УДК 512.548

РАЗЛОЖЕНИЯ ОБЁРТЫВАЮШЕЙ ГРУППЫ ПОСТА

А.М. ГАЛЬМАК

(Могилёвский государственный университет продовольствия)

Устанавливается связь между разложением n-арной группы A, A по ее A-арной подгруппе B, A и разложением универсальной обертывающей группы Поста A по её подгруппе, изоморфной универсальной обертывающей группе Поста B.

Для всякой *п*-арной группы < A, [] > Пост определил [1] на свободной полугруппе F_A отношение эквивалентности θ_A по правилу: $(\alpha, \beta) \in \theta_A$ тогда и только тогда, когда существуют последовательности γ и δ такие, что $[\gamma\alpha\delta] = [\gamma\beta\delta]$. Для *п*-арной группы < A, [] > Пост определил также универсальную обертывающую группу $A^* = F_A/\theta_A$, выделил в ней нормальную подгруппу

$$A_0 = \{\theta_A(a_1...a_{n-1}) \mid a_1, ..., a_{n-1} \in A\},\$$

которая называется соответствующей для < A, []>, и показал, что

$$A^*/A_0 = \{\theta_A(a)A_0, \theta_A^2(a)A_0, ..., \theta_A^{n-1}(a)A_0 = A_0\}$$

Для всякого подмножества B n-арной группы A, A, A A, A

$$B_{0}(A) = \{\theta_{A}(\alpha) \in A_{0} | \exists b_{1}, ..., b_{n-1} \in B, \alpha \theta_{A} b_{1} ... b_{n-1} \};$$

$$B^*(A) = \{\theta_A(\alpha) \in A^* \mid \exists b_1, ..., b_i \in B(i \ge 1), \alpha \theta_A b_1 ... b_i \}.$$

Ясно, что $B^*(A) \subseteq A^*$, $B_0(A) \subseteq A_0$, в частности $A^*(A) = A^*$, $A_0(A) = A_0$. Если $A_0(A) = A_0$ группа $A_0(A) = A_0(A)$ группа $A_0(A) = A_0(A)$ группа $A_0(A) = A_0(A)$ группа группа группа $A_0(A) = A_0(A)$ группа группа группа $A_0(A) = A_0(A)$ группа групп

Теорема 1. Пусть < B, [] > -n-арная подгруппа n-арной группы < A, [] >. Тогда 1) если

$$A = \bigcup_{i \in I} \left[x_i \underbrace{B \dots B}_{i-1} \right] \tag{1.1}$$

– разложение < A, [] > на непересекающиеся левые смежные классы по < B, [] >, то

$$A^* = \bigcup_{i \in I} \theta_A(x_i)B^*(A) \tag{1.2}$$

- разложение A^* на непересекающиеся левые смежные классы по $B^*(A)$, а отображение

$$[x_i \underbrace{B \dots B}_{r-1}] \to \theta_A(x_i)B^*(A) \tag{1.3}$$

является биекцией множества всех левых смежных классов A, A, A по B, A по B, A по B

2) если (1.2) — разложение A^* на непересекающиеся левые смежные классы по $B^*(A)$, то (1.1) — разложение A, [] > на непересекающиеся левые смежные классы по A, [] >, а отображение

$$\theta_{\mathsf{A}}(x_{\mathsf{i}})B^{*}(A) \to [x_{\mathsf{i}} \underbrace{B \dots B}_{n-1}] \tag{1.4}$$

Доказательство

1. Пусть $\theta_A(a_1 \dots a_k)$ – произвольный элемент из A^* , $k=1,\dots,n-1$. Если зафиксировать $b_1,\dots,b_{k-1}\in B$, то найдется $y\in A$ такой, что

$$\theta_{A}(a_{1} \dots a_{k}) = \theta_{A}(yb_{1} \dots b_{k-1}).$$
 (1.5)

Если $b_k, ..., b_{n-1} \in B$, то

$$[yb_1 \dots b_{k-1}b_k \dots b_{n-1}] \in [x_i \underbrace{B \dots B}_{n-1}]$$

для некоторого $i \in I$, откуда

$$[yb_1 \ldots b_{k-1}b_k \ldots b_{n-1}] = [x_ib_1 \ldots b_{k-1}b_k \ldots b_{n-2}b]$$

для некоторого $b \in B$, тогда

$$\theta_{A}(yb_{1} \dots b_{k-1}b_{k} \dots b_{n-1}) = \theta_{A}(x_{i}b_{1} \dots b_{n-2}b),$$

$$\theta_{A}(yb_{1} \dots b_{k-1})\theta_{A}(b_{k} \dots b_{n-1}) = \theta_{A}(x_{i})\theta_{A}(b_{1} \dots b_{n-2}b),$$

$$\theta_{A}(yb_{1} \dots b_{k-1}) = \theta_{A}(x_{i})\theta_{A}(b_{1} \dots b_{n-2}b)\theta_{A}^{-1}(b_{k} \dots b_{n-1}),$$

$$\theta_{A}(yb_{1} \dots b_{k-1}) \in \theta_{A}(x_{i})B^{*}(A),$$

откуда и из (1.5) следует $\theta_A(a_1 \dots a_k) \in \theta_A(x_i)B^*(A)$. Следовательно,

$$A^* \subseteq \bigcup_{i \in I} \theta_A(x_i)B^*(A).$$

Обратное включение $\bigcup_{i\in I} \theta_{A}(x_{i})B^{*}(A)\subseteq A^{*}$ очевидно.

Таким образом, доказано равенство (1.2).

Предположим, что

$$\theta_A(x_i)B^*(A)\cap\theta_A(x_i)B^*(A)\neq\emptyset$$
, $i\neq j$,

т.е.

$$\theta_A(x_i)\theta_A(c_1 \dots c_k) = \theta_A(x_i)\theta_A(d_1 \dots d_m)$$

для $c_1, ..., c_k, d_1, ..., d_m \in B$, где $k, m \in \{1, ..., n-1\}$. Ясно, что k=m.

Если k = n - 1, то из последнего равенства следует

$$[x_ic_1 \dots c_{n-1}] = [x_id_1 \dots d_{n-1}].$$

Последнее равенство противоречит тому, что (1.1) — разложение A, [] > на непересекающиеся левые смежные классы по B, [] >.

Если k < n - 1, то

$$\theta_{A}(\mathbf{x}_{i})\theta_{A}(c_{1}\ldots c_{k})\theta_{A}(c_{k+1}\ldots c_{n-1}) = \theta_{A}(\mathbf{x}_{i})\theta_{A}(d_{1}\ldots d_{k})\theta_{A}(c_{k+1}\ldots c_{n-1})$$

для любых $c_{k+1}, ..., c_{n-1} \in B$, откуда

$$[x_ic_1 \dots c_{n-1}] = [x_id_1 \dots d_kc_{k+1} \dots c_{n-1}].$$

Последнее равенство противоречит тому, что (1.1) – разложение A, A, A на непересекающиеся левые смежные классы по A, A на непересекающиеся левые смежные классы по A на непересекающиеся левые смежные классы по A

Из доказанного следует, что (1.3) – биекция.

2. Пусть a — произвольный элемент из A. В силу условия $\theta_A(a) \in \theta_A(x_i)B^*(A)$ для некоторого $i \in I$, откуда $a = [x_ib_1 \dots b_{n-1}]$ для некоторых $b_1, \dots, b_{n-1} \in B$, т.е. в действительности $\theta_A(a) \in \theta_A(x_i)B_o(A)$. Следовательно,

$$A \subseteq \bigcup_{i \in I} \left[x_i \underbrace{B \dots B}_{n-1} \right].$$

Обратное включение очевидно:

$$\bigcup_{i\in I} \left[x_i \underbrace{B \dots B}_{n-1}\right] \subseteq A.$$

Таким образом, доказано равенство (1.1).

Если

$$[x_i \underbrace{B \dots B}_{p-1}] \cap [x_j \underbrace{B \dots B}_{p-1}] \neq \emptyset, i \neq j,$$

то

$$\theta_{A}(x_{i})B_{o}(A)\cap\theta_{A}(x_{i})B_{o}(A)\neq\emptyset$$

откуда, учитывая

$$\theta_{A}(x_{i})B_{o}(A) \subseteq \theta_{A}(x_{i})B^{*}(A), \theta_{A}(x_{i})B_{o}(A) \subseteq \theta_{A}(x_{i})B^{*}(A),$$

получаем

$$\theta_{A}(x_{i})B^{*}(A)\cap\theta_{A}(x_{i})B^{*}(A)\neq\emptyset,$$

что противоречит тому, что (1.2) – разложение A^* на непересекающиеся левые смежные классы по $B^*(A)$. Ясно, что (1.4) – биекция. Теорема доказана.

Аналогично теореме 1 доказывается «правая» теорема.

Теорема 2. Пусть $\leq B$, [] > - *n*-арная подгруппа *n*-арной группы $\leq A$, [] >. Тогда: 1) если

$$A = \bigcup_{i \in I} \left[\underbrace{B \dots B}_{n-1} x_i \right] \tag{2.1}$$

– разложение < A, [] > на непересекающиеся правые смежные классы по < B, [] >, то

$$A^* = \bigcup_{i \in I} B^*(A)\theta_A(x_i)$$
 (2.2)

- разложение A^* на непересекающиеся правые смежные классы по $B^*(A)$, а отображение

$$\left[\underbrace{B \dots B}_{n-1} x_{i}\right] \to B^{*}(A)\theta_{A}(x_{i}) \tag{2.3}$$

является биекцией множества всех правых смежных классов A, A, A по B, A по B, A по B

2) если (2.2) — разложение A^* на непересекающиеся правые смежные классы по $B^*(A)$, то (2.1) — разложение A, [] > на непересекающиеся правые смежные классы по A, [] >, а отображение

$$B^*(A)\theta_A(x_i) \to \left[\underbrace{B \dots B}_{n-1} x_i\right] \tag{2.4}$$

является биекцией множества всех правых смежных классов A^* по $B^*(A)$ на множество всех правых смежных классов A^* , A^*

Замечание. Ясно, что отображения (1.3) и (1.4) являются взаимно обратными. То же самое можно сказать об отображениях (2.3) и (2.4).

Из теоремы 1 или 2 вытекает

Следствие 1. Индекс n-арной подгруппы $\leq B$, [] \geq в n-арной группе $\leq A$, [] \geq совпадает с индексом подгруппы $B^*(A)$ в группе A^* : $|A:B|=|A^*:B^*(A)|$.

Если < B, [] > — инвариантная n-арная подгруппа n-арной группы < A, [] >, то по предложению 5.3.14 [2] подгруппа $B^*(A)$ инвариантна в группе A^* , а по предложению 5.3.15 [2] в A^* , а значит и в A_\circ , инвариантна подгруппа $B_\circ(A)$.

Таким образом, в случае инвариантности < B, [] > в < A, [] > можно рассматривать факторгруппы $A^*/B^*(A)$ и $A_0/B_0(A)$.

Теорема 3. Если < B, [] > — инвариантная n-арная подгруппа n-арной группы < A, [] >, то факторгруппы A*/B*(A) и $A_o/B_o(A)$ изоморфны.

Эта теорема анонсирована в [3], при этом явный вид изоморфизма факторгрупп $A^*/B^*(A)$ и $A_o/B_o(A)$ не указан. Для нахождения явного вида изоморфизма из теоремы 3 нам понадобится несколько вспомогательных результатов.

Лемма 1. Пусть < B, [] > - n-арная подгруппа n-арной группы < A, [] >, b_1 , ..., b_{n-2} — фиксированные элементы из B, x, $y \in A$. Тогда следующие равенства равносильны:

1)
$$[x \underbrace{B \dots B}_{n-1}] = [y \underbrace{B \dots B}_{n-1}];$$

2) $\theta_A(x)B^*(A) = \theta_A(y)B^*(A)$;

3)
$$\theta_A(xb_1 \dots b_{n-2})B_o(A) = \theta_A(yb_1 \dots b_{n-2})B_o(A)$$
.

Доказательство

 $1) \Rightarrow 2)$

Так как $x = [x \overline{b} \ \underbrace{b \dots b}_{n-2}] \in [x \underbrace{B \dots B}_{n-1}]$ для любого $b \in B$, то из 1) следует $x = [yc_1 \dots c_{n-1}]$ для некоторых

 $c_1, \ldots, c_{n-1} \in B$.

Тогда

$$\theta_{A}(x)B^{*}(A) = \theta([yc_{1} \ldots c_{n-1}])B^{*}(A) = \theta_{A}(y)\theta_{A}(c_{1} \ldots c_{n-1})B^{*}(A) = \theta_{A}(y)B^{*}(A).$$

$$2) \Rightarrow 3)$$

Так как $\theta_A(x) \in \theta_A(x)B^*(A)$, то из 2) следует $\theta_A(x) = \theta_A(y)\theta_A(d_1 \dots d_i)$ для некоторых $d_1, \dots, d_i \in B$. А так как $x, y \in A$, то в последнем равенстве можно считать i = n - 1, т.е.

$$x = [yd_1 \dots d_{n-1}].$$

В B всегда найдется элемент d такой, что $d_1 \dots d_{n-1}\theta_A b_1 \dots b_{n-2} d$, откуда

$$x = [yd_1 \dots d_{n-1}] = [yb_1 \dots b_{n-2}d].$$

Тогда

$$\theta_{A}(xb_{1} \dots b_{n-2})B_{o}(A) = \theta_{A}([yb_{1} \dots b_{n-2}d]b_{1} \dots b_{n-2})B_{o}(A) =$$

$$= \theta_{A}(yb_{1} \dots b_{n-2})\theta_{A}(db_{1} \dots b_{n-2})B_{o}(A) = \theta_{A}(yb_{1} \dots b_{n-2})B_{o}(A).$$

$$3) \Rightarrow 1)$$

Так как $\theta_A(xb_1 \dots b_{n-2}) \in \theta_A(xb_1 \dots b_{n-2})B_o(A)$, то из 3) следует $\theta_A(xb_1 \dots b_{n-2}) = \theta_A(yb_1 \dots b_{n-2})\theta_A(g_1 \dots g_{n-1})$ для некоторых $g_1, \dots, g_{n-1} \in B$, откуда

$$\theta_{A}(x) = \theta_{A}(yb_{1} \dots b_{n-2})\theta_{A}(g_{1} \dots g_{n-1})\theta_{A}^{-1}(b_{1} \dots b_{n-2}),$$

$$x = [yb_{1} \dots b_{n-2}g_{1} \dots g_{n-1}b],$$

где b – обратный элемент для последовательности $b_1 \dots b_{n-2}$. Ясно, что $b \in B$. Тогда

$$[x\underbrace{B\dots B}_{n-1}]=[[yb_1\dots b_{n-2}g_1\dots g_{n-1}b]\underbrace{B\dots B}_{n-1}]=[y\underbrace{B\dots B}_{n-1}].$$

Лемма доказана.

Аналогично лемме 1 доказывается «правая» лемма.

Лемма 2. Пусть < B, [] > - n-арная подгруппа n-арной группы < A, [] >, b_1 , ..., b_{n-2} — фиксированные элементы из B, x, $y \in A$. Тогда следующие равенства равносильны:

1)
$$\left[\underbrace{B \dots B}_{n-1} x\right] = \left[\underbrace{B \dots B}_{n-1} y\right];$$

- 2) $B^*(A)\theta_A(x) = B^*(A)\theta_A(y)$;
- 3) $B_0(A)\theta_A(b_1 \dots b_{n-2}x) = B_0(A)\theta_A(b_1 \dots b_{n-2}y)$.

Следующие две леммы доказываются аналогично теоремам 1 и 2.

Лемма 3. Пусть < B, [] > - n-арная подгруппа n-арной группы < A, [] >, b_1 , ..., b_{n-2} — фиксированные элементы из B. Тогда:

1) если (1.1) — разложение $\leq A$, [] \geq на непересекающиеся левые смежные классы по $\leq B$, [] \geq , то

$$A_{o} = \bigcup_{i \in I} \theta_{A}(x_{i}b_{1} \dots b_{n-2})B_{o}(A)$$

– разложение A_0 на непересекающиеся левые смежные классы по $B_0(A)$, а отображение

$$[x_i \underbrace{B \dots B}_{n-1}] \to \theta_A(x_i b_1 \dots b_{n-2}) B_o(A)$$

является биекцией множества всех левых смежных классов A, A, A по A, A на множество всех левых смежных классов A, A0 по B0.

Лемма 4. Пусть < B, [] > - n-арная подгруппа n-арной группы < A, [] >, b_1 , ..., b_{n-2} — фиксированные элементы из B. Тогда:

1) если (2.1) – разложение < A, [] > на непересекающиеся правые смежные классы по < B, [] >, то

$$A_0 = \bigcup_{i \in I} B_0(A) \Theta_A(b_1 \dots b_{n-2}x_1)$$

– разложение A_0 на непересекающиеся правые смежные классы по $B_0(A)$, а отображение

$$\left[\underbrace{B \dots B}_{n-1} x_{i}\right] \to B_{o}(A)\theta_{A}(b_{1} \dots b_{n-2}x_{i})$$

Теорема 4. Пусть < B, [] > – инвариантная n-арная подгруппа n-арной группы < A, [] >, b_1 , ..., $b_{n-2} \in B$,

$$A/B = \{ [x_i \underbrace{B \dots B}_{n-1}] \mid i \in I \}.$$

Тогда отображение

$$\varphi: \theta_{A}(x_{i})B^{*}(A) \rightarrow \theta_{A}(x_{i}b_{1} \dots b_{n-2})B_{o}(A)$$

является изоморфизмом группы $A^*/B^*(A)$ на группу $A_o/B_o(A)$.

Доказательство

По теореме 1

$$A^*/B^* = \{\theta_A(x_i)B^*(A) \mid i \in I\},\$$

И

$$\varphi_1: \theta_A(x_i)B^*(A) \to [x_i \underbrace{B \dots B}_{x_i}]$$

– биекция A*/B* на A/B, а по лемме 3

$$A_0/B_0 = \{\theta_A(x_ib_1 \dots b_{n-2})B_0(A) \mid i \in I\}$$

И

$$\varphi_2: [x_i \underbrace{B \dots B}_{n-1}] \to \theta_A(x_i b_1 \dots b_{n-2}) B_o(A)$$

– биекция A/B на A_o/B_o .

Так как $\varphi = \varphi_1 \varphi_2$, то φ — биекция. Кроме того, если $\theta_A(x_i)B^*(A)$, $\theta_A(x_j)B^*(A)$ — произвольные элементы из $A^*/B^*(A)$, то, учитывая инвариантность $B^*(A)$ в A^* , а также то, что $b_1, \ldots, b_{n-2} \in B$, получим

$$\varphi(\theta_{A}(x_{i})B^{*}(A)\theta_{A}(x_{j})B^{*}(A)) = \varphi(\theta_{A}(x_{i})\theta_{A}(x_{j})B^{*}(A)B^{*}(A)) = \varphi(\theta_{A}(x_{i})\theta_{A}(x_{j})B^{*}(A)) =$$

$$= \varphi(\theta_{A}(x_{i})\theta_{A}(x_{j})\theta_{A}(b_{1} \dots b_{n-2})B^{*}(A)) = \varphi(\theta_{A}([x_{i}x_{j}b_{1} \dots b_{n-2}])B^{*}(A)),$$

T.e.

$$\varphi(\theta_{\mathsf{A}}(x_{\mathsf{i}})B^*(A)\theta_{\mathsf{A}}(x_{\mathsf{j}})B^*(A)) = \varphi(\theta_{\mathsf{A}}([x_{\mathsf{i}}x_{\mathsf{j}}b_1 \ldots b_{n-2}])B^*(A)).$$

Так как

$$\theta_{A}([x_{i}x_{j}b_{1} \dots b_{n-2}])B^{*}(A)) = \theta_{A}(x_{k})B^{*}(A)$$

для некоторого $k \in I$, то, используя лемму 1, инвариантность < B, [] > в < A, [] > и инвариантность $B_0(A)$ в A_0 , получим

$$\varphi(\theta_{A}(x_{i})B^{*}(A)\theta_{A}(x_{j})B^{*}(A)) = \varphi(\theta_{A}(x_{k})B^{*}(A)) = \theta_{A}(x_{k}b_{1} \dots b_{n-2})B_{o}(A) = \theta_{A}([x_{i}x_{j}b_{1} \dots b_{n-2}]b_{1} \dots b_{n-2})B_{o}(A) = \theta_{A}(x_{i}b'_{1} \dots b'_{n-2})B_{o}(A) = \theta_{A}(x_{i}b'_{1} \dots b'_{n-2})\theta_{A}(x_{j}b_{1} \dots b_{n-2})B_{o}(A)B_{o}(A) = \theta_{A}(x_{i}b'_{1} \dots b'_{n-2})B_{o}(A)\theta_{A}(x_{j}b_{1} \dots b_{n-2})B_{o}(A) = \theta_{A}(x_{i}b'_{1} \dots b'_{n-2})\theta_{A}(bb'_{1} \dots b'_{n-2})B_{o}(A)\theta_{A}(x_{j}b_{1} \dots b_{n-2})B_{o}(A) = \theta_{A}(x_{i}b_{1} \dots b_{n-2})B_{o}(A)\theta_{A}(x_{j}b_{1} \dots b_{n-2})B_{o}(A) = \theta_{A}(x_{i}b_{1} \dots b_{n-2})B_{o}(A)\theta_{A}(x_{j}b_{1} \dots b_{n-2})B_{o}(A) = \varphi(\theta_{A}(x_{j})B^{*}(A))\varphi(\theta_{A}(x_{j})B^{*}(A)),$$

где $b_1', \ldots, b_{n-2}' \in B, b$ – обратный элемент для последовательности $b_1 \ldots b_{n-2}$. Следовательно, φ – изоморфизм группы A*/B*(A) на группу $A_0/B_0(A)$. Теорема доказана.

Следующая теорема получается с использованием теоремы 2, леммы 2 и леммы 4.

Теорема 5. Пусть < B, [] > - инвариантная n-арная подгруппа n-арной группы < A, [] >, b_1 , ..., $b_{n-2} \in B$,

$$A/B = \{ [x_i \underbrace{B \dots B}_{n-1}] \mid i \in I \}.$$

Тогда отображение

$$\psi: B^*(A)\theta_A(x_i) \to B_o(A)\theta_A(b_1 \dots b_{n-2}x_i)$$

является изоморфизмом группы A*/B*(A) на группу $A_o/B_o(A)$.

ЛИТЕРАТУРА

- 1. Post E.L. Polyadic groups // Trans. Amer. Math. Soc. 1940. Vol. 48, № 2. P. 208 350.
- 2. Гальмак А.М. п-Арные группы. Гомель: ГГУ им. Ф. Скорины, 2003. 196 с.
- 3. Гальмак А.М. Об одном изоморфизме в n-арных группах // Классы групп и алгебр: Междунар. алгебраическая конф.: Тез. докл. Гомель, 2005. С. 56 57.