УДК 512.548

ПОЛИАДИЧЕСКИЕ АНАЛОГИ ЦЕНТРА ГРУППЫ

А.М. ГАЛЬМАК

(Могилевский государственный университет продовольствия)

Определяются и изучаются новые п-арные аналоги центра группы.

Введение. Центр Z(A) n-арной группы A, [] > впервые появился у С.А. Русакова [1, 2] при изучении n-арных групп с центральными рядами. Обобщая результаты С.А. Русакова, В.И. Тютин определил и стал изучать n-арные группы с f-центральными рядами [3], в определении которых присутствует централизатор $C_A(B)$ n-арной подгруппы A, [] > в A-арной группе A, [] >.

Центр С.А. Русакова и централизатор В.И. Тютина являются частными случаями изучающихся в данной работе новых понятий — m-полуцентрализатора CA(B, m) и m-полуцентрализатора типа T TCA(B, m) подмножества $A \in A$ $A \in A$ подмножества $A \in B$ подмножест

$$Z(A) = C_A(A, 2) = TC_A(A, 2), \quad C_A(B) = C_A(B, 2) = TC_A(B, 2).$$

В статье символом (~) обозначается отношение эквивалентности Поста. Для сокращения записей используется также стандартное обозначение

$$a_m^k = \begin{cases} a_m a_{m+1} \dots a_k, & ecnu \ m \le k, \\ \emptyset, & ecnu \ m > k. \end{cases}$$

Для всякого элемента a n-арной группы < A, [] > через @ обозначается операция

$$x@y=[xa_1\ldots a_{n-2}y],$$

где a_1, \ldots, a_{n-2} – обратная последовательность для a.

m-полуцентрализатор типа *T.* Следующее определение обобщает на *n*-арный случай понятие централизатора подмножества в группе.

ОПРЕДЕЛЕНИЕ 1. Если n = k(m-1) + 1, $k \ge 1$, то m-полуцентрализатором типа T подмножества B в n-арной группе A, A называется множество

$$TC_4(B, m) = \{z \in A \mid zx_1 \dots x_{m-1} \sim x_1 \dots x_{m-1}z, \forall x_1, \dots, x_{m-1} \in B\}.$$

Если m = 2, то определение 2-полуцентрализатора типа T совпадает с определением централизатора. n-полуцентрализатор типа T называется полуцентрализатором типа T и обозначается символом $HTC_A(B)$, т.е.

$$HTC_A(B) = \{z \in A \mid [zx_1 \dots x_{n-1}] = [x_1 \dots x_{n-1}z], \forall x_1, \dots, x_{n-1} \in B\}.$$

Если в определении 1 положить A = B, то получим определение m-полущентра типа T n-арной группы $\leq A$, $\{ \} \geq :$

$$TZ(A, m) = \{z \in A \mid zx_1 \dots x_{m-1} \sim x_1 \dots x_{m-1}z, \forall x_1, \dots, x_{m-1} \in A\}.$$

2-полуцентр *ТZ(A*, 2) типа Т совпадает с центром.

n-полуцентр типа T называется полуцентром типа T и обозначается символом HTZ(A), т.е. TZ(A,n) = HTZ(A). Таким образом,

$$HTZ(A) = \{z \in A \mid [zx_1 \dots x_{n-1}] = [x_1 \dots x_{n-1}z], \forall x_1, \dots, x_{n-1} \in A\}.$$

Имеет место очевидное

ПРЕДЛОЖЕНИЕ 1. n-арная группа < A, [] > удовлетворяет тождеству

$$[xx_1 \ldots x_{m-1}] = [x_1 \ldots x_{m-1}x]$$

тогда и только тогда, когда HTZ(A) = A.

ТЕОРЕМА 1. Пусть < A, [] > + n-арная группа, B ⊆ A. Тогда:

- 1) если m-1 делит n-1, $TC_A(B, m) \neq \emptyset$, то $\leq TC_A(B, m)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq , в частности, $\leq HTC_A(B)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq ;
 - 2) если k-1 делят n-1, m-1 делит k-1, то $TC_A(B, m) \subseteq TC_A(B, k)$;
 - 3) если m-1 и k-1 делят n-1, r-1=(m-1, k-1), то $TC_A(B, r)=TC_A(B, m)\cap TC_A(B, k)$;
 - 4) если m-1 делит n-1, r-1=(m-1, n-1), то $TC_A(B, r)=TC_A(B, m)\cap HTC_A(B)$;

5) если m-1 и k-1 делят n-1, (m-1, k-1)=1, то $C_A(B)=TC_A(B, m)\cap TC_A(B, k)$;

6) если m-1 делит n-1, (m-1, m-1) = 1, то $C_4(B) = TC_4(B, m) \cap HTC_4(B)$.

Доказательство

1) если $z_1, ..., z_n \in TC_A(B, m)$, то из определения 1 следует

$$[z_1 \ldots z_n]x_1 \ldots x_{m-1} \sim x_1 \ldots x_{m-1}[z_1 \ldots z_n]$$

для любых $x_1, ..., x_{m-1} \in B$. Следовательно, $[z_1...z_n] \in TC_A(B, m)$.

Если теперь $z \in TC_A(B, m)$, то, учитывая нейтральность последовательностей $\underbrace{z \dots z}_{n-2} \ \overline{z} \ n \ \overline{z} \ \underline{z \dots z}_{p-2}$,

получим

$$\overline{z} z x_1 \dots x_{m-1} \sim x_1 \dots x_{m-1} z,$$

$$\overline{z} z x_1 \dots x_{m-1} \underbrace{z \dots z}_{n-3} \overline{z} \sim \overline{z} x_1, \dots, x_{m-1} \underbrace{z \dots z}_{n-3} \overline{z},$$

$$\overline{z} x_1 \dots x_{m-1} \underbrace{z \dots z}_{n-3} \overline{z} \sim \overline{z} \underbrace{z \dots z}_{n-3} x_1 \dots x_{m-1} \overline{z},$$

$$\overline{z} x_1 \dots x_{m-1} \sim x_1 \dots x_{m-1} \overline{z}.$$

для любых $x_1, ..., x_{m-1} \in B$. Следовательно, $\overline{z} \in TC_A(B, m)$. Согласно критерию Дернте, $\leq TC_A(B, m)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq ;

2) так как k-1 = t(m-1) для некоторого целого t, то из $z \in TC_A(B, m)$ следует

$$zx_1...x_{k-1} = zx_1...x_{t(m-1)} = zx_1...x_{t(m-1)} = zx_1...x_{t(m-1)} \sim x_1...x_{t(m-1)} \sim x_1...x_{t(m-1)} \sim ... \sim x_1...x_{t(m-1)} = x_1...x_{k-1}z$$

т.e.

$$zx_1...x_{k+1} \sim x_1...x_{k+1}z$$

для любых $x_1,...,x_{k+1} \in B$. Следовательно, $z \in TC_A(B,k)$ и верно включение

$$TC_A(B, m) \subset TC_A(B, k);$$

3) включение

$$TC_A(B, r) \subseteq TC_A(B, m) \cap TC_A(B, k)$$
 (1)

следует из пункта 2 доказательства.

Так как r-1=(m-1,k-1), то существуют целые числа α и β такие, что

$$\alpha(m-1) + \beta(k-1) + r - 1$$
.

Пусть для определенности $\alpha > 0$, $\beta < 0$, т.е.

$$\alpha(m-1) = -\beta(k-1) + (r-1), -\beta(k-1) \ge 0.$$

Если

$$z \in TC_A(B, m) \cap TC_A(B, k), x_1, ..., x_{c(m-1)} \in B,$$

TO

 $zx_1...x_{r-1}x_r...x_{-\beta(k-1)+r-1}=zx_1...x_{\alpha(m-1)}\sim x_{\alpha(m-1)}z=x_1...x_{r-1}x_r...x_{-\beta(k-1)+r-1}z\sim x_1...x_{r-1}zx_r...x_{-\beta(k-1)+r-1}z\sim x_1...x_{r-1}zx_r...x_{-\beta(k-1)+r-1}z\sim x_1...x_{-\beta(k-1)+r-1}z\sim x_1...x_{-\beta(k-1)$

откуда следует

$$zx_1...x_{r-1} \sim x_1...x_{r-1}z$$
.

Следовательно, $z \in TC_A(B, r)$ и доказано включение

$$TC_A(B, m) \cap TC_A(B, k) \subseteq TC_A(B, r).$$
 (2)

Из (1) и (2) следует требуемое равенство;

- 4) следует из 3 при k = n, так как $TC_A(B, n) = HTC_A(B)$;
- 5) следует из 3 при r = 2, так как $TC_A(B, 2) = C_A(B)$;
- 6) следует из 4 и 5. Теорема доказана.

СЛЕДСТВИЕ 1. Пусть < A, [] > - n-арная группа. Тогда:

- 1) если m-1 делит n-1, $TZ(A, m) \neq \emptyset$, то $\leq TZ(A, m)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq , в частности, $\leq HTZ(A)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq ;
 - 2) если k-1 делит n-1, m-1 делит k-1, то $TZ(A, m) \subseteq TZ(A, k)$;

- 3) если m-1 и k-1 делят m-1, r-1=(m-1, n-1), то $TZ(A, r)=TZ(A, m)\cap TZ(A, k)$;
- 4) если m-1 делит n-1, r-1=(m-1,n-1), то $TZ(A,r)=TZ(A,m)\cap HTZ(A)$;
- 5) если m-1 и k-1 делят n-1, (m-1, k-1)=1, то $Z(A)=TZ(A, m)\cap TZ(A, k)$;
- 6) если m-1 делит n-1, (m-1, n-1)=1, то $Z(A)=TZ(A, m)\cap HTZ(A)$.

ти-полуцентрализатор. Возможно еще одно *п-*арное обобщение централизатора подмножества в группе.

ОПРЕДЕЛЕНИЕ 2. m-Полуцентрализатором подмножества B в n-арной группе $\leq A$, $\{\ \}$ >, где $n=k(m-1)+1, \ k\geq 1$, называется множество

$$C_A(B, m) = \{z \in A \mid z \mid x_1^{m-2} \mid x \sim x \mid x_1^{m-2} \mid z, \forall x, x_1, \dots, x_{m-2} \in B\}.$$

При m=2 определение 2-полуцентрализатора совпадает с определениями 2-полуцентрализатора типа T и централизатора.

n-Полуцентрализатор называется полуцентрализатором и обозначается символом $HC_A(B)$, т.е. $HC_A(B) = C_A(B, n)$.

Ясно, что

$$HC_A(B) = \{z \in A \mid [z x_1^{n-2} x] = [x x_1^{n-2} z], \forall x, x_1, ..., x_{n-2} \in B\}.$$

Если в определении 2 положить A = B, то получим определение m-полуцентра n-арной группы $\leq A$, [] \geq :

$$Z(A, m) = \{z \in A \mid z \mid x_1^{m-2} \mid x \sim x \mid x_1^{m-2} \mid z, \forall x, x_1, \dots, x_{m-2} \in A\}.$$

2-Полуцентр Z(A, 2) совпадает с 2-полуцентром типа T и полуцентром.

n-Полуцентр называется полуцентром и обозначается символом HZ(A), т.е. Z(A, n) = HZ(A). Таким образом,

$$HZ(A) = \{z \in A \mid [z x_1^{n-2} x] = [x x_1^{n-2} z], \forall x, x_1, ..., x_{n-2} \in A\}.$$

Следующее предложение является следствием определений.

Абелевы и полуабелевы п-арные группы, введенные Дернте в [4], являются частными случаями *т*-полуабелевых *п*-арных групп Поста [5].

Следующую теорему приведем без доказательства. Отметим только, что присутствующее в ее формулировке определение *m*-полунормализатора имеется в [6].

ТЕОРЕМА 2. Пусть $\leq A$, [] $\geq -n$ -арная группа, n = k(m-1)+1, $k \geq 1$, $B \subseteq A$. Тогда, если $C_A(B, m) \neq \emptyset$, то $\leq C_A(B, m)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq , лежаща, в ее m-полунормализаторе $N_A(B, m)$.

СЛЕДСТВИЕ 2. Если $\leq A$, [] $\geq -n$ -арная группа, $B \subseteq A$, то $\leq C_A(B)$, [] $\geq n \leq HC_A(B)$, [] $\geq -n$ -арные подгруппы в $\leq A$, [] \geq , причем $C_A(B) \subseteq N_A(B)$, $HC_A(B) \subseteq HN_A(B)$.

Заметим, что утверждение следствия 2 о том, что $< C_A(B)$, [] > -n-арная подгруппа в < A, [] >, до-казано в [3] для случая, когда < B, [] > -n-арная подгруппа в < A, [] >.

Известно, что все единицы *n*-арной группы лежат в ее центре. Покажем, что полуцентр *n*-арной группы, в отличие от её центра, может не содержать единицы этой *n*-арной группы.

$$yx = e \underbrace{e \dots e}_{n-3} yx = [e \underbrace{e \dots e}_{n-3} yx] \neq [x \underbrace{e \dots e}_{n-3} ye] = x \underbrace{e \dots e}_{y-3} ye - xy.$$

Следовательно, элемент e, являющийся единицей в A, A, A, не лежит в её полуцентре.

Таким образом, в данном случае $C_A(B, 2) = C_A(B) \not\subset HC_A(B) = C_A(B, n)$. Следовательно, для m-полуцентрализаторов в общем случае не верны аналоги утверждений 2-6 теоремы 1.

 (Σ, m) -полуцентрализатор. m-полуцентрализаторы и m-полуцентрализаторы типа T можно объединить в рамках общего понятия.

ОПРЕДЕЛЕНИЕ 3. Пусть $\leq A$, $[\] \geq -n$ -арная группа, $B \subseteq A$, m-1 делит n-1, $\sum -$ подмножество множества S_{m-1} всех подстановок на m-1 символах. (\sum, m) -полуцентрализатором подмножества B в $\leq A$, $[\] \geq$ называется множество

$$C_A(B, \sum, m) = \{z \in A \mid zx_1 \dots x_{m-1} \sim x_{\sigma(1)} \dots x_{\sigma(m-1)}z, \ \forall x_1, \dots, x_{m-1} \in B, \ \forall \ \sigma \in \Sigma\}.$$

Частными случаями (\sum_{i} *m*)-полуцентрализатора являются понятия:

 Σ -нолуцентрализатора $HC_A(B, \Sigma) = C_A(B, \Sigma, n)$;

 (Σ, m) -полуцентра $Z(A, \Sigma, m) = C_A(A, \Sigma, m)$;

 Σ -полуцентра HZ(A, Σ) = $Z(A, \Sigma, n)$.

Если в определении 3 положить $\Sigma = \{\sigma\}$, то $(\{\sigma\}, m)$ -полуцентрализатор называется (σ, m) -нолуцентрализатором и обозначается символом $C_A(B, \sigma, m)$.

Аналогично определяются σ -полуцентрализатор $HC_A(B, \sigma)$, (σ, m) -полуцентр $Z(A, \sigma, m)$ и σ -полуцентр $HZ(A, \sigma)$.

Если $\tau = (m-1 \ m-2 \ ... \ 21)$, то определение (τ, m) -полуцентрализатора совпадает с определением m-полуцентрализатора.

Если же ε – тождественная подстановка на m-1 символах, то определение (ε , m)-полуцентрализатора совпадает с определением m-полуцентрализатора типа T.

Так как $\tau^m = \tau$, $\varepsilon^m = \varepsilon$, то в связи с теоремами 1 и 2 закономерен.

ВОПРОС 1. Если $\sigma^m = \sigma$, то будет ли (σ, m) -полуцентрализатор $C_A(B, \sigma, m)$ n-арной подгруппой в < A, [] >?

Следующий вопрос связан с тем, что $\{\varepsilon\}$ – подгруппа в симметрической группе S_{m-1} .

ВОПРОС 2. Если Σ – подгруппа в симметрической группе S_{m-1} , то будет ли (Σ, m) -полуцентрализатор $C_4(B, \Sigma, m)$ n-арной подгруппой в $\leq A$, $[\cdot] \geq ?$

Еще один вопрос связан с тем, что $<\{\tau\}$, [] > и $<\{\varepsilon\}$, [] > — m-арные подгруппы в m-арной группе $< S_{m-1}$, () >, производной от симметрической группы S_{m-1} .

ВОПРОС 3. Если $\leq \Sigma$, () $\geq -m$ -арная подгруппа в m-арной группе $\leq S_{m-1}$, () \geq , где

$$(\sigma_1 \ldots \sigma_m) = \sigma_1 \ldots \sigma_m$$

то будет ли (Σ, m) -полуцентрализатор $C_A(B, \Sigma, m)$ n-арной подгруппой в A, A, A

Понятно, что при положительном ответе на вопрос 3, положительными будут и ответы на вопросы 1 и 2.

Слабый т-полуцентрализатор. Определим еще один *n*-арный аналог централизатора подмножества в группе.

ОПРЕДЕЛЕНИЕ 4. Если n = k(m-1) + 1, $k \ge 1$, то слабым m-нолуцентрализатором (m-нолуцентрализатором типа D) подмножества B в n-арной группе $\{A, []\}$ называется множество

$$DC_A(B, m) = \{z \in A \mid z \underbrace{x \dots x}_{m-1} \sim \underbrace{x \dots x}_{m-1} z, \forall x \in B\}.$$

Частными случаями слабого т-полуцентрализатора являются понятия:

слабого полуцентрализатора $HDC_A(B) = DC_A(B, n)$;

слабого m-полуцентра $DZ(A, m) = DC_A(A, n)$;

слабого полуцентра HDZ(A) = DZ(A, n).

Ясно, что:

- 1) $C_A(B, m) \subseteq DC_A(B, m)$;
- 2) $TC_A(B, m) \subseteq DC_A(B, m)$;
- 3) $TC_A(B, 2) = DC_A(B, 2) = C_A(B, 2) = C_A(B);$
- 4) TZ(A, 2) = DZ(A, 2) = Z(A, 2) = Z(A);
- 5) $HTZ(A) \subseteq HDZ(A)$;
- 6) $TC_A(a, m) = DC_A(a, m) = C_A(a, m);$
- 7) $HTC_A(a) = HDC_A(a) = HC_A(a)$.

В [7] В. Дудек для всякого элемента a n-арной группы A, A, A

$${x \in A \mid [x \underbrace{a \dots a}_{n-1}] = [\underbrace{a \dots a}_{n-1} x]},$$

ТЕОРЕМА 3 [7]. Пусть < A, [] > -n-арная группа. Тогда:

- 1) $HC_A(a)$ совпадает с централизатором элемента a в группе < A, $(\bar{a}) >: HC_A(a) = C < A$, $(\bar{a}) > (a)$;
- 2) $< HC_A(a)$, [] > n-арная подгруппа в < A, [] >;
- 3) < A, { } > слабо полуабелева тогда и только тогда, когда $HC_A(a) = A$ для любого $a \in A$.

Слабо m-полуабелевы n-арные группы, в частности слабо полуабелевы n-арные группы, определены автором в [8].

Отметим, что утверждение 2 настоящей теоремы является следствием теоремы 2.

Имеет место очевидное

ПРЕДЛОЖЕНИЕ 3. Если < A, [] > - n-арная группа, $a \in A$, то $DZ(A, m) = \bigcap_{a \in A} C_A(a, m)$. В частности, $HDZ(A) = \bigcap_{a \in A} HC_A(a)$.

Теперь утверждение 3 теоремы 3 может быть сформулировано иначе.

ПРЕДЛОЖЕНИЕ 4. n-арная группа A, [] > является слабо полуабелевой тогда и только тогда, когда A A.

Следующая теорема доказывается аналогично теореме 1.

ТЕОРЕМА 4. Пусть $\leq A$, [] $\geq -n$ -арная группа, $B \subseteq A$. Тогда:

- 1) если m-1 делит n-1 и $DC_A(B, m) \neq \emptyset$, то $\leq DC_A(B, m)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq , в частности, $\leq HDC_A(B)$, [] $\geq -n$ -арная подгруппа в \leq A, [] \geq ;
 - 2) если k-1 делят n-1, m-1 делит k-1, то $DC_A(B, m) \subseteq DC_A(B, k)$;
 - 3) если m-1 и k-1 делят n-1, r-1=(m-1,k-1), то $DC_A(B,r)=DC_A(B,m)\cap DC_A(B,k)$;
 - 4) если m-1 делит n-1, r-1=(m-1,n-1), то $DC_A(B,r)=DC_A(B,m)\cap HDC_A(B)$;
 - 5) если m-1 и k-1 делят n-1, (m-1, k-1)=1, то $C_A(B)=DC_A(B, m)\cap DC_A(B, k)$;
 - 6) если m-1 делит n-1, (m-1, n-1)=1, то $C_A(B)=DC_A(B, m)\cap HDC_A(B)$.

СЛЕДСТВИЕ 3. Пусть < A, [] > - n-арная группа. Тогда:

- 1) если m-1 делит n-1, $DZ(A, m) \neq \emptyset$, то $\leq DZ(A, m)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq , в частности, $\leq HDZ(A)$, [] $\geq -n$ -арная подгруппа в $\leq A$, [] \geq ;
 - 2) если k-1 делит n-1, m-1 делит k-1, то $DZ(A, m) \subseteq DZ(A, k)$;
 - 3) если m-1 и k-1 делят n-1, r-1=(m-1,n-1), то $DZ(A,r)=DZ(A,m)\cap DZ(A,k)$;
 - 4) если m-1 делит n-1, r-1=(m-1, n-1), то $DZ(A, r)=DZ(A, m)\cap HDZ(A)$;
 - 5) если m-1 и k-1 делят n-1, (m-1, k-1)=1, то $Z(A)=DZ(A, m)\cap DZ(A, k)$;
 - 6) если m-1 делит n-1, (m-1, n-1)=1, то $Z(A)=DZ(A, m)\cap IIDZ(A)$.

ЛИТЕРАТУРА

- 1. Русаков С.А. К теории нильпотентных n-арных групп // Конечные группы. Мн.: Навука і тэхніка. 1978.-С. 104 130.
- 2. Русаков С.А. Алгебраические п-арные системы. Мн.: Навука і тэхніка, 1992. 245 с.
- 3. Тютин В.И. п-Арные группы с f-центральными рядами // Вопросы алгебры. Вып. 3. 1987. С, 97 116.
- Dbrnte W. Untersuchungen liber einen verallgemeinerten Gruppenbegrieff // Math. Z. 1928. Bd. 29. S. 1 19.
- 5. Post E.L. Polyadic groups // Trans. Amer. Math. Soc. 1940. Vol. 48, № 2, P 208 350.
- 6. Гальмак А.М. Конгруэнции полиадических групп. Мн.: Беларуская навука, 1999. 196 с.
- 7. Dudek W.A. On the class of weakly semiabelian polyadic groups // Discrete Math. Appl. 1996. Voi. 6, № 5. P. 427-433.
- 8. Гальмак А.М. Абелевы n-арные группы и их обобщения // Вопросы алгебры. Вып. 3. Мн.: Университетское, 1987. С. 86 93.