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Classification of spatial patterns of shaft orbits is studied in this paper. Recent methods of signal pro-

cessing, such as spectral interference frequency refinement method, Mallat scattering transform were tested  

for task of obtaining patterns, informative features extraction and classification. Strong dependence on fluctua-

tions of signal parameters and significant variability of spatial patterns has been discussed. Effectiveness of rank-

ing of patterns using different approaches has been estimated using computational modelling and natural experi-

ments. Preprocessing of signal and informative features has been considered. Approach of discrimination of dif-

ferent misalignment types and severities, based on rate of occurrence of classes of spatial patterns, has been 

proposed, its effectiveness has been demonstrated. 
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Introduction. In normal and various defect states displacement of shaft is periodical process. Measurement 

of trajectory of center of shaft at its end, or shaft orbit, has been used for diagnosing of rotary equipment for a long 

time. Shaft displacement in orthogonal directions carry full information about dynamical forces occurred in rotary 

system [1; 2]: shaft and related plain bearings [3–6], rolling bearings [1], couplings [3–6]. Thus, shaft orbit related with 

machine state unambiguously [2]. It shows processes in system pictorially [2] and is convenient for experienced expert. 

Idea of spatial averaged shaft orbits is close to time synchronous averaging (TSA) [7–9] of signal of vibration for ex-

traction of patterns of signal that are informative features of equipment state. Both methods require synchronization with 

shaft rotation frequency. It can be usually achieved by tachometer. Another approach is to estimate instantaneous shaft 

rotation frequency using vibration signal [10; 11]. Vibration is assumed to be stationary, and temporal or spatial patterns 

can be obtained by averaging of signal frames of length of shaft revolution period. Signals of vibration observed under 

condition of variating speed can be resampled with equiangular step [10; 11] to obtain stationary signals and recover 

spectral, temporal and spatial informative features could be selected by conventional methods. 

To display shaft orbit, let averaged vertical radial displacement be on Y axis and averaged horizontal radial 

displacement be on X axis. This idea is close to idea of Lissajous figures that are images of orthogonal oscillations 

[12; 13]. Unambiguous dependence of figure form on their phase and frequency relations has been shown [13]. 

Under frequency relations ratios of frequencies of present components of signals in the both channels to the fre-

quency of fundamental frequency is understood. Phase relations term means relative values of initial phases of the 

components of signals in both channels as well as phase shift between channels. Fundamental frequency (FF) is 

the first harmonic of the signal, shaft rotation frequency.  

The commonly used method of vibrational diagnosing is analysis of amplitude spectrum of vibrational signal 

and its envelope. Fourier transform (FT), of fast FT (FFT) is the most appropriate method: its implementation using 

modern computational technique is simple, basis functions (sinus and cosine) are correspond to oscillations of real 

mechanical system [14] and impulse response of linear  system, it has high frequency resolution and noise immunity: 

even a component of low power is discriminable at wideband noise or/and harmonic of higher power and close fre-

quency. Amplitudes of harmonics whose frequencies are multiple to FF are selected as informative features. Relations 

of the amplitudes and their growth is related with defect kind and its severity (class of equipment state) [15]. 

Shaft orbit can consider also phase relations (not values of initial phases that are random, but their relations 

[13]), non-synchronous vibration (usually at 0.4…0.5 FF), wideband vibration. Variability, sensitivity to small 

variation of parameters, relations of orbit classes and equipment state classes are studied in this paper. Recognition 

of spatial patterns of shaft orbit of equipment having misalignment has been studied in this paper. The main pur-

pose of the paper is to investigate relations of defect kind as well as its severity with class of pattern, appropriate 

selection of spatial patterns among highly variated and distorted orbits and application of recent methods of signal 

processing for analysis of vibration and images. Classes of patterns described in literature and observed at testbed 

are considered.  The rest of paper is organized as the following: in the Section 2 learning dataset (patterns obtain-

ing) is discussed, the Section 3 describes pattern extraction. Pattern recognition and classification of shaft trajec-

tories is discussed in the Section 4. The last section concludes the paper. 

Dataset. Review of literature sources has showed that relations of shape of orbit and defect is different  

in different sources. Circle (C) [16] or Ellipse (E) [17, 18] orbits may indicate normal state of equipment. El-

liptical [16–18] or close to circle [2] orbits may appear if shaft imbalance is present. Trajectory of misaligned 
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shaft may be elliptical [2] or have more complex form, named “Eight” (8), “Heart” (H) or “Tornado” (T) [16], 

the similar shapes are reported in [4] for various faults. Classes of pattern are often described as what they look 

like (e.g., Tornado, Heart) and what elements they are consist of (e.g., number of loops that may be important 

to explain physical processes, see [3]). We will keep this tradition next. Examples of classes adduced in litera-

ture are presented in table 1. 

Table 1. – Examples of shaft orbits described in different sources 

Class Circle Ellipse Eight Heart Tornado 

Image 

     

Misalignment can be described in two partial cases: 

‒ angular misalignment (figure 1, a) is a state when axes of joined shafts are not parallel; 

‒ parallel misalignment (figure 1, b) is a state when axes of joined shafts are parallel and do not lie on the 

same straight line. 

      

 a   b 

Figure 1. – Types of misalignment [19] 

More generally, both types of misalignment can appear simultaneously, but we don’t discuss this complex 

case. Lack of attention is paid to difference between kinds of misalignment in the papers devoted to studying  

of shaft orbits, despite even amplitude spectrum significantly differs that affects on orbit shape: the second (more 

rarely the third) harmonic grows faster at parallel misalignment rather than at angular misalignment [3; 5]. Sources 

that describe features in amplitude spectrum in detail usually do not pay attention to phase relations, and shaft orbits 

is only feature that experienced expert can analyze to obtain full information. Make unambiguous decision relying 

just on amplitude spectrum is not possible [3; 5]. Axial vibration may be additional source of information [5; 6; 20], 

but it is usually ignored. Growth of axial vibration may indicate misalignment [6; 20], but it is not ambiguous. 

It is important to detect incipient defect and predict remaining resource of equipment. Tracking of ampli-

tude values and their relations [15], statistical characteristics of signal [21] is used to estimate equipment state 

more accurate. Any changing of spatial pattern of shaft orbit may indicate its malfunction [22]. Spatial pattern is 

also developing when severity of the defect increases: shaft orbit is reported to be elliptical at the early stage of 

misalignment and become Eight further [23]. Estimation of defect severity, tracking and prediction of its evolution 

are needed to schedule maintenance of equipment more rationally [21; 23]. Then, we study dependence of spatial 

patterns of shaft orbit on defect kind and its severity using testbed vibration as an example. 

Two datasets of vibration observed at bearing housing of equipment having parallel [24] and angular [25] 

misalignment of different severity were recorded. Each of them contains vibration signals observed under condi-

tions of both kinds of misalignment of different severity in three orthogonal directions: radial vertical (V), radial 

horizontal (H), axial (A). Signals were observed at bearing housing of testbed using three orthogonal accelerome-

ters. Bearing was separated from motor by jaw coupling. Severity and type of misalignment was regulated by 

special apparat that shifted and rotated motor. It is notable that foundation of testbed was not rigid that is not 

typical for industrial equipment.  

Pattern extraction. Traditionally, shaft orbits were obtained using laser (basics), proximity sensors [12; 18]. 

Accuracy of vibration sensors has been increased significantly. In this paper displacement of shaft is proposed  

to be obtained using accelerometers that are mounted in perpendicular directions. Acceleration signal is integrated 

twice to obtain displacement signal. Sensors were mounted on the bearing housing. Vibration contains a lot  

of components of different nature, and the components produced by shaft and its interaction with other elements 

should be selected. Components related with shaft and coupling defects are multiple to FF. Faulty plain bearing 

can produce multiples to FF and its half or 0.1FF in the case of lubrication defects such as oil whirl [26]. Frequen-

cies of the most of components produced by rolling bearing are also multiple to FF [15; 27]. Two controversial 
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conditions must be met: suppression of wideband and harmonic noise and passing all informative wideband  

and narrowband components. For analysis of spatial patterns low frequencies band (0…200 Hz) as well as notch 

filtrated narrow bands may be selected [22]. Harmonic components of vibrational signal at low frequencies are co-

herent with FF [14; 28]. If FF does not variate significantly, energy of components related to shaft is concentrated in 

narrow band. Selection of the components using FT is appropriate [11; 21; 29]. Fourier filtration is a procedure of 

consequent FT of signal, windowing of complex spectrum, applying of inverse FT [29] and can be realized as [11]: 
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where ( )1−F x is inverse FT;  

( )Y f  is one sided spectrum of input signal;  

( )1 2,W f f  is rectangular window.  

The first three harmonics of shaft rotation frequency carry information about presence and severity of both 

kinds of misalignment [3; 5] and should be selected. Shaft rotation frequency was refined for each signal of dataset 

using spectral interference method. The method is used to detect multiple frequencies at mixture of polyharmonic 

signal and wideband and harmonic noise. Shaft speed is estimated with high accuracy (less than 1%), then we can 

select narrow frequency bands of harmonics of FF. The method is used to detect automatically harmonics of FF 

that are prominent enough, are not splitted or leaked and are multiple to FF with high accuracy [11]. Then,  

we select the narrow bands in the vicinity of detected harmonics using Fourier filtration. Hereinafter, we denote 

multiple to FF components of vibration as ( )X 1X, 2X, … ,n  where 1,  2,  = n  is number of harmonic. 

Shaft orbit is generated as Lissajous figure. We can plot filtrated signal of horizontal direction sensor along 

X axis and filtrated signal of vertical direction sensor along Y axis. Obtained figure is smeared and open-ended 

due to residual noise and deviations of frequency, as it has been shown at figure 2 on example of vibration of parallel 

misaligned testbed and in [12]. Signals should be averaged to obtain spatial pattern. Filtrated signals, consisting 

of selected harmonics and negligible residual noise, were averaged in the same manner as it is assumed using TSA 

method [7; 8]. Each of the signals was divided at temporal windows of length of the FF period. Tachometer signal, 

or keyphasor, is usually used to determine moments of full shaft revolution. Here in this paper, we divide the signal 

on equal windows of length of average period of filtrated 1X. It is based on assumptions of high stationarity of the 

signal and high SNR of selected 1X signal. Additionally, orbit images were obtained applying technique to vibra-

tion filtrated in range of 0…200 Hz. The patterns were sustainable in both cases. Trajectories obtained by limitation 

of harmonics number (1X and 2X) were not variated strong in case of angular misalignment depending on its 

severity, but orbits observed under parallel misalignment variated under different defect severity and were not 

similar to angular misalignment results. 

       

 a b c 

a – using low-pass Fourier filtration; b – using selection of 3 narrow band components;  

c – using selection of 2 components 

Figure 2. – Shaft orbit and its average pattern (thick line) obtained in different way 

Pattern recognition. Monitoring of evolution of informative features of defects is highly recommended 

[3; 15; 21; 23] to detect incipient defects, evaluate equipment state more accurate and then minimize maintenance 

costs. Evolution of informative features in frequency domain is well described [3]. Shaft orbits are also depending 

on severity of defect. For example, spatial pattern of misalignment evolves from Ellipse to Eight [23]. Shaft orbit 

may be distorted under various conditions [3]. Variation of shape of shaft trajectory is recommended to be monitored 

depending on variation of speed, load or machine process parameters [22]. Thus, dependence of shaft orbit  

on severity of defect should be considered when classes of shaft orbit are selected. 
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On the basis of literature sources (e.g. [3]) and results of numerical and natural (observed at testbed orbits are 

available [30]) modelling one can reveal, that select classes of patterns relying on similarity of their form unambiguously 

is difficult, e.g., variability of form is discussed in [3]. Number of figures are similar to described in sources classes 

having distortions of different severity (quantitative difference) or another geometry (e.g., degenerated loop, qualitative 

difference). For example, observed at experiment on testbed transient classes of orbits are presented in table 2. 

Table 2. – Examples of distorted and transient classes 

Class 
Transition  

of Ellipse to Eight 

Transition  

of Ellipse to Eight 

Degenerated 

Eight 

Degenerated 

Ellipse 
Distorted Ellipse 

Image 

    
 

Distortions and translations between classes were reproduced numerically. Observed pattern close to transla-

tion class was selected. Three harmonics of FF were discriminated in radial horizontal and vertical channels, average 

amplitudes  , 105.17,  12.92,  2.59 ,=X kA   , 124.19,  7.95,  5.53=Y kA  and initial phases  , 3.07,  0.72,  3.23 , = − −X k
 

 , 0.08,  0.41,  0.12 = −Y k
 were estimated as modulus and angle of analytical signals. Phase of 1X of the second 

channel variated to adjust shape of the pattern to obtain observed interested cases. Results are depicted at figure 3. 

New classes were introduced: Little_loop (figure 3, b) quantitatively differs from Eight (figure 3, a), Leaf (fi-

gure 3, c) qualitatively differs from Eight, the less loop is degenerated) Infusoria (figure 3, d) quantitatively differs 

from Leaf, both classes are transient to Ellipse. 

It is clear that even little fluctuations of parameters of vibration caused by small fluctuations of operating 

mode conditions can lead to significant qualitative or quantitative changes of pattern. Significant influence of these 

changes on classification results has been shown by results of numerical modelling. Classes of patterns introduced 

before were generated. Phase of 1X component variated to produce variety of pattern shape as it has been shown 

at figure 3. Circle and Ellipse (figure 3, e) were generated as result of averaging harmonic signals in both channels 

with different shift. Ellipse_degenerated (figure 3, f) class represents the case when phase shift between channels 

goes to zero. Heart and Tornado classes were reproduced as Lissajous figure of two biharmonic signals. 

To understand how one can rank real patterns for training of classifier, numerical experiment has been 

conducted. The purpose was to test three strategies of classification: ranking of quantitatively different patterns  

as distinct classes, ranking them as the same class, ranking qualitatively different patterns as the same class. Three 

datasets of images were generated. Each class of patterns contained 100 elements. Shape of patterns was variated 

in range has been shown at figure 2. Each of datasets was randomly divided into training (25%) and testing (75%) 

sets, informative features were obtained using Mallat scattering transform (see Appendix A). Classification  

of patterns using Support Vector Machine (see Appendix B) was tested at independent testing set. The first dataset 

contained patterns of different classes that are quantitatively and qualitatively different: Circle, Ellipse, Ellipse_de-

generated, Eights, Little_loop, Leaf, Hearts, Tornado, Infusoria. Other datasets contained classes consists of pat-

terns of distinct classes: elements that have only quantitative differences (Eight and Little_loop, Leaf and Infusoria, 

Ellipse and Ellipse_degenerated), or qualitative differences (Eight and Little_loop and Leaf). Accuracy of classi-

fication in all three cases approached 99% if training set amounted 15% or more of all dataset.  

Learning on incomplete training set has been tested. Training set contained only 15 elements of a few 

classes (Circle, Ellipse, Eights, Hearts, Tornado). Testing set contained 100 elements of the same classes and 

Ellipse_degenerated, Little_loop, Leaf and Infusoria classes generated independently. Quantitatively different 

from Eight class Leaf and Infusoria were classified as Ellipse. As we noted above, signals with close amplitude 

and phase relations can produce dissimilar patterns, similar patterns can be produced by signals even with different 

number of components. Little_loop has been recognized as Eights. Ellipse_degenerated was mostly (77%) classi-

fied as Eights, the rest 23% were classified as Heart despite they have no visible similarity. If we add Leaf class 

to learning set, Infusoria classified Leaf. Little_loop was classified as Eight (78%) or Leaf (22%). Geometric 

similarity of patterns does not guarantee that they will be closer in space of informative features. 

Classification of Additionally, stability of Mallat scattering transform to rotations has been tested. Testing 

set consisted of rotated by 90 degrees patterns of training set. Accuracy of their classification amounted 76%. 

Quantitatively and qualitatively different patterns can be ranked as the same class during training of classifier. 

Even small variation of testing pattern can lead to misclassification. Results of numerical experiments illustrated 

strategy of ranking real patterns for training of classifier. Classes of images should capture variation of patterns  

of the same equipment state and difference of patterns along defect severity increasing. 
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Figure 3. – Introduced numerical modelled classes of patterns.  

Each line is according to phase shift of 1X signed in legend 

Observed at testbed orbits are presented in table 3. Only regular occurred patterns were selected for each 

class. Classifier has been trained on images of orbits in horizontal-vertical (HV) plane. Classification of patterns 

in HV plane, horizontal-axial (HA) and vertical-axial (VA) planes (for vertical parallel misalignment only) has 

been proposed [30]. Patterns of both horizontal and vertical angular misalignment and horizontal parallel misa-

lignment in HV plane were classified successfully. Accuracy of classification of images amounted 92% if number 

of elements of training set was 0.25 of number of all elements (9–15 elements). Number of patterns of angular 

misalignment sets were rated as introduced before classes: Leaf, Eight and Little_loop, and classifier has failed  

to select patterns of these classes from set of real data due to variation of form of orbits, that is consistent with 

numerical experiments. Classes D, H, Glasses and Rhomb contained highly variated patterns. Classes Pretzel2 and 

Distorted_Eight captured small distortions that improved discrimination of equipment state classes. High accuracy 

was achieved after training of classifier on real data. Accuracy of classification of testing set approached 95%. 

Patterns of vertical parallel misalignment were more stable in HA and VA planes depending on severity. 
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Table 3. – Examples of observed at testbed classes of patterns 

Class Pretzel Pretzel2 Worm H Glasses 

Image 

 

 
 

 

 

End of Table 3 

Class Banano D Distorted_Eight H_Vertical parallel1 Rhomb 

Image 

  
 

  

Accuracy of classification of manually ranked patterns was 89% for horizontal angular misalignment set, 

98% for horizontal parallel and only 72% for vertical angular misalignment sets if training set amounted 25%  

of dataset. If images were ranked by classes of equipment state, accuracy significantly decreased and amounted 64%. 

Training set should be the half of dataset to achieve 86% accuracy. Rate of occurrence (estimated by classifier  

and by manual classification proposed in [30]) of each pattern of shaft orbit across each of equipment state class 

is presented at figure 4. Each column is a number of observations of the current defect severity that were classified 

as the current class of orbit divided by total number of observations of the current severity. Severities of the current 

defect are denoted by color of column. Classes were ordered along of X axis in the following way:  

'Banano', 'CIRCLE', 'D', 'Distorted_Eight', 'Eight_angular', 'Ellipse', 'Ellipse_degenerated', 'Glass-

es', 'H', 'H_Vertical parallel1', 'H_Vertical parallel2', 'Hearts', 'Infusoria', 'Leaf_angular',

 'Little_loop__angular', 'Pretzel', 'Tornado', 'Worm', 'Rhomb' (HA plane), 'Pretzel2' (VA plane),  

'Pretzel3' (VA plane).  

 

a, b – horizontal angular misalignment; c, d – horizontal parallel misalignment;  

a, c, – classes detected by SVM; b, d, – manually classified patterns 

Figure 4. – Occurrence rate of each class of pattern across equipment state classes 

(beginning) 
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e, f – vertical angular misalignment; g, h – vertical parallel misalignment;  

e, g – classes detected by SVM; f, h – manually classified patterns 

Figure 4. – Occurrence rate of each class of pattern across equipment state classes 

(end) 

As we can see, classes of patterns are discriminable as well as classes of equipment state. The same classes 
of patterns occurred with different rates in cases of distinct severities of the same defect. It is notable that classifier 
ranks each image, i.e., patterns that were not similar to any class of image were classified too, and results automatic 
classification may be corrupted. Used in this paper library of SVM can be used for estimation of probabilities  
of each class of pattern, then probability threshold can be adjusted to trade-off between reduction of number  
of wrong classified images and missing of potentially right classified images. 

Conclusions. Lissajous figures were used for visual observation of phase relations of modulated signals [13]. 
Occurrence rate of spatial patterns is related with type and severity of defect. But patterns depend strong on fluc-
tuations of amplitudes and phases, variation of conditions of equipment operation. Defining of classes of patterns 
can be complicated. Learning of classifiers on synthesized patterns is not reliable. Reduction of number of in-
formative features is appropriate for automatic signal processing, then expression of amplitude, frequency and 
phase relations of the components of signals of the orthogonal sensors is more preferrable. Phase shifts between 
harmonics of the same signal as well as between signals of distinct sensors can be used. Phase invariant or phase 
quasi-invariant are relative phase measurements called inter-component phase relations (ICPR) that characterize 
phase shift between harmonics of signal caused by influence of wave propagation medium [31]. ICPR can be in-
formative features in various fields [13; 31; 32], it was demonstrated to be effective for discrimination of severity 
of parallel equipment [31]. Analysis of axial vibration is not widely discussed, but amplitude and phase relations 
of axial and radial vibration can be useful to discriminate both types of misalignment and estimate its severity. 
Applied recent methods of signal processing can improve shaft orbit analysis (both automated and manual) as well 
as analysis of amplitude and phase relations of multichannel vibrational signal. 

Appendix A 

Mallat scattering transform. The transform is based on idea of Scattering Network. It consists of a few 
layers. Linear operator is applied at each layer to signal propagated from the previous one. Non-linear operator  
is applied to output data of each layer. It can be interpreted as convolutional neural network, whose filters are 
predefined, but not learned [33; 34]. Combination of both of operators is called propagator. Non-linear operator  
is modulus, wavelet transform is used as a linear operator. As a result, propagator is non-expansive to distortions, 
is invariant to translations and rotation. Wavelet transform at each layer is convolution of input signal with trans-
lated and rotated mother wavelet [35]: 

 2

, ( ) 2 (2 )− −

q q = j j

j p r p . (2) 
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The operator Φ is called nonexpansive if the following condition holds [33; 34]: 

 2 2( , ) ( )∀ ∈ 

df h L  || ( ) ( ) || || ||Φ −Φ ≤ −Hf h f h , (3) 

where ||f|| denotes norm of f in Hilbert space.  
This means that variation of output signal of operator is bounded by diffeomorphism of input signal. Invar-

iant operator to transform ( )Lf x  of function ( )f x  (e.g., translation: ( ) ( )= −cL f x f x c ) is operator that satisfy 

the condition [33]: ( ) ( ).Φ = ΦLf f  Output signal does not depend on transform of input signal. For example, 
modulus of Fourier transform is translation invariant, but is instable to deformations at high frequencies. Wavelet 
transform satisfies condition (2), but is not invariant to translations and rotations. Non-linear operator resolves  
this problem [33]. 

Informative features. Here we used Matlab implementation of Mallat scattering transform [36]. Wavelets 
with three degrees of freedom (translations along both axes and rotation) were used. Default setting of framework 
were applied. Variance of each coefficient was used as informative features [34]. Vector of features was of 701 elements 
length. High accuracy of classification of images of hand-written digits have been demonstrated [34]. 

Appendix B 
Support Vector Machine (SVM). SVM is a linear supervised learning classification algorithm. It requires 

training set of n points: ( ) ( )1 1, ,  ,  , ,… n nX y X y  where iX  is p-dimensional vector of data points, { }1; 1= −iy   
is label that indicate class of the current data vector. The p-dimensional feature space is divided by hyperplane that 
is assigned by its normal vector ω that should be found. It the task can be solved using the following equation: 

 0ω + =T
iX b , (4) 

where superscript T denotes transpose.  
Such classifier can margin only linearly separable data with no observation errors. If elements cannot  

be accurately divided on both side of plane, this leads to optimization problem. If classes are linearly nonseparable, 
so called kernel trick should be used. The approach is to map feature space to another of higher dimensionality, 
where the data can be separated by hyperplane. Finally, the task can be formulated [37]: 

 2
, ,

1
0.5 || || minω ξ

=

ω + ξ →∑
l

i b
i

C  subject to ( ( ) ) 1ω + ≥ − ξϕT
i i iy X b , 0, 1, ,ξ ≥ = …i i l , (5) 

where ( )iXϕ  maps Xi into a higher-dimensional space;  
0>C  is the regularization parameter.  

The decision function is [37]: ( ( ) )= +ϕωTf sign X b . 
In SVM implementation [37], used in this paper, parameters of classifier C and kernel γ are selected auto-

matically using “grid-search” and cross-validation (CV) [38]. In v-fold CV, training set is divided into v subsets. 
One of them is selected for testing, classifier has been trained using all remained. Accuracy of classification  
is compared in each case, the best classifier is selected. This procedure is needed to avoid overfitting problem. 
Accuracy of cross-validated classifiers is compared for each pair of values of C and γ. In this paper we trained  
and tested all classifiers at independent set. Quarter of full dataset is randomly selected and used as training set 
with 5-fold CV (if number of elements is enough). 

Multi-class classification is implemented as “one-against-one” approach. In the case of k classes 
( )1 / 2−k k  binary classifiers are constructed [37]. Each classification is considered to be vote, designated class is 

one having maximum votes [37]. 
Accuracy. Accuracy of binary classification is characterized by four values: true positive (TP), true nega-

tive (TN), false positive (FP, type I error), false negative (FN, type II error). Total accuracy can be expressed in 
various ways. Accuracy (6) is widely used and is estimated in this paper [39]: 

 ( ) ( )Accuracy = TP + TN / TP + TN + FP + FN .  (6) 

Sense of this value is ratio between correctly classified samples and their total number. Overall accuracy 
estimated as mean of accuracies of all classes. 

Preprocessing of data. Preliminary scaling of train and testing data is important for classification tasks 
[38]: it can prevent domination of features in greater numeric ranges and reduce difficulties during calculation.  
All features should be restricted to the similar range. Increasing of accuracy after scaling has been demon-
strated [38]. The similar scaling coefficients should be used for training and testing set [38]. The simplest  
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solution is min-max: subtract minimum value and divide by maximum. The data is restricted to [0; 1] range. 

Standardization can reduce influence of noise and outliers: the feature mean is subtracted from each of them, 

then every feature is divided by its STD. In this paper we used median instead of mean that is additionally 

reduces sensitivity to outliers. 
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АЛГОРИТМ КЛАССИФИКАЦИИ ОРБИТ ВАЛА 

Д.А. КЕЧИК, И.Г. ДАВЫДОВ, И.В. ЛОЩИНИН, К.Д. ЖУКОВСКИЙ 

В настоящей работе рассматривается классификация пространственных шаблонов орбиты вала. 

Опробовано применение современных методов обработки сигналов (метод спектральной интерференции 

и рассеивающее преобразование Малла) в задаче получения пространственных шаблонов, извлечения ин-

формативных признаков и классификации. Рассматривалась сильная зависимость пространственных 

шаблонов от флуктуаций параметров сигнала и непостоянство их формы. Оценивалась эффективность 

классификации пространственных шаблонов при использовании различных подходов в ходе численного 

эксперимента и натурного моделирования. Рассмотрена предобработка сигнала и извлеченных информа-

тивных признаков. Предложен подход к различению типа и степени выраженности расцентровки валов, 

основанный на частоте встречаемости различных классов пространственных шаблонов, показана эф-

фективность подхода. 

Ключевые слова: распознавание образов, частотная область, пространственная область, син-

хронное усреднение, фазовая обработка, вибрационная диагностика, рассеивающее преобразование, 

вейвлет-преобразование, сверточная сеть, машина на опорных векторах. 
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