УДК 621.315

ВРЕМЯ ЖИЗНИ НОСИТЕЛЕЙ ЗАРЯДА В ПЛАСТИНАХ МОНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ С ПЛЕНКАМИ ДИАЗОХИНОН-НОВОЛАЧНОГО ФОТОРЕЗИСТА

канд. физ.-мат. наук, доц. С.А. ВАБИЩЕВИЧ, Н.В. ВАБИЩЕВИЧ, (Полоцкий государственный университет); канд. физ.-мат. наук, доц. В.С. ПРОСОЛОВИЧ, канд. физ.-мат. наук М.И. ТАРАСИК (Белорусский государственный университет, Минск)

Время жизни неравновесных носителей заряда т в пластинах монокристаллического кремния с нанесенными на его поверхность пленками диазохинон-новолачного резиста марок ФП9120 и SPR700 измерялось фазовым методом с применением бесконтактной СВЧ-техники трехсантиметрового диапазона. Установлено, что в центре пластины значения времени жизни несколько выше, чем у края. Поверхностное время жизни t_s было ниже объемного t_v. Длительное хранение приводило к снижению времени жизни, наиболее выраженному в случае t_s. Это связано, предположительно, с накоплением в кремниевой пластине быстродиффундирующих глубоких примесей. Имплантация ионов бора и фосфора приводила к снижению значений t_v, обусловленному нагревом (до ~70 °C) кремниевой пластины в процессе имплантации. Поверхностное время жизни t_s в процессе облучения γ-квантами дозой выше 1 кГр снижается более интенсивно, чем объемное t_v, что, вероятнее всего, связано с обрывом связей Si-O-C на границе раздела фоторезист/кремний.

Ключевые слова: кремний, диазохинон-новолачный резист, время жизни, гамма-облучение.

Введение. Время жизни неравновесных носителей заряда т является одним из важнейших электрофизических параметров, определяющих быстродействие полупроводниковых приборов и регламентируемых межгосударственными стандартами [1]. Исследование рекомбинационных свойств предоставляет существенную информацию при изучении дефектов структуры полупроводниковых материалов и структур.

Литография – один из основных технологических процессов микро- и наноэлектроники [2]. Она многократно повторяется на различных стадиях производства. Так, при формировании элементной базы по БИКМОП технологии применяется до 22 операций фотолитографии [3]. Именно технические параметры литографии, ее производительность и экономичность определяют стоимость изделий электроники и эффективность производства. В качестве масок в процессах субмикронной и нанолитографии современной электроники широко используются позитивные двухкомпонентные фоторезисты на базе светочувствительного хинондиазида и новолачной смолы, используемой в качестве основы, – так называемые ДХН-резисты [2; 3]. Хинондиазид является ингибитором растворения новолачной смолы в 0,1–0,3 М щелочном проявителе и разлагается при облучении излучением видимого диапазона [3]. Для снижения времени жизни в полупроводниковых приборах широко используется облучение γ-квантами.

Учитывая вышеизложенное, целью настоящей работы явилось исследование времени жизни неравновесных носителей в пластинах монокристаллического кремния с нанесенными на его поверхность пленками диазохинон-новолачного резиста марок ФП9120, S1813 и SPR-700, а также влияние на указанный параметр γ-облучения.

Методика эксперимента. Время жизни неравновесных носителей заряда т измерялось фазовым методом с применением бесконтактной СВЧ-техники трехсантиметрового диапазона [4]. Возможность регистрации параметров полупроводников на СВЧ связана с поглощением электромагнитной энергии свободными носителями заряда или поворотом плоскости поляризации волны, вызванным движением свободных носителей заряда. СВЧ-мощность поступает в измерительный узел и поглощается в полупроводников мобразце вследствие образования резонансной системы «измеряемый участок образца – щель волновода». Синусоидально модулированный оптический луч, сфокусированный на участке образца в месте концентрации СВЧ-энергии, изменяет с частотой модуляции степень поглощения СВЧ-мощности на измеряемом участке образца. С помощью детектора выделяется электрический сигнал, подаваемый после усиления на один из каналов фазометра, на второй канал которого подается опорное напряжение с синусоидального генератора питания светодиода.

В этом случае время жизни определялось из соотношения

$$\tau = \frac{tg\Delta\phi}{\omega},$$

где Δφ – угловой сдвиг между фазами фотопроводимости образца, регистрируемой бесконтактно, и светового потока, возбуждающего фотопроводимость;

2021

 $\omega = 2\pi f$,

где *f* – частота модуляции светового потока.

Модуляция светового потока проводилась с помощью низкочастотного генератора сигналов ГЗ -112/1. Угловой сдвиг фаз $\Delta \phi$ регистрировался измерителем разности фаз Ф2-16. При выборе источников оптического возбуждения для измерения времени жизни учитывались следующие обстоятельства: в диапазоне длин волн 360–1000 нм находится окно прозрачности диазохинон-новолачного фоторезиста [5]; край фундаментального поглощения монокристаллического кремния при комнатной температуре ~ 900 нм. Учитывая изложенное выше, для измерения объемного времени жизни τ_v использовался светодиод с длиной волны $\lambda = 950$ нм. Измерение времени жизни τ_s приповерхностного слоя кремния осуществлялось на длине волны $\lambda = 630$ нм.

Пленки диазохинон-новолачного фоторезиста (ФР) марок ФП9120, S1813 и SPR-700 наносились на поверхность монокристаллических пластин кремния марки КЭФ4,5 методом центрифугирования [6]. Толщина пленки резиста h_{nn} определялась скоростью вращения пластины и составляла: 1,0 мкм при скорости вращения v = 8300 об/мин; ~ 1,8 мкм – при v = 2900 об/мин; ~ 2,5 мкм – при v = 1200 об/мин. Пленки толщиной h = 5,0 мкм формировались в две стадии при скорости вращения v = 1800 об/мин на обоих стадиях. Облучение гамма-квантами ⁶⁰Со осуществлялось при комнатной температуре и атмосферном давлении на установке МРХ- γ -25М. Мощность поглощенной дозы составляла 0,12±0,008 Гр/с. Интервал поглощенных доз – от 1 до 300 кГр. Имплантация ионами P⁺ (энергия 100 кэВ) и B⁺ (энергия 60 кэВ) дозой 1×10^{16} см⁻² в режиме постоянного ионного тока (плотность ионного тока 4 мкА/см²) проводилась при комнатной температуре на ионно-лучевом ускорителе «Везувий-6» (остаточный вакуум ~ 10^{-5} Па).

Экспериментальные результаты и их обсуждение. В таблице 1 приведены экспериментальные данные по измерению объемного т_v и поверхностного т_s времен жизни неосновных носителей заряда в пластинах кремния с нанесенными на их поверхность пленками диазохинон-новолачных фоторезистов различных марок. В статье используется терминология в соответствии с межгосударственным стандартом ГОСТ 22622-77. Измерения проводились как со стороны фоторезистивного слоя, так и с обратной (так называемой «нерабочей») стороны. Образцы № 5–8 перед измерениями хранились длительное время (более года), а образцы № 1–4 измерялись не позднее месяца после изготовления.

No	Положение	Manka	Топпина	τ_{ν} , мкс	τ_{ν} , мкс	τ_s , мкс	τ_s , MKC
ofpasua	Положение	ФР	ФР мим	со стороны	с обратной	со стороны	с обратной
ооразца		41	ΨI, MKM	ΦΡ	стороны	ΦΡ	стороны
1	край	ФП9120	1,8	77	69	72	68
	пентр			103	93	96	82
2	край	SPR 700	1,2	95	74	90	71
	центр			101	94	96	81
3	край	SPR 700	1,8	9,0	3,5	8,7	< 1
	центр			11,3	8,7	10,8	< 1
4	край	S1813	1,8	6,1	5,9	< 1	< 1
	центр			7,7	7,1	< 1	< 1
5	край	ФП9120	1,0	14,0	12,9	< 1	< 1
	центр			13,1	13,0	< 1	< 1
6	край	ФП9120	1,8	14,0	13,1	< 1	< 1
	центр			13,1	13,0	< 1	< 1
7	край	ФП0120	2,5	11,1	11,0	< 1	< 1
	центр	ΦΠ9120		12,1	11,8	< 1	< 1
8	край	ФП9120	5,0	9,6	9,6	< 1	< 1
	центр			10,5	9,8	< 1	< 1

Таблица 1. – Объемное т_v и поверхностное т_s времена жизни неосновных носителей заряда в пластине кремния марки КЭФ-4,5 при освещении со стороны фоторезиста и с обратной стороны

В центре пластины значения времени жизни несколько выше. Особенно это заметно для образцов 1 и 2 с высоким временем жизни. Существенной зависимости величин τ_v и τ_s от марки фоторезиста не обнаружено (сравн. образцы 1 и 2 таблицы 1). Толщина пленки фоторезиста также не оказывала заметного влияния на значения времени жизни. Следует отметить, что как объемное τ_v , так и поверхностное τ_s времена жизни при измерении с обратной стороны пластины были несколько ниже, чем при измерении с рабочей стороны с нанесенной пленкой фоторезиста. Вероятнее всего, это обусловлено большей шероховатостью обратной стороны пластины, что приводит к более высокой концентрации дефектов и, соответственно, к снижению времени жизни.

Поверхностное время жизни т_s практически для всех образцов было ниже объемного т_v. Особенно отчетливо это проявлялось при измерении со стороны фоторезиста в образцах № 1 и 2, имеющих высокое время жизни (см. таблицу 1). Это обусловлено тем, что в приповерхностной области концентрация дефектов и примесей с глубокими уровнями существенно выше, чем в объеме полупроводника.

В свежеприготовленных образцах время жизни было несколько выше, чем в хранившихся длительное время. На наш взгляд, снижение измеренных значений времени жизни в длительно хранившихся образцах обусловлено накоплением в кремниевой пластине быстродиффундирующих глубоких примесей. На это указывает то, что поверхностное время жизни τ_s при хранении снижалось до значений ниже предела детектирования применявшейся методики 1 мкс. По нашему мнению, основным параметром, определяющим величины времен жизни τ_v и особенно τ_s , является обработка (очистка) пластин перед нанесением пленки фоторезиста. Об этом свидетельствует сравнение образцов 2 и 3, наиболее наглядно проявившееся при измерении с обратной стороны, на которой не было пленки фоторезиста. С обратной стороны τ_s в этих образцах различались на 2 порядка. Вероятнее всего, это связано с качеством очистки поверхности пластины от загрязнений.

На следующем этапе было исследовано влияние внешних воздействий – ионной имплантации в слой фоторезиста толщиной 5 мкм (таблица 2) и γ -облучения. Отметим, что проецированный пробег ионов бора и фосфора в слое фоторезиста составлял ~ 400 мкм, т.е. ионы заведомо не достигали границы раздела фоторезист/кремний. Небольшое снижение значений τ_{ν} в имплантированных образцах по сравнению с исходным обусловлено, вероятнее всего, влиянием нагрева (до ~ 70 °C) кремниевой пластины в процессе имплантации. Влияние на измерение τ_{ν} карбонизированного в результате ионной имплантации слоя полимера, по-видимому, несущественно, поскольку аналогичные изменения значений времени жизни наблюдались при измерении с обратной стороны пластины, на которой не было пленки фоторезиста.

Таблица 2. – Объемное т_v и поверхностное т_s времена жизни неосновных носителей заряда в пластине кремния марки КЭФ4,5 при освещении со стороны фоторезиста ФП9120 толщиной 5,0 мкм и с обратной стороны пластины. Имплантация дозой 1×10¹⁶ см⁻² осуществлялась со стороны фоторезиста

Обларан	τ _ν , мкс	τ _ν , мкс	τ_s , MKC	τ_s , MKC
Ооразец	со стороны ФР	с обратной стороны	со стороны ФР	с обратной стороны
Исходный	7,0	6,5	< 1	< 1
Имплантированный Р+	4,0	3,9	< 1	< 1
Имплантированный В+	4,9	4,5	< 1	< 1

Высокое время жизни (~100 мкс), пригодное для исследования влияния γ -облучения, имели только образцы, вырезанные с пластин № 1 и 2 (см. таблицу 1). На рисунках 1–3 представлены изменения в процессе γ -облучения обратного времени жизни $\Delta(1/\tau) = 1/\tau_{oбn} - 1/\tau_{нcx}$, где $\tau_{нcx}$ – значения времени жизни в исходных пластинах, $\tau_{oбn}$ – то же после облучения образцов, вырезанных из центра этих пластин. Во всех случаях время жизни неосновных носителей заряда после облучения снижалось, а значения $1/\tau$, соответственно, возрастали. При дозах ~ 2–4 кГр значения $1/\tau_{oбn}$ выходят на насыщение и в дальнейшем изменяются слабо.

На рисунке 1 показано изменение в процессе облучения обратного поверхностного $1/\tau_s$ (линия 1) и объемного $1/\tau_v$ (линия 2) времен жизни при измерении со стороны пленки фоторезиста. Снижение поверхностного времени жизни τ_s при дозах $\Phi \le 1 \, \mathrm{k}\Gamma p$ менее выражено по сравнению с объемным τ_v . Однако при увеличении дозы картина иная. При $\Phi > 1 \, \mathrm{k}\Gamma p$ γ-облучение более интенсивно влияет на величину поверхностного времени жизни – зависимость $\Delta(1/\tau)$ от Φ для поверхностного τ_s лежит выше, чем для объемного времени жизни τ_v для обоих марок фоторезиста (см. рисунок 1). Это указывает на то, что дефектообразование вблизи границы раздела фоторезист/кремний вне зависимости от марки фоторезиста протекает более интенсивно, чем в объеме полупроводника.

Следует также отметить более высокую устойчивость к облучению границы раздела фоторезист/кремний по сравнению с границей раздела воздух/кремний. На рисунках 3, *a*, *б* кривые дозовых зависимостей поверхностного времени жизни $\Delta(1/\tau_s)$, измеренные со стороны фоторезиста, при всех использовавшихся дозах лежат ниже тех же зависимостей, измеренных с обратной стороны пластины (граница раздела воздух/кремний). Марка фоторезиста не оказывала существенного влияния (сравн. рисунок 3, *a* и *б*). Для объемного времени жизни τ_v различия между измерениями со стороны фоторезиста и с обратной стороны пластины слабо выражены для обеих марок фоторезистов (рисунок 2, *a*, *б*). Это свидетельствует о том, что радиационная трансформация пленки диазохинон-новолачных резистов оказывает на измерение времени жизни существенно меньшее влияние, чем процессы у границы раздела фоторезист/кремний.

Объяснить полученные экспериментальные результаты можно, принимая во внимание следующее. В работах [7–9] методами микротвердости и измерения спектров нарушенного полного внутреннего отражения показано, что облучение γ -квантами ⁶⁰Со приводит к снижению адгезии диазохинон-новолачного фоторезиста к кремнию, обусловленному разрывом связей Si–O–C на границе раздела фоторезист/кремний, в результате чего могут образовываться рекомбинационно-активные центры. Указанное обстоятельство может приводить к дополнительному снижению величины поверхностного времени жизни τ_s в процессе облучения [9; 10].

Рисунок 1. – Дозовые зависимости обратного поверхностного 1/τ_s (1) и объемного 1/τ_v (2) времен жизни, измеренных со стороны пленок фоторезиста марок ΦΠ9120 (*a*) и SPR700 (*б*)

Заключение. Таким образом, при исследовании времени жизни неосновных носителей заряда в пластинах кремния с пленками фоторезистов марок ФП9120 и SPR700 установлено, что в центре пластины значения времени жизни несколько выше, чем у края. Поверхностное время жизни τ_s было ниже объемного τ_v . Длительное хранение приводит к снижению времени жизни, наиболее выраженному в случае τ_s . Это связано, предположительно, с накоплением в кремниевой пластине быстродиффундирующих глубоких примесей. Имплантация ионов бора и фосфора приводила к снижению значений τ_v , обусловленному, вероятнее всего, нагревом (до ~ 70 °C) кремниевой пластины в процессе имплантации. Поверхностное время жизни τ_s в процессе облучения γ -квантами дозой выше 1 кГр снижается более интенсивно, чем объемное τ_v , что, вероятнее всего, связано с обрывом связей Si–O–C на границе раздела фоторезист/кремний.

ЛИТЕРАТУРА

- 1. Диоды полупроводниковые. Методы измерения эффективного времени жизни неравновесных носителей заряда : ГОСТ 18986.7-73. М. : Издательство стадартов, 1973. 6 с.
- 2. Моро, У. Микролитография. Принципы, методы, материалы : в 2-х ч. / У. Моро. М. : Мир, 1990. 632 с. Ч. 2.
- 3. Ионная имплантация позитивных фоторезистов / Д.И. Бринкевич [и др.] // Микроэлектроника. 2014. Т. 43, № 3. С. 193–199.
- 4. Бураков, А.В. Бесконтактный измеритель времени жизни неравновесных носителей заряда / А.В.Бураков, С.Н. Якубеня, А.М.Янченко // Приборы и техника эксперимента. 1986. № 4. С. 226.
- 5. Радиационно-стимулированная трансформация спектров отражения пленок диазохинон-новолачного фоторезиста при имплантации ионов сурьмы / А.А. Харченко [и др.] // Поверхность. Рентген., синхротр. и нейтрон. исслед. – 2020. – № 6. – С. 14–18.
- 6. Модификация спектров отражения пленок диазохинон-новолачного фоторезиста при имплантации ионами бора и фосфора / Д.И. Бринкевич [и др.] // Микроэлектроника 2019. Т. 48, № 3. С. 235–239.
- Mechanism of the Adhesive Interaction of Diazoquinone-Novolac Photoresist Films with Monocrystalline Silicon / S.D. Brinkevich [et al.] // J. of Applied Spectroscopy. – 2020. – Vol. 87, № 4. – P. 647–651. – DOI 10.1007/s10812-020-01049-4.
- Физико-механические свойства облученных пленок диазохинон-новолачного фоторезиста на кремнии / С.А. Вабищевич [и др.] // Вестн. Полоц. гос. ун-та. Сер. С, Фундам. науки. – 2020. – № 12. – С. 60–64.
- 9. Radiation-Induced Processes in Diazoquinone–Novolac Resist Films under Irradiation with ⁶⁰Co γ-Rays / S.D. Brinkevich [et al.] // High Energy Chemistry. – 2021. – Vol. 55, № 1. – P. 65–74.
- Адгезионные и прочностные свойства пленок диазохинон-новолачного фоторезиста на кремнии, облученных гаммаквантами / С.А. Вабищевич [и др.] // Материалы и структуры современной электроники : сб. науч. тр. IX Междунар. науч. конф., Минск, 14–16 окт. 2020 г. / Белорус. гос. ун-т ; редкол.: В.Б. Оджаев (отв. ред.) [и др.]. – Минск, 2020. – С. 161–166.

Поступила 18.05.2021

THE LIFETIME OF CHARGE CARRIERS IN PLATES OF SINGLE CRYSTALLINE SILICON WITH FILMS OF A DIAZOQUINON-NOVOLAC PHOTORESIST

S. VABISHCHEVICH, N. VABISHCHEVICH, D. BRINKEVICH, V. PROSOLOVICH, M. TARASIK

The lifetime of nonequilibrium charge carriers τ in monocrystalline silicon wafers with films of diazoquinone-novolac resist FP9120 and SPR700 deposited on its surface was measured by the phase method using contactless microwave technology in the three-centimeter range. It was found that the lifetime values at the center of the plate are slightly higher than at the edge. The surface lifetime τ_s was lower than the bulk lifetime τ_v . Longterm storage led to a decrease in the lifetime, which was most pronounced in the case of τ_s . This is presumably due to the accumulation of fast-diffusing deep impurities in the silicon wafer. The implantation of boron and phosphorus ions led to a decrease in the values of τ_v due to heating (up to ~ 70 °C) of the silicon wafer during implantation. The surface lifetime τ_s during irradiation with γ -quanta with a dose higher than 1 kGy decreases more intensively than the bulk τ_v , which is most likely due to the breaking of Si–O–C bonds at the photoresist/silicon interface.

Keywords: silicon, diazoquinone-novolac resist, lifetime, gamma irradiation.