УДК 556.11:504.4.064

ОПРЕДЕЛЕНИЕ ВОЗРАСТА ДОННЫХ ОТЛОЖЕНИЙ МЕТОДОМ АЛЬФА-СПЕКТРОСКОПИИ ²¹⁰Ро

Т.В, СЕМИЖОН, канд. биол. наук, доц. Н.В. ГОНЧАРОВА (Международный государственный экологический университет им. А.Д. Сахарова) д-р физ. наук, проф. Э. КЛЕМТ (Fachhochschule Ravensburg-Weingarten University of Applied Sciences)

Путем исключения этапа добавления конкурирующих ионов и снижения температуры выделения радиоизотопа из образца модифицирован метод определения неравновесного $^{2\hat{I}0}Pb$ в донных отложениях. Такой подход улучшает энергетическое разрешение и увеличивает суммарную эффективность данного метода, по сравнению с ^{210}Pb -методом. Проведена сравнительная оценка двух методов по скорости седиментации донных отложений реки Енисей. Показано, что оба метода хорошо согласуются при наибольшей эффективности ^{210}Pb -метода, что позволяет использовать его для датирования речных и озерных отложений, в отсутствии процессов постседиментационной миграции.

Введение. В связи с широким применением радиоизотопов во всевозможных областях науки и техники все большее теоретическое и практическое значение приобретает изучение возможностей уже существующих и разработка новых методов датирования с использованием радиоактивных элементов естественного происхождения [1].

В настоящее время проблема определения возраста отдельных слоев донных отложений, например озёрных, а также хронологии поступления техногенных радионуклидов в донные отложения представляет большой интерес [2, 3]. Для решения этой задачи используется метод датирования возраста седиментов по неравновесному ²⁴⁹в. Метод основан на нарушении радиоактивного равновесия в ряду ²⁴⁸в. Равновесие нарушается за счет эманирования ²²²Rn, который через ряд короткоживущих нуклидов превращается в атмосфере в ²¹⁰Pb и с глобальными выпадениями попадает в водоемы, тем самым накапливаясь в донных отложениях.

Вследствие поступления техногенных радионуклидов в речные донные отложения использование стандартного 210 Pb-метода датирования донных отложений невозможно. В частности, в донных отложениях реки Енисей присутствует радиоизотоп 152 Eu. Перекрывание гамма-линии свинца линией рентгеновского излучения европия затрудняет детектирование 210 Pb гамма-спектрометрическим методом.

Данная работа вносит вклад в развитие нового ²¹⁰Ро-метода определения возраста речных и озерных донных отложений. Главной идеей этого метода является экстрагирование ²¹⁰РО из анализируемых проб донных отложений, после того как радиоактивное равновесие между ²¹⁰⁰РЪ и его дочерним радионуклидом ²⁰РО достигнуто. Дальнейшее определение радиоактивности неравновесного ²¹⁰РО происходит методом альфа-спектрометрии.

1. Методы исследования

В течение долгого времени 238 U очень медленно распадается до 234 U, за которым следуют такие промежуточные продукты распада, как 236 h и 236 L в свою очередь 994 Rа обусловливает небольшую радиоактивность донных отложений и присутствует примерно в том же количестве, что и 238 U вследствие того, что между ними достигается радиоактивное равновесие. Таким образом, 226 Rа содержится во всех донных отложениях в малом и практически неизменном количестве.

Радиоактивный элемент Ra распадается в свою очередь до инертного газа Rn. Прежде чем произойдет распад ²²²Rn до следующего радиоизотопа, возможно его эманирование в атмосферу. Затем ²²²Rn через ряд короткоживущих нуклидов превращается в атмосфере в ²¹⁰Pb, который затем с глобальными выпадениями попадает в водоемы и накапливается в донных отложениях (рис. 1).

Отсюда можно заключить, что 210 Pb присутствует в донных отложениях в двух формах: равновесной и неравновесной. Равновесная форма 210 Pb относится к той части, которая находится в радиоактивном равновесии со всеми предшествующими его радиоактивными элементами семейства 238 U. Таким образом, равновесный 210 Pb является продуктом распада 226 Ra, который был непосредственно вымыт в водную систему как часть разрушенного материала материнской породы.

Происхождение неравновесного 210 Pb связано с 222 Rn, который попадает из седиментов в атмосферу, где и распадается до 210 Pb с последующим его связыванием с аэрозольными частицами и сухим осаждением либо выпадением вместе с осадками на поверхность донных отложений. Более того, неравновесный 210 Pb может непосредственно выпасть или осесть в более позднее время и в другом месте на донные отложения [4].

В обоих случаях активность неравновесного 210 Pb, осажденного и связанного с седиментами, является функцией его первоначального количества и периода полураспада. Таким образом, 210 Pb-метод позволяет датировать возраст кернов донных отложений посредством измерения активности неравновесного 210 Pb нижележащих слоев донных отложений, сравнивая их с активностью верхних слоев седиментов.

Атмосфера:
$$\frac{\text{Неравновесный }^{210}\text{Pb}}{^{222}\text{Rn}} > ^{218}\text{Po} > ^{214}\text{Pb} > ^{214}\text{Bi} > ^{214}\text{Po} > ^{210}\text{Pb}}$$

Выпадение, осаждение

Донные отложения: $\frac{\text{Равновесный }^{210}\text{Pb}}{^{226}\text{Ra}} > ^{222}\text{Rn} > ^{218}\text{Po} > ^{214}\text{Pb} > ^{214}\text{Bi} > ^{214}\text{Po} > ^{210}\text{Pb} > ^{210}\text{Bi} > ^{210}\text{Po} > \dots$
 $T_{1/2} = 1600 \, \text{л} \, 3.8 \, \text{дн} \quad 3.1 \, \text{мин} \, 27 \, \text{мин} \, 20 \, \text{мин} \, 160 \, \text{µc} \, 22.3 \, \text{л} \, 5.0 \, \text{дн} \, 138 \, \text{d}$

Рис. 1. Схема радиоактивного распада ^{222}Rn в атмосфере и ^{226}Ra в донных отложениях [4]

Существует два альтернативных метода определения активности неравновесного ²¹⁰Pb в исследуемых образцах седиментов: гамма- и альфа-спектрометрический методы.

1.1. Гамма-спектрометрия. Как показано на рис. 1, радиоактивные элементы, являющиеся промежуточными продуктами распада 222 Rn, эманированного в атмосферу, до 210 Pb, имеют короткие периоды полураспада (214 Pb имеет самый длинный период 11 2 = 27 мин). Поэтому является очевидным, что в течение нескольких минут происходит множество радиоактивных распадов, в результате которых образуется 210 Pb, который затем осаждается на донных отложениях. Наиболее приемлемыми кандидатами являются 214 Bi и 214 Pb с их главными гамма-линиями 609,3 кэВ и 351,9 кэВ соответственно. По причине того, что 214 Bi испускает многократные каскадные гамма-лучи, совпадение отдельных пиков будет заметно в спектре (сумма индивидуальных гамма-энергий), что затем приведет к более низким амплитудам пиков [5]. Вследствие этого определение равновесного 210 Pb заключается в измерении активности 214 Pb в донных отложениях. Активность неравновесного 210 Pb рассчитывается путем вычитания равновесного 210 Pb из суммарной активности 210 Pb, определяемого по его характерной гамма-линии 46,5 кэВ.

С целью достижения радиоактивного равновесия между 222 Rn и 214 Pb образцы седиментов были однородно смешаны с парафином в соотношении 1:10, спрессованы в таблетки, завернуты в алюминиевую фольгу и хранились в течение 30 дней (что эквивалентно 5 периодам полураспада 222 Rn). В случае постоянного потока неравновесного $^{2|0}$ Pb в донные отложения и неизменной скорости седиментации в рассматриваемый промежуток времени неизменно наблюдается экспоненциальная зависимость активности 210 Pb от глубины.

1.2. Альфа спектроскопия. Радиоизотоп 210 Pb, осажденный на водную поверхность из атмосферы, в течение следующих нескольких месяцев адсорбируется на частицах донных отложений. Он распадается до 210 Bi ($T_{1/2}$ = 5 дней) и впоследствии до 210 Po (T_m = 138 дней), который в конечном счете распадается до нерадиоактивной формы свинца. После периода пяти полураспадов 210 Pb (примерно 2 года) как 210 Po, так и 210 Pb находятся в радиоактивном равновесии.

Дочерний радионуклид 210 Pb испускает альфа-частицу с энергией 5304,4 кэВ. Этот распад может быть детектирован с помощью альфа-спектрометрии.

Донные отложения реки Енисей содержат 1^{52} Eu, который испускает рентгеновские лучи 46,6 кэВ. Вследствие того, что активность 152 Eu достаточно высокая (около 100... 1000 Бк/кг), точное определение активности 210 Pb невозможно, потому что его гамма-линия перекрывается 152 Eu. Таким образом, было принято решение определять неравновесный 210 Pb с использованием альфа-спектроскопии 210 Po.

Пробоподготовка образца. Правильная подготовка образца является самым важным этапом для достижения качественных результатов в альфа-спектрометрии. Пробоподготовка заключается в превращении образца в химически выделенную тонкослойную форму (источник), которая может быть помещена в спектрометр и измерена с минимальными интерференцией пиков и потерями на самопоглощение [6, 7]. Превращение исходного образца в форму, удовлетворяющую требованиям альфа-спектрометрии, - длительный многоэтапный процесс.

Пробоподготовка для альфа-спектрометрии включает три основных этапа:

- предварительную обработку;
- химическое разделение;
- изготовление образца.

Предварительная обработка — гомогенизация и консервация образца, а также подготовка его к последующей химической обработке. Для образцов донных отложений типичная предварительная обработка состоит из сублимационной сушки и растирания в керамической ступке.

Стадия химического разделения начинается с операции добавления к образцу изотопного индикатора. С целью получения хороших статистических результатов измерения радиоактивности ²¹⁰Ро и ²⁰⁸Ро к 10 г сухих седиментов добавляли 4 мл изотопного индикатора – трессера.

Активность трессера определяется исходя из уравнения радиоактивного распада:

$$A = A_0 \cdot e^{-\lambda \cdot t} \,, \tag{1}$$

где A_0 – активность радиоизотопного индикатора в начальный момент времени.

Так как все изотопы одного и того же элемента химически ведут себя одинаково, то доля метки, потерянной в химических процессах, равна доле потерянного образца (предполагается, что изотопная метка гомогенно смешана с образцом и находится в нем в состоянии химического равновесия). Это позволяет оценить полную эффективность (для процедур пробоподготовки и измерения образца) и определить активность неравновесного 210 Ро из установленного соотношения 210 Ро к 208 Ро.

Метод перевода исследуемого радионуклида в растворенную форму (с последующим извлечением ее из образца) включает обработку азотной и соляной кислотами с последующим выпариванием.

Это начальное «вымывание» радионуклидной фракции является первичной стадией очистки, так как большинство сопутствующих элементов удаляется на этом этапе. Такая обработка обеспечивает переведение следовых количеств элементов и нуклидов в растворенное состояние и препятствует протеканию биологических процессов.

После добавления радиоактивного изотопа в образец приливают 60 мл сильной азотной кислоты (65 %) и затем выпаривают на нагревателе при температуре 150 °C в течение 40...70 минут. Этот шаг проводится с трехкратной повторностью. Предполагают, что на данной стадии разрушаются фракции донных отложений, в которых содержится неравновесный ^{2|0}Ро (органический материал и карбонаты), так как изучаемый нуклид сорбируется поверхностью седиментов, а не внедрен в их кристаллическую структуру.

Стандартная процедура пробоподготовки также включает добавление 4 мл раствора TeCLI (0,02 M) для того, чтобы удержать полоний в ионной форме в растворе. Это базируется на предположении, что Te^{4*} является конкурирующим ионом для полония. В результате ионы Te^{4+} должны заменить ионы полония в химических реакциях и, таким образом, удержать его в ионной форме, фиксируясь в нерастворимых фракциях.

На следующем этапе полоний преобразовывается в форму хлорида при растворении в 75 мл соляной кислоты (25 %). Кислоту приливают в 3 этапа с последующим выпариванием на нагревателе при температуре 150 °C. Последовательное добавление и выпаривание 20 мл дистиллированной воды уменьшают избыток ионов хлора.

Затем исследуемый образец смывают 8 мл соляной кислоты и 10... 15 мл дистиллированной воды в колбу (100 мл) и оставляют на 24 часа для отделения жидкой фазы, содержащей неравновесный $^{2|0}$ Po, от осадка.

В извлеченной жидкой фазе раствора устанавливают рН 7,0 добавлением 27...30 мл 3М раствора NaOH. Затем к раствору приливают 4 мл аскорбиновой кислоты (200 мг/мл) для превращения Fe (III) в Fe (II) и добавляют 7 мл соляной кислоты, затем дистиллированной водой доводят до объема 100 мл.

После химического разделения из образца готовят источник излучения. Для достижения наилучшего разрешения пиков на альфа-спектре необходимо, чтобы источник излучения был нанесен на подножку тонким равномерным слоем. Это должен быть одноатомный слой альфа-излучателя. Наличие посторонних материалов поверх этого слоя недопустимо во избежание поглощения альфа-излучения. Источник должен быть удобен в обращении и химически стабилен.

Для предотвращения соосаждения других элементов и достижения полного и однородного осаждения 210 Ро полоний из исследуемого образца осаждали на серебряный диск, принимая во внимание то, что в электрохимическом ряду за полонием следует свинец (можно предположить, что 210 Ро будет селективно осаждаться на серебряном диске).

Поверхность серебряного диска должна быть предварительно очищена 2 %-ным раствором серной кислоты, 1 %-ным раствором мочевины и дистиллированной водой. Экстракт помещается в тефлоновую установку для депонирования в течение четырех часов.

1.3. Методы датирования возраста донных отложений. Для определения возраста отдельных слоев озёрных отложений существуют методы, основанные на использовании естественных радиоактивных изотопов свинца 210 Pb.

Таблица 1

В литературе описано две модели Constant Initial Concentration (Постоянная Начальная Концентрация) и Constant Rate of Supply (Постоянный Уровень Поступления), позволяющие определять возраст донных отложений с помощью метода неравновесного свинца [8, 9].

Предложен альтернативный метод определения скорости седиментации донных отложений в реке Енисей и определения их возраста, используя соотношение изотопов европия 154 Eu/ 152 Eu. Этот метод датирования основан на следующих предположениях:

- поток изотопов европия постоянен;
- скорость поступления донных отложений не меняется в пределах рассматриваемого промежутка воемени.

В случае если выполняются оба предположения, зависимость отношения ¹⁵⁴Eu к ¹⁵²Eu от глубины будет экспоненциальной. Постоянную скорость седиментации (см·год⁻¹) можно рассчитать, используя соотношение [11]:

$$V_{S} = \frac{\ln 2}{\lambda'} \left(\frac{1}{T_{154_{EH}}} - \frac{1}{T_{152_{EH}}} \right). \tag{2}$$

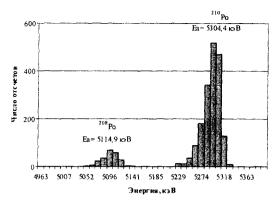
Результаты и их обсуждение

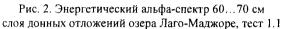
С целью изучения и совершенствования стандартной процедуры пробоподготовки исследован нижний слой (60...70 см) донных отложений из озера Лаго-Маджоре с позиции 2/4 [12].

Проведен ряд экспериментов в диапазоне концентрации TeCl₄ для установления зависимости суммарной эффективности стандартного метода от присутствия конкурирующих ионов в исследуемом образце. Проведено три теста в двукратной повторности: в тестах 1.1 и 1.2 в пробу добавлено 4 мл раствора TeCl₄, для тестов 3.1 и 3.2 применялся разбавленный в соотношении 1:100 раствор TeCl₄, тесты 2.1 и 2.2 использовали в качестве контроля. Результаты экспериментов представлены в табл. 1.

Зависимость суммарной эффективности от концентрации TeCl₄

Номер теста	Активность неравновесного ²¹⁰ Ро, Бк/кг	Суммарная эффективность, %	Комментарий
1.1	$36,08 \pm 2,29$	5,81 ± 0,47	$TeCl_4$ $T = 108,2 °C$
1.2	$36,39 \pm 2,39$	$5,46 \pm 0,45$	
2.1	35,94 ± 2,61	$4,48 \pm 0,33$	Контроль Т = 110,1 °C
2.2	$32,08 \pm 2,13$	$5,38 \pm 0,45$	
3.1	$34,04 \pm 2,38$	4,83 ± 0,42	TeCl ₄ (1:100) T = 107,5 °C
3.2	$34,26 \pm 1,99$	$7,00 \pm 0,54$	


Из табл. 1 следует, что суммарная эффективность варьирует от 4,5 до 7 % и в среднем она равна 5 и 5,6 % для тестов с применением $TeC1_4$ и контроля соответственно. Кроме того, в таблице приведена средняя температура раствора, измеренная на стадии обработки исследуемого образца кислотами с последующим выпариванием на нагревателе при температуре $150\,^{\circ}\mathrm{C}$.


На рис. 2 и 3 показаны энергетические альфа-спектры, полученные при анализе тестов 1.1 и 2.2. Взаимодействие аскорбиновой кислоты и ионов Te^{4+} приводит к образованию темно-синей пленки на серебряной пластинке, что приводит к ухудшению энергетического разрешения и уширению пиков. При добавлении $TeC1_4$ полуширина пиков на полувысоте (ПШПВ) изменяется в пределах от 40 до 30 кэВ и варьирует от 10 до 20 кэВ для контрольного теста, в котором стадия добавления конкурирующих Te^{4+} ионов была пропущена (см. рис. 2 и 3).

Согласно полученным экспериментальным данным исключили этап добавления ${\rm TeC1}_4$ при пробоподготовке проб, ввиду ухудшения энергетического разрешения и снижения суммарной эффективности.

Была изучена зависимость эффективности определения содержания неравновесного ²¹⁰Ро в исследуемом образце от температуры и установлено, что полоний частично испаряется с кислотами в процессе их выпаривания и уменьшается суммарная эффективность (см. табл. 1).

Стадия химического разделения предполагает добавление соляной и азотной кислот с их последующим выпариванием из раствора на нагревателе при температуре $150\,^{\circ}$ C. Этот этап был изменен посредством снижения температуры нагревателя до $100\,^{\circ}$ C с целью эмпирического подтверждения выдвинутого предположения. Результаты проведенных экспериментов представлены в табл. 2.

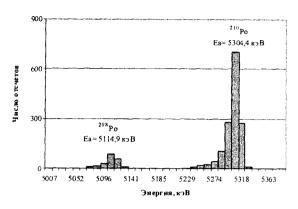


Рис. 3. Энергетический альфа-спектр 60...70 см слоя донных отложений озера Лаго-Маджоре, тест 2.2

Таблица 2

Зависимость суммарной эффективности от температуры

Номер теста	Активность неравновесного ²¹⁰ Po, Бк/кг	Суммарная эффективность,	Комментарий
4.1	8,70 ±0,48	7,77 ±0,58	контроль Т = 87,4 °C
4.2	$33,44 \pm 2,06$	$6,28 \pm 0,50$	
5.1	30,47 ±2,26	4,37 ±0,39	TeC1 ₄ T = 89,9 °C
5.2	39,70 ±3,05	$4,07 \pm 0,37$	

Активность неравновесного ²¹⁰Ро в тесте 4.1 составляет 8.7 Бк/кг, тогда как в остальных тестах она составляла 35 Бк/кг. Это отклонение можно объяснить неоднородным перемешиванием данной пробы и потерей активности на стадии пробоподготовки.

Суммарная эффективность в среднем изменяется в пределах от 4,2 до 7,1 % и достигает наибольшего значения (7,8 %) для контрольного теста (без добавления TeCЦ) при температуре нагревателя 100 °C.

Сравнительный анализ данных табл. 1 и 2 свидетельствует о том, что уменьшение температуры нагревателя от 150 до 100 °C приводит к снижению температуры раствора с 109 до 88 °C и к увеличению суммарной эффективности от 5 до 7 %.

Таким образом, в результате анализа экспериментальных данных стандартная методика была изменена по следующим позициям:

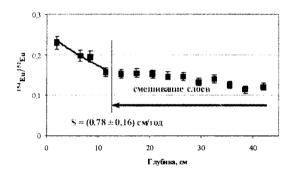
- исключен этап добавления раствора ${\rm TeCl}_4$, так как это приводит к уширению пиков и не увеличивает суммарную эффективность;
- снижена температура нагревателя до $100\,^{\circ}$ С, что обусловливает увеличение эффективности, с которой осуществляется определение содержания неравновесного 210 Ро в исследуемом образце от 5 до 7 %.

Сравнительный анализ 210 **Ро- и** 210 **Ро-методов датирования.** С целью подтверждения наибольшей эффективности нового 210 Ро-метода датирования был проведен сравнительный анализ различных подходов для определения неравновесного 210 Ро и 210 Рb методами альфа- и гамма-спектрометрии. Объект исследования - донные отложения озера Лаго-Маджоре, не содержащие 152 Eu.

В эксперименте использовали два различных слоя одной седиментационной колонки, сформированных в различные промежутки времени. Результаты эксперимента представлены в табл. 3.

Сопоставление ²¹⁰Pb- и ²¹⁰Po-методов, донные отложения озера Лаго-Маджоре

Таблица 3


а-спектрометрия у-спектрометрия Глубина слоя, см Активность ²¹⁰РЬ, Бк/кг Активность неравновесного ^{2|0}Ро, Бк/кг общая равновесная неравновесная 0...10 $90,44 \pm 4,90$ $142,48 \pm 5,01$ $49,64 \pm 1,19$ $92,84 \pm 5,15$ 60...70 $34,71 \pm 2,70$ $77,01 \pm 6,55$ $49,98 \pm 1,97$ $27,03 \pm 6,84$

Радиоактивность двух различных слоев донных отложений различна: для нижнего (60...70 см) слоя она составляет 34 Бк/кг и для верхнего (10 см) слоя - 92 Бк/кг (см. табл. 3). Уменьшение радиоактивности в седиментах более глубоких слоев является результатом радиоактивного распада радионуклидов.

Результаты измерений неравновесного 210 Pb и 210 Po методами гамма- и альфа- спектроскопии хорошо согласуются с учетом статистических погрешностей.

Показано, что химическая обработка горячей азотной кислотой обеспечивает полное выделение неравновесного 210 Ро из проб донных отложений. Следовательно, новый 210 Ро-метод может быть применен для определения возраста донных отложений в реках и водоемах. В частности, он является очень надежным и высокоточным методом датирования седиментов реки Енисей, для которых 210 Рb-метод неприменим вследствие присутствия изотопа 152 Еu.

Две различные методики (неравновесного 210 Po и соотношения радиоизотопов европия) были использованы для вычисления скорости седиментации на примере донных отложений, отобранных в реке Енисей. Результаты расчетов, а также вертикальные профили неравновесного 210 Po и соотношения изотопов европия 154 EU/ 152 EU представлены на рис. 4 и 5.

45 30 30 30 30 30 30 30 30 40 Сме шивание слоев 5 = (0.95 ± 0.10) см/год 0 10 20 30 40 Глубина, см

Рис. 4. Вертикальное распределение неравновесного соотношения изотопов европия ¹⁵⁴Eu/¹⁵²Eu; донные отложения реки Енисей, колонка 1699

Рис. 5. Вертикальное распределение ²¹⁰Ро; донные отложения реки Енисей, колонка 1699

В вертикальном распределении неравновесного 210 Ро различимы два отчетливых спада (см. рис. 4). Они, возможно, явились результатом миграции и последующего перемешивания слоев донных отложений, сформированных в различные промежутки времени. Вследствие этого слой седиментов с низкой активностью (x = 14,5 см) оказался на поверхности слоя с высокой активностью неравновесного $^{2|0}$ Ро (x > 17,5 см). Изменения в процессе аккумуляции донных отложений также, возможно, явились предпосылкой формирования подобной структуры вертикального профиля.

Для проб донных отложений, отобранных с позиции 1699, было рассчитано соотношение радиоизотопов европия $^{154}EU/^{152}EU$ [11]. Его значение изменяется в пределах от 0,11 до 0,23 (рис. 5). Кроме того, экспоненциальный спад соотношения $^{154}EU/^{152}EU$ С глубиной наблюдается только для верхнего (14 см) слоя.

Предположение о процессах миграции и перемешивании отдельных слоев донных отложений (колонка 1699) также подтверждается вертикальным распределением плотности седиментов. В результате анализа вертикальных профилей неравновесного ²¹⁰Ро и радиоизотопов европия ¹⁵⁴Eu/¹⁵²Eu было принято решение оценить скорость седиментации для верхнего слоя донных отложений (0...14 см), где для обеих кривых наблюдается экспоненциальная зависимость от глубины.

Значение скоростей седиментации варьирует от 0.78 ± 0.16 до 0.95 ± 0.10 см/год, для метода соотношения радиоизотопов 154 Eu/ 152 Eu и СІС-модели соответственно. Оба расчетных метода хорошо согласуются, с учетом статистических погрешностей, что служит подтверждением их применимости при оценке скорости седиментации.

В табл. 4 представлены результаты оценки скорости седиментации донных отложений реки Енисей с использованием модели ⁶⁰Co [11], учитывающей процессы диффузии, адвекции, фиксации, радиоактивного распада.

Таблица 4

Сравнительный анализ применения разных методов вычисления скорости седиментации

Скорость седиментации, см/год							
Номер колонки	1699	1799	1899	4101			
Модель ⁶⁰ Со	-	$0,84 \pm 0,17$	-	$2,69 \pm 0,36$			
Еи-отношение	$0,78 \pm 0,16$	$2,85 \pm 0,52$	$1,79 \pm 0,22$	$4,95 \pm 3,63$			
Ри-отношение	-	$1,31 \pm 0,01$	-	-			
210Ро-метод	$0,95 \pm 0,10$	-	$1,80\pm0,50$	2,04 ±0,53			

Результаты, полученные ²¹⁰Ро-методом, хорошо согласуются с результатами, достигнутыми с применением других независимых методик. Следовательно, новый метод определения возраста донных отложений может быть использован с целью определения скорости седиментации и исследования зависимости глубины седиментов от возраста.

Таким образом, при отсутствии процессов постседиментационной миграции методика датирования донных отложений с помощью определения неравновесного ²¹⁰Ро позволяет определять скорость седиментации, а также датировать важные исторические события, происходящие в водных экосистемах.

Выводы. Изучен и усовершенствован метод определения неравновесного ²¹⁰Pb в донных отложениях. Выявлены и изучены факторы, оказывающие влияние на суммарную эффективность определения неравновесного ²¹⁰Pb. Определена оптимальная температура для химического выделения исследуемого радионуклида из образца. Исследовано влияние конкурирующих ионов Te⁴⁺ на процесс адсорбции ²¹⁰Po на неразрушенных фракциях донных отложений.

Предложен новый точный и надежный 210 Ро-метод определения возраста донных отложений с помощью альфа-спектрометрии для использования в условиях, не благоприятных для применения стандартного метода.

Результаты, полученные ²¹⁰Ро-методом, хорошо согласуются с результатами, достигнутыми с применением других независимых методик. Следовательно, новый метод определения возраста донных отложений может быть использован с целью определения скорости седиментации и исследования зависимости глубины седиментов от возраста.

Таким образом, при отсутствии процессов постседиментационной миграции методика датирования донных отложений с помощью определения неравновесного ²¹⁰Ро позволяет определять скорость седиментации, а также датировать важные исторические события, происходящие в водных экосистемах.

ЛИТЕРАТУРА

- 1. Cialova P., Organo L., Vintro L. Sedimentation processes on intertidal areas of the Lagoon of Venece: identification of exceptional flood events using radionuclides. Journal of Coastal Research, special issue 36, 2002. -P. 140 147.
- 2. Goldberg E. Geochronology with ²¹⁰Pb. Proceedings of a Symposium on Radioactive Dating, International Atomic Energy Agency. Vienna, 1963. P. 121-131.
- 3. Kirchner G., Ehlers H. Sediment geochronology in changing coastal environments: potentials and limitations of the ¹³7Cs and ²¹₀Pb methods. Journal of Coastal Research, V. 14, №2.-1998. P. 483 491.
- 4. Smith J.N., Boudreau B.P., Noshkin V. Plutonium and ²¹⁰Pb distributions in northeast Atlantic sediments: subsurface anomalies caused by non-local mixing. Earth and Planetary Science Letters 81,1986. P. 15-28.
- 5. Knoll G. Radiation detection and measurements, 1999.
- 6. Procedures for determination of ^{239,240}Pu, ²⁴¹Am, ²³⁷Np, ²³⁴¹ ²³⁸U, ^{228,230-232}Th, ⁹⁹Th and ²¹⁰Pb-²¹⁰Po in environmental materials. Riso National Laboratory, Roskilde, 2001. P. 27 30.
- 7. Duursma E.K., Carroll J. Environmental compartments, equilibria and assessments of processes between air, water, sediments and biota. Springer-Verlag. Berlin, 1996.
- 8. Appleby P.G., Oldfield F. The calculation of ²¹⁰Po dates assuming a constant rate of supply of unsupported ²¹⁰Po to the sediments. Catena, V. 5, 1 8. Braunscweig, 1978.
- 9. Appleby P.G. Dating recent sediments by ²¹⁰Pb: problems and solutions. STUK-A-145. STUK, Helsinki, 1998.
- 10. Appleby P.G., Oldfield F. The assessment of ²¹⁰Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103, 1983. P. 29 35.
- 11. Spasova Y. Artificial radionuclides in river-sediments: Measurement and modeling of input, vertical distribution and binding to geochemical fractions in the case of the Yenisei River. Weingarten, 2003.
- 12. Klemt E. et al. Radiocaesium im Lago Maggiore. Umweltradioaktivitaet und Strahlendosen in der Schweiz 2003. Bundesamt füer Gesundheit, 2004. P. B.4.4.1 B.4.4.1.