех } A \in \mathsf{K}(G) \cap \mathsf{L}\}.$$

Если формация F такова, что $\mathsf{F} = CF_\mathsf{L}(f)$ для некоторого L -композиционного спутника f , то говорят, что она L -композиционна, а $f - \mathsf{L}$ -композиционный спутник этой формации.

Пусть X — произвольная совокупность групп, A — простая группа. Тогда полагают:

$$\mathsf{X}(C^A) = \begin{cases} \mathsf{form}(G/C^A(G) \,|\, G \in \mathsf{X}), & \mathsf{если} \quad A \in \mathsf{K}(\mathsf{X}); \\ \varnothing, & \mathsf{если} \quad A \notin \mathsf{K}(\mathsf{X}). \end{cases}$$

Для произвольного набора $\{f_i \mid i \in I\}$ L -композиционных спутников f_i через $\bigcap_{i \in I} f_i$ обозначается такой спутник, что $(\bigcap_{i \in I} f_i)(A) = \bigcap_{i \in I} f_i(A)$ для всех $A \in \mathsf{L} \cup \{\mathsf{L}'\}$.

Пусть $\{f_i \mid i \in I\}$ набор всех L -композиционных спутников формации F . Тогда спутник $\bigcap_{i \in I} f_i$ называется минимальным L -композиционным спутником F .

Вместо символа $\vee_{c^{\mathsf{L}}}$ (объединение в решетке c^{L}) используют \vee^{L} . Для произвольной совокупности L -композиционных формаций $\{\mathsf{F}_i \mid i \in I\}$ полагают $\vee^{\mathsf{L}} (\mathsf{F}_i \mid i \in I) = c^{\mathsf{L}} \text{ form}(\bigcup_{i \in I} \mathsf{F}_i)$, в частности, $\mathsf{M} \vee^{\mathsf{L}} \mathsf{H} = c^{\mathsf{L}} \text{ form}(\mathsf{M} \, \mathsf{UH})$.

Пусть H — произвольный класс групп. Тогда формация F называется H_{cL} -критической [6], или иначе, минимальной L -композиционной не H -формацией [7], если $F \lor H$, но $F_1 \subseteq H$ для каждой собственной L -композиционной подформации F_1 из F . В частности, если L -композиционная формация F ненильпотентна, но нильпотентна каждая ее собственная L -композиционная подформация, то F называют минимальной L -композиционной ненильпотентной формацией.

Символом c^L form X обозначается пересечение всех $tex \ L$ -композиционных формаций, которые содержат класс групп X . Пересечение всех L -композиционных формаций, содержащих данную группу G, снова является $textbf{L}$ -композиционной формацией. Такую формацию называют однопорожденной $textbf{c}$ -формацией, или однопорожденной $textbf{L}$ -композиционной формацией, и обозначают $textbf{c}$ -композиционной формацией, и обозначают $textbf{c}$ -композиционной формацией.

Максимальной L -композиционной подформацией L -композиционной формации F называется всякая такая ее собственная L -композиционная подформация M , что для любой L -композиционной подформации H из F с условием $M \subseteq H \subseteq F$ выполняется $H \in \{M, F\}$.

Напомним, что решетка называется модулярной, если для любых элементов x, y, z решетки из $x \le z \Rightarrow z \lor (y \land z) = (x \lor y) \land z$.

Пусть F — непустая L -композиционная ненильпотентная формация. Тогда символом $F^LF \cap N$ обозначается такая подрешетка решетки c^L , которая состоит из всех L -композиционных формаций, заключенных между $F \cap N$ и F.

3. Используемые результаты. Нам понадобится следующий частный случай леммы 5 из [3].

ЛЕММА 1. Если $F = c^{\mathsf{L}}$ formX u f — минимальный L -композиционный спутник формации F , то справедливы следующие утверждения:

- 1) $f(L') = \text{form}(G/G_{EL} \mid G \in X)$;
- 2) $f(A) = \text{form}(X(C^A))$ для всех $A \in K(F) \cap L$;
- 3) $f(A) = \emptyset$ для всех $A \in L \setminus K(F)$;
- 4) если $F = CF_L(h)$, то для всех $Z_p \in K(F) \cap L^+$

$$f(Z_p) = \text{form}(G \mid G \in h(Z_p) \cap F, O_p(G) = 1),$$

 ∂ ля всех $A \in K(F) \cap L^{-}$

$$f(A) = \text{form}(G \mid G \in h(A) \cap \mathsf{F} \ u \ \mathsf{Soc}(G) \in E(A))$$

и

$$f(\mathsf{L}') = \text{form}(G \mid G \in h(\mathsf{L}') \cap \mathsf{F} \ u \ G_{\mathsf{F}} = 1);$$

5) K(X) = K(F).

ЛЕММА 2 [2]. Пусть A — монолитическая группа c неабелевым монолитом; M — некоторая τ -замкнутая полуформация u $A \in l_n^\tau$ form M . Тогда $A \in \mathsf{M}$.

Частным случаем теоремы 1 работы [4] является

ЛЕММА 3. Пусть f — минимальный L -композиционный спутник формации F и H — канонический L -композиционный спутник формации H. Тогда в том и только том случае F является H_{\perp} -критической формацией, когда

$$F = c^{L} \text{ form} G$$
.

где G – такая монолитическая группа с монолитом R, что либо $K(R) \cap L = \emptyset$ и $f(L') - (H(L'))_{c^{\perp}}$ -критическая формация, либо $K(R) \cap L \neq \emptyset$, $C_G(R) \subseteq R \vee \Phi(G)$ и $f(A) - (H(A))_{c^{\perp}}$ -критическая формация, где $A \in K(R)$.

ЛЕММА 4 [2]. Пусть F — произвольная непустая формация и пусть у каждой группы $G \in X$ F -корадикал G^F не имеет фраттиниевых G -главных факторов. Тогда если A — монолитическая группа из F, то $A \in HX$.

ЛЕММА 5 [1]. Пусть $A \in sformG$, где G- конечная группа. Тогда имеют место следующие утверждения:

- 1) экспонента группы A не превосходит экспоненту группы G;
- 2) каждый главный фактор группы А изоморфен некоторому главному фактору группы G;
- 3) каждый композиционный фактор группы A изоморфен некоторому композиционному фактору группы G;
- 4) ступень любого нильпотентного фактора группы A не превосходит наибольшую из ступеней нильпотентных факторов группы G.

ЛЕММА 6. [2] Если
$$\mathsf{F} = \mathit{CF}_\mathsf{L}(f)$$
 и $\mathit{G}/\mathit{O}_p(G) \in \mathsf{F} \cap f(Z_p)$ для некоторой группы $Z_p \in \mathsf{L}^+$, то $G \in \mathsf{F}$.

ЛЕММА 7. [5] Пусть F и H — ω -композиционные формации и одна из формаций F или H разрешима. Тогда если $F \lor H$, то в F имеется по крайней мере одна минимальная ω -композиционная не H -подформация.

ЛЕММА 8. [3] Для любого непустого множества простых групп L и любого целого неотрицательного n решетка c_n^L алгебраична и модулярна.

ЛЕММА 9. [8] Пусть A – модулярная решетка. Тогда отображение φ : $[a,a \lor b] \to [a \land b,b]$, где $x \to x \land b$, является изоморфизмом.

4. Основной результат

ЛЕММА 10. Пусть f_i – минимальный L -композиционный спутник формации F_i , $i \in I$. Тогда $f = \vee (f_i \mid i \in I)$ – минимальный L -композиционный спутник формации $\mathsf{F} = \vee^L (\mathsf{F}_i \mid i \in I)$.

Доказательство. Пусть F — формация из условия леммы и пусть X = $\bigcup_{i \in I} \mathsf{F}_i$, M = $E(\mathsf{K}(\mathsf{X}))$. Из леммы 1 имеем $\mathsf{K}(\mathsf{X}) = \mathsf{K}(\mathsf{F})$. Пусть h — минимальный L -композиционный спутник формации F . Покажем, что f(A) = h(A) для всех $A \in \mathsf{L} \cup \{\mathsf{L}'\}$. Если $A \in \mathsf{L} \setminus \mathsf{K}(\mathsf{X})$, то по лемме 1 $f_i(A) = \emptyset$ для любого $i \in I$. Значит, $f(A) = \emptyset$. С другой стороны, из того, что h — минимальный L -композиционный спутник формации F , снова применяя лемму 1 имеем $h(A) = \emptyset$. Значит, $f(A) = h(A) = \emptyset$ для всех $A \in \mathsf{L} \setminus \mathsf{K}(\mathsf{X})$.

Пусть $A \in K(X) \cap L$. По лемме 1 имеем:

$$h(A) = \operatorname{form}(\mathsf{X}(C^A)) = \operatorname{form}(G/C^A(G) \mid G \in \mathsf{X} = \bigcup_{i \in I} \mathsf{F}_i) =$$

$$= \operatorname{form}(\bigcup_{i \in I} \operatorname{form}(G/C^A(G) \mid G \in \mathsf{F}_i)) = \operatorname{form}(\bigcup_{i \in I} f_i(A)) = \vee (f_i(A) \mid i \in I) = f(A).$$

Аналогично,

$$\begin{split} h(\mathsf{L}') &= \mathrm{form}(G/G_{E\mathsf{L}} \mid G \in \mathsf{X} = \bigcup_{i \in I} \mathsf{F}_i) = \mathrm{form}(\bigcup_{i \in I} \mathrm{form}(G/G_{E\mathsf{L}} \mid G \in \mathsf{F}_i)) = \\ &= \mathrm{form}(\bigcup_{i \in I} f_i(\mathsf{L}')) = \vee (f_i(\mathsf{L}') \mid i \in I) = f(\mathsf{L}'). \end{split}$$

PolotskSl

ЛЕММА 11. Пусть $\mathsf{M} - \mathsf{L}$ -композиционная нильпотентная формация $u \ m - e\ddot{e}$ минимальный L -композиционный спутник, $\omega = \pi(\mathsf{L}^+)$. Тогда

$$m(S) = \begin{cases} (1), \textit{ecnu } S = A \in \mathsf{K}(\mathsf{M}\,) \cap \mathsf{L}; \\ \mathsf{M}\, \cap \mathsf{N}_{\varpi'}, \textit{ecnu } S = \mathsf{L'}; \\ \varnothing, \textit{ecnu } S = A \in \mathsf{L} \setminus \mathsf{K}(\mathsf{M}\,). \end{cases}$$

Доказательство. Из леммы 1 имеем

$$m(S) = \begin{cases} \text{form}(G/C^A(G) \mid G \in \mathsf{M} \;), \textit{ecnu} \; S = A \in \mathsf{K}(\mathsf{M} \;) \cap \mathsf{L}; \\ \text{form}(G/G_{E\mathsf{L}} \mid G \in \mathsf{M} \;), \textit{ecnu} \; S = \mathsf{L}'; \\ \varnothing, \textit{ecnu} \; S = A \in \mathsf{L} \setminus \mathsf{K}(\mathsf{M} \;), \end{cases}$$

Пусть $S = A \in K(M) \cap L$. Заметим прежде, что так как M – нильпотентная формация, то $K(M) \subseteq L^+$ и $K(M) \cap L = K(M) \cap L^+$. Тогда, если $G \in M$, то $C^A(G) = G$ и

$$m(S) = \text{form}(G/C^A(G)) = \text{form}(G/G) = (1)$$
.

Пусть теперь $S=\mathsf{L}'$ и $G\in\mathsf{M}$. Покажем, что $\mathit{m}(\mathsf{L}')\subseteq\mathsf{M}\cap\mathsf{N}_{\varpi'}$. Так как $G_{E\mathsf{L}}$ холлова подгруппа группы G , то $G/G_{E\mathsf{L}}\in\mathsf{N}_{\varpi'}$. Так как $G\in\mathsf{M}$, то $G/G_{E\mathsf{L}}\in\mathsf{M}$. Значит, $G/G_{E\mathsf{L}}\in\mathsf{M}\cap\mathsf{N}_{\varpi'}$. Следовательно,

$$m(L') = \text{form}(G/G_{EL} \mid G \in M) \subseteq M \cap N_{\omega'}.$$

Пусть $G \in \mathsf{M} \cap \mathsf{N}_{\omega'}$. Тогда $G_{\mathsf{EL}} = 1$ и G; $G/1 = G/G_{\mathsf{EL}} \in m(\mathsf{L}')$. Значит, $\mathsf{M} \cap \mathsf{N}_{\omega'} \subseteq m(\mathsf{L}')$. Итак, $m(\mathsf{L}') = \mathsf{M} \cap \mathsf{N}_{\omega'}$. Если $S = A \in \mathsf{L} \setminus \mathsf{K}(\mathsf{M})$, то из описания спутника m имеем $m(A) = \varnothing$. Лемма доказана. Из леммы 3 с учетом замечания 3 работы [3] вытекает

ЛЕММА 12. Формация F в том и только том случае является минимальной L-композиционной ненильпотентной формацией, когда $F = c^L$ form G, где G — такая монолитическая группа c нефраттиниевым монолитом $P = G^N$, что либо $K(P) \cap L = \emptyset$, либо $K(P) \cap L \neq \emptyset$ и выполняется одно из следующих условий:

- 1) G = [P]Q группа Шмидта с $\Phi(G) = 1$, где $P = C_G(P)$ абелева p -группа, $p \in \pi(\mathsf{L}^+)$ и |Q| = q простое число;
 - 2) Р неабелева группа.

И

ТЕОРЕМА 1. Пусть $\Omega = \{H_i \mid i \in I\}$ — некоторый набор минимальных L -композиционных ненильпотентных формаций, M - L -композиционная нильпотентная формация. Тогда, если H — некоторая минимальная L -композиционная ненильпотентная подформация из $M \vee^L (\vee^L H_i \mid i \in I)$, то $H \in \Omega$.

Доказательство. Пусть $\mathsf{F} = \mathsf{M} \lor^\mathsf{L} (\lor^\mathsf{L} \mathsf{H}_i \mid i \in I)$ и f, m — минимальные L -композиционные спутники формаций F, M соответственно, и для каждого $i \in I$ пусть h_i — минимальный L -композиционный спутник формации H_i .

По лемме $10 \ f(A) = \text{form}(m(A) \cup \text{form}(\bigcup_{i \in I} h_i(A))) = \text{form}(m(A) \cup (\bigcup_{i \in I} h_i(A)))$ для всех $A \in \mathsf{L} \cup \{\mathsf{L}'\}$. Ввиду леммы 11 имеем:

$$m(S) = \begin{cases} (1), ecnu \ S = A \in K(M) \cap L; \\ \varnothing, ecnu \ S = A \in L \setminus K(M); \\ M \cap N_{\omega'}, ecnu \ S = L', \end{cases}$$

где $\omega = \pi(\mathsf{L}^+)$. Заметим, что так как M – нильпотентная формация, то $\mathsf{K}(\mathsf{M}) \cap \mathsf{L} = \mathsf{K}(\mathsf{M}) \cap \mathsf{L}^+$. Следовательно, L -композиционный спутник f допускает следующее описание:

$$\begin{split} f(A) &= \mathrm{form}((1) \cup (\bigcup_{i \in I} h_i(A))), ecnu \ A \in \mathrm{K}(\mathsf{F}) \cap \mathsf{L}, \\ f(A) &= \mathrm{form}(\emptyset \cup \bigcup_{i \in I} h_i(A)) = \mathrm{form}(\bigcup_{i \in I} h_i(A)), ecnu \ A \in \mathsf{L} \setminus \mathrm{K}(\mathsf{F}) \\ f(\mathsf{L}') &= \mathrm{form}((\mathsf{M} \cap \mathsf{N}_{\varpi'}) \cup (\bigcup_{i \in I} h_i(\mathsf{L}'))). \end{split}$$

10 10 H

Так как H — минимальная L -композиционная ненильпотентная формация, то по лемме 12 $H = c^L$ form H, где H — такая монолитическая группа с нефраттиниевым монолитом $P = H^N$, что либо $K(P) \cap L = \emptyset$, либо $K(P) \cap L \neq \emptyset$ и выполняется одно из следующих условий:

- 1) H = [P]Q группа Шмидта с $\Phi(H) = 1$, где $P = C_H(P)$ абелева p -группа, $p \in \pi(\mathsf{L}^+)$ и |Q| = q простое число;
 - 2) Р неабелева группа.

Пусть $K(P) \cap L = \emptyset$. Так как $H \in H \subseteq F$, то $H/H_{EL} \in f(L') = \text{form}((M \cap N_{\omega'}) \cup (\bigcup_{i \in I} h_i(L')))$. Но, в этом случае $H_{EL} = 1$. Значит, $H \in \text{form}((M \cap N_{\omega'}) \cup (\bigcup_{i \in I} h_i(L')))$.

Если P — неабелева группа, то по лемме 2 $H \in (\mathsf{M} \cap \mathsf{N}_{\varpi'}) \cup (\bigcup_{i \in I} h_i(\mathsf{L}'))$. Так как $H \notin \mathsf{M} \cap \mathsf{N}_{\varpi'}$, то найдется такое $i_0 \in I$, что $H \in h_{i_0}(\mathsf{L}') \subseteq \mathsf{H}_{i_0}$, т.е. $\mathsf{H} \subseteq \mathsf{H}_{i_0}$.

Поскольку H_{i_0} – минимальная L -композиционная ненильпотентная подформация и $\mathsf{H} \subseteq \mathsf{H}_{i_0}$, то $\mathsf{H} = \mathsf{H}_{i_0}$, т.е. $\mathsf{H} \in \Omega$.

Пусть теперь P – абелев монолит. Так как для любого $i \in I$ H_i – минимальная L -композиционная ненильпотентная формация, то по лемме 12 $H_i = c^L$ form H_i , где H_i – монолитическая группа с нефраттиниевым монолитом $P_i = H_i^{\, N}$. По лемме 1

$$h_i(L') = \text{form}(H_i/(H_i)_{EL}) = \text{form}A_i, \ \partial e \ A_i = H_i/(H_i)_{EL}.$$

Ввиду того, что $H \notin \mathbb{N}$, имеем

$$H \in \text{form}((\mathsf{M} \cap \mathsf{N}_{\omega'}) \cup (\bigcup_{i \in I} h_i(\mathsf{L}'))) \setminus \mathsf{N} =$$

$$= \text{form}((\mathsf{M} \cap \mathsf{N}_{\omega'}) \cup (\bigcup_{i \in I} \text{form} A_i)) \setminus \mathsf{N} = \text{form}((\mathsf{M} \cap \mathsf{N}_{\omega'}) \cup \{A_i \mid i \in I\}) \setminus \mathsf{N},$$

где
$$A_i = \begin{cases} H_i, \textit{если} (H_i)_\textit{EL} = 1, \\ H_i/(H_i)_\textit{EL} \in \mathsf{N}, \textit{если} (H_i)_\textit{EL} \neq 1. \end{cases}$$

Заметим, что для любой группы $T \in (\mathsf{M} \cap \mathsf{N}_{\omega'}) \cup \{A_i \mid i \in I\}$ её N -корадикал T^N не содержит фраттиниевых T-главных факторов. Следовательно, используя лемму 4, а также учитывая, что $H \notin \mathsf{M} \cap \mathsf{N}_{\omega'}$, получаем, что H является гомоморфным образом некоторой группы из $\{A_i \mid i \in I\}$.

Пусть H является гомоморфным образом группы $A_{j_0}=H_{j_0}/(H_{j_0})_{E\!L}$. Если $(H_{j_0})_{E\!L}\neq 1$, то A_{j_0} нильпотентна. Значит, любой гомоморфный образ группы A_{j_0} также нильпотентен. Получили противоречие с тем, что H ненильпотентна. Следовательно, $(H_{j_0})_{E\!L}=1$ и $A_{j_0}=H_{j_0}$. Значит, H; $H_{j_0}\in \mathsf{H}_{j_0}$, т.е. $\mathsf{H}\subseteq \mathsf{H}_{j_0}$. Так как H_{j_0} – минимальная L -композиционная ненильпотентная подформация и $\mathsf{H}\subseteq \mathsf{H}_{j_0}$, то $\mathsf{H}=\mathsf{H}_{j_0}$, т.е. $\mathsf{H}\in \Omega$.

Пусть теперь $K(P) \cap L \neq \emptyset$ и относительно группы H выполняется условие 1). Понятно, что $P = C^p(H)$. Тогда

$$Q; H/P; H/C^{p}(H) \in f(Z_{p}) = form((1) \cup (\bigcup_{i \in I} h_{i}(Z_{p}))).$$

Так как $\operatorname{form}((1)\cup(\bigcup_{i\in I}h_i(Z_p)))\subseteq \mathbb{N}$, то $\operatorname{form}((1)\cup(\bigcup_{i\in I}h_i(Z_p)))=\operatorname{sform}((1)\cup(\bigcup_{i\in I}h_i(Z_p)))$. Значит, по лемме 5 Q изоморфна некоторому главному фактору некоторой группы $G\in (1)\cup(\bigcup_{i\in I}h_i(Z_p))$.

Так как $\,Q \neq 1\,,\,$ то найдется такое $\,k_0 \in I\,,\,$ что $\,Q \in h_{k_0}(Z_p) \subseteq \mathsf{H}_{k_0}\,,\,$ т.е.

$$H/C^p(H); \ Q \in \mathsf{H}_{k_0} \cap h_{k_0}(Z_p).$$

Поскольку $C^p(H)\subseteq O_p(H)$, то $H/O_p(H)\in \mathsf{H}_{k_0}\cap h_{k_0}(Z_p)$. Следовательно, по лемме 6 $H\in \mathsf{H}_{k_0}$, т.е. $\mathsf{H}\subseteq \mathsf{H}_{k_0}$. Ввиду того, что H_{k_0} – минимальная L -композиционная ненильпотентная подформация и $\mathsf{H}\subseteq \mathsf{H}_{k_0}$ получаем, что $\mathsf{H}=\mathsf{H}_{k_0}$, т.е. $\mathsf{H}\in \Omega$.

Пусть, наконец, относительно группы H выполняется условие 2). Тогда $H/C^A(H) \in \text{form}(\bigcup_{i \in I} h_i(A))$. Поскольку A — неабелева и $A \in \mathrm{K}(P)$, то $C^A(H) = 1$. Значит, $H \in \mathrm{form}(\bigcup_{i \in I} h_i(A))$. Следовательно, по лемме 2 $H \in \bigcup_{i \in I} h_i(A)$, а значит, найдется такое $l_0 \in I$, что $H \in h_{l_0}(A) \subseteq \mathrm{H}_{l_0}$, т.е. $\mathrm{H} \subseteq \mathrm{H}_{l_0}$. Поскольку H_{l_0} — минимальная L -композиционная ненильпотентная подформация и $\mathrm{H} \subseteq \mathrm{H}_{l_0}$, то $\mathrm{H} = \mathrm{H}_{l_0}$, т.е. $\mathrm{H} \in \Omega$. Теорема доказана.

ТЕОРЕМА 2. В том и только том случае L -композиционная ненильпотентная формация F имеет нильпотентную максимальную L -композиционную подформацию, когда $F = M \lor^L H$, где M - L -композиционная нильпотентная формация, H — минимальная L -композиционная ненильпотентная формация, при этом:

- 1) всякая L -композиционная нильпотентная подформация из F входит в $M \vee^L (H \cap N)$;
- 2) всякая L -композиционная ненильпотентная подформация F_1 из F имеет вид $H \vee^L (F_1 \cap N)$.

Достаточность. Пусть $F = M \lor^L H$, где M - L-композиционная нильпотентная формация, H - M минимальная L - M композиционная ненильпотентная формация. M + M пусть M + M пусть M + M и M + M максимальная M + M и M и

$$\begin{split} \mathsf{M} \ \vee^{\mathsf{L}} \ \mathsf{H}/^{\mathsf{L}} \, \mathsf{M} \ \vee^{\mathsf{L}} \ \mathsf{H}_0 &= (\mathsf{M} \ \vee^{\mathsf{L}} \ \mathsf{H}_0) \vee^{\mathsf{L}} \ \mathsf{H}/^{\mathsf{L}} \, \mathsf{M} \ \vee^{\mathsf{L}} \ \mathsf{H}_0; \\ ; \ \mathsf{H}/^{\mathsf{L}} \, (\mathsf{M} \ \vee^{\mathsf{L}} \ \mathsf{H}_0) \cap \mathsf{H} &= \mathsf{H}/^{\mathsf{L}} \, (\mathsf{M} \ \cap \mathsf{H}) \vee^{\mathsf{L}} \ \mathsf{H}_0 &= \mathsf{H}/^{\mathsf{L}} \, \mathsf{H}_0. \end{split}$$

Из того, что H_0 максимальна в H получаем, что $M \vee^L H_0$ максимальна в $M \vee^L H$. Следовательно, формация F_1 является максимальной L -композиционной подформацией в F. Так как H — минимальная L -композиционная ненильпотентная формация, то H_0 — максимальная L -композиционная нильпотентная подформация в H. Учитывая это и то, что M нильпотентна получаем, что формация F_0 нильпотентна.

Докажем теперь второе утверждение теоремы. Из теоремы 1 следует, что в F нет минимальных L -композиционных ненильпотентных подформаций, отличных от H. Понятно, что $N \cap H$ — максимальная L -композиционная подформация в H. Ввиду лемм 8 и 9 имеем:

$$\begin{split} F/^L(N \cap H) \vee^L M &= M \vee^L H/^L(N \cap H) \vee^L M = \\ &= ((N \cap H) \vee^L M) \vee^L H/^L(N \cap H) \vee^L M; \ H/^L H \cap ((H \cap N) \vee^L M) = H/^L H \cap N. \end{split}$$

Тогда $(N\cap H)\vee^L M$ — максимальная L -композиционная подформация в F . Следовательно, поскольку $F\not\subseteq N$, то всякая нильпотентная подформация из F входит в $M\vee^L (H\cap N)$.

Пусть теперь F_1 — произвольная L -композиционная ненильпотентная подформация из F . Тогда ввиду леммы 7 $H \subseteq F_1$. Следовательно, ввиду леммы 8 имеет место

$$F_1 = F_1 \cap F = F_1 \cap (H \vee^L M) = H \vee^L (F_1 \cap M).$$

Теорема доказана.

В случае когда L = I, получаем

СЛЕДСТВИЕ 1 [9]. В том и только том случае ненильпотентная c-формация F имеет максимальную нильпотентную c-подформацию, когда $F = M \lor^c H$, где $M \subseteq N$, $H - N_c$ -критическая формация, при этом:

- 1) всякая нильпотентная с-подформация из F входит в $M \vee^c (H \cap N)$;
- 2) всякая ненильпотентная c-подформация F_1 из F имеет вид $H \lor^c (F_1 \cap N)$.

ЛИТЕРАТУРА

- 1. Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. М.: Наука, 1989. 253 с.
- 2. Скиба, А.Н. Алгебра формаций / А.Н. Скиба. Минск: Беларуская навука, 1997. 240 с.
- 3. Скиба, А.Н. Кратно L -композиционные формации конечных групп / А.Н. Скиба, Л.А. Шеметков // Украинский математический журнал. 2000. Т. 52, № 6. С. 783 797.
- 4. Близнец, И.В. О $\mathsf{H}_{\Theta^\mathsf{L}}$ -критических формациях / И.В. Близнец, А.Н. Скиба // Изв. Гомельского гос. ун-та им. Ф. Скорины. 1999. № 1. С. 140 144.
- 5. Близнец, И.В. Критические ω-композиционные формации / И.В. Близнец // Весці НАН Беларусі. Сер. фіз-мат. навук. 2002. № 4. С. 115 117.
- Скиба, А.Н. О критических формациях / А.Н. Скиба // Весці АН БССР. Сер. фіз.-мат. навук. 1980. № 4. – С. 27 – 33.
- 7. Шеметков, Л.А. Экраны ступенчатых формаций / Л.А. Шеметков // Тр. VI Всесоюзный симпоз. по теории групп. Киев, 1980. С. 37 50.
- 8. Биркгоф, Г. Теория решеток / Г. Биркгоф. М.: Hayka, 1984. 568 с.
- 9. Чиспияков, С.В. О композиционных формациях с заданными системами нильпотентных подформаций / С.В. Чиспияков // Брянск. гос. пед. ун-т. Брянск, 1998. 18 с. Библиогр.: 12 назв. Деп. в ВИНИТИ 26.10.98, № 3098-В98 // РЖМат. 1999, 5А119.

Поступила 27.06.2007