УДК 624.012.45:539.415

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СОПРОТИВЛЕНИЯ СРЕЗУ САМОНАПРЯЖЕННЫХ БЕТОННЫХ БАЛОК, АРМИРОВАННЫХ FRP ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ НАГРУЖЕНИЯ

А.П. ВОРОБЕЙ, д-р техн. наук, проф. В.В. ТУР (Брестский государственный технический университет)

В данной статье представлены результаты экспериментальных исследований сопротивления срезу самонапряженных бетонных балочных элементов, армированных как FRP стержнями, так и традиционным способом (стальной арматурой). Выявлены отличительные особенности, оказывающие влияние на траекторию развития наклонных трещин, их ширину раскрытия, а также на напряженно-деформированное состояние при различных типах армирования (FRP и стальное армирование), уровнях самонапряжения бетона и условий нагружения (при действии равномерно распределенной нагрузки и сосредоточенных сил).

Ключевые слова: сопротивление срезу, балочные элементы, самонапряженный бетон, FRP стержни, равномерно распределенная нагрузка, сосредоточенные силы, трещинообразование, наклонные трещины.

Введение. На настоящее время в Республике Беларусь, как и во многих странах мира, в нормативных документах по проектированию железобетонных конструкций и элементов не представлены разделы, связанные с применением неметаллической арматуры. В связи с этим возникает вопрос о возможности использования расчетных моделей (в том числе и моделей сопротивления срезу), разработанных для элементов со стальным армированием, к элементам, армированным стержнями из полимерных композитов (FRP).

В научной литературе представлено довольно большое число публикаций, содержащих описание результатов экспериментальных исследований сопротивления срезу элементов с неметаллической продольной арматурой, нагруженных сосредоточенными силами. Однако отсутствуют работы, в которых исследовалось бы влияние равномерно-распределенного нагружения на балочные элементы с таким армированием. Данное допущение нельзя игнорировать, так как при действии равномерно-распределенной нагрузки существенно меняется поведение плоско-напряженных элементов. Расчетная модель сопротивления срезу, представленная в нормативных документах, должна соответствовать (что будет методически правильно) всем возможным расчетным схемам нагружения, независимо от вида армирования.

Особенности основных деформационных и прочностных характеристик полимерных композитов (главным образом, низкий модуль упругости и отсутствие пластической ветви диаграммы деформирования) оказывают существенное влияние при проверках предельных состояний как эксплуатационной пригодности, так и несущей способности. Для повышения эксплуатационных характеристик элементов, армированных стержнями из полимерных композитов, было предложено в работах [1–3] выполнять их предварительное натяжение физико-химическим способом при использовании напрягающего бетона. Предварительное натяжение стержней из полимерных композитов позволяет повысить трещиностойкость и жесткостные характеристики элемента, тем самым повысив эффективность работы армирующих стержней. Однако до сих пор не исследовано влияние самонапряжения бетона в элементах, армированных FRP стержнями, на сопротивление срезу при совместном действии изгибающих моментов и поперечных сил.

Принимая во внимание все названные факторы, были проведены экспериментальные исследования балочных элементов на напрягающем и обычном бетоне для различных типов армирования и условий нагружения. Данные исследования позволят выявить отличительные особенности, оказывающие влияние на сопротивление срезу балочных элементов, при различных типах армирования, уровнях самонапряжения бетона и условиях нагружения.

Экспериментальные исследования. Опытные образцы. Для исследования влияния величины самонапряжения бетонных элементов с несимметричным расположением ограничивающих связей на сопротивление срезу были использованы бетонные балки с размерами поперечного сечения 120×300 мм и длиной 3000 мм. В качестве ограничивающих связей были приняты стержни из полимерных композитов Ø10 (стеклопластиковые (GFRP) и углепластиковые (CFRP) стержни) и стальная арматура Ø12 (S500), которые были расположены несимметрично по длине балки. Геометрические размеры и конструкция каркасов представлены на рисунке 1. В ходе экспериментального исследования были применены напрягающие бетоны с различной энергоактивностью и бетон на портландцементе (серии VI и VIII).

Всего было изготовлено 8 серий опытных балок (по 2 балки в каждой серии). Программа экспериментальных исследований представлена в таблице 1.

Опытные балки распалубливали при средней прочности при сжатии 11 МПа, после чего погружали в бассейн с водой (кроме балок серии VI и VIII), где они хранились 28 суток либо до момента стабилизации процесса расширения напрягающего бетона.

Рисунок 1. – Геометрические размеры и схема армирования балок

Таблица 1. – Программа испытаний

	Геометрические Услов		Vелория	Армирование				
Серия	Обозначение балок	размер	оы, мм	хранения				
		$b \times h$	l	хринения	Кол-во	A_{frp} , MM ²	ρι, %	
т	БІ-1СД18				2010 CEDD	142.5	0.44	
1	БІ-2СД18				2010 OFKF	142,5	0,44	
п	БІІ-3СД12				2Ø10 GFRP	142,5	0,44	
11	БІІ-4УД12				Ø10 CFRP	73,9	0,23	
ш	БШ-6СтД15			Dominio	2012 5500	226.2	0.70	
111	БШ-6СтД15			водные	2012 5500	220,2	0,70	
W	БІV-7СтС16,5	БІV-7СтС16,5		2012 5500	226.2	0.70		
IV	БІV-8СтС16,5	120^300	20×300 - 3000		2012 5500	220,2	0,70	
V	БУ-9СС16,5				2010 CEPD*	142.5	0.44	
v	БУ-10СС16,5				2010 GFRP*	142,3	0,44	
VI	БVІ-11СтПЦ			Cumura	2Ø12 S500	226,2	0,70	
V I	БVІ-12СПЦ			Сухие	2Ø10 GFRP*	142,5	0,44	
VII	БVII-13СС16,5			D	2Ø10 GFRP*	142,5	0,44	
VII	БVII-14СтС16,5			Водные	2Ø12 S500	226,2	0,70	
VIII	БVІІІ-15СПЦ	120×200	2000	Crimina	2Ø10 GFRP*	142,5	0,44	
VIII	БVІІІ-16СтПЦ	120×300	5000	Сухие	2Ø12 S500	226,2	0,70	

Примечание. * – применялась стеклопластиковая арматура АКС 10 с навивкой.

a

Измерение деформаций ограничивающих связей в опытных балках на стадии твердения и расширения напрягающего бетона в водных условиях хранения выполняли при помощи деформометра с индикатором часового типа с ценой деления 0,01 мм на базе 270 мм (при измерении деформаций по боковой грани опытной балки). На каждую балку (серии I–V) устанавливалось 4 деформометра на уровне арматуры (в средних участках пролетной и консольной частях балки из-за неравномерного армирования (рисунок 2)). На балках серии VII дополнительно были установлены еще два деформометра для исследования процесса самонапряжения бетона в зоне с одинаковым армированием (рисунок 3).

✓ - индикатор часового типа

Рисунок 2. – Схема расположения деформометров на опытных балках серий I–V для измерения деформаций на стадии самонапряжения бетона с расширяющейся добавкой

Рисунок 3. – Схема расположения деформометров на опытных балках серии VII для измерения деформаций на стадии самонапряжения бетона с расширяющейся добавкой

Опытные балки серий I–VI были испытаны при статической нагрузке с монотонно возрастающей равномерно-распределенной нагрузкой. Для исследования влияния условий нагружения на сопротивление срезу также были испытаны балки серий VII–VIII при действии сосредоточенных сил. Схемы испытаний опытных балок представлены на рисунке 4.

1 – опытная балка; 2 – П-образные стальные рамы (2 шт.); 3 – стальные опорные пластины (100×200×30 мм, 4 шт.); 4 – резиновые прокладки (13 шт.); 5 – стальные распределительные пластины (130х130х30 мм, 12 шт.); 6 – стальные катки (Ø14 мм, 12 шт.); 7 – стальная пластина (245×155×50 мм); 8 – стальной шарнир (6 шт.); 9 – гидравлические домкраты (250 кН, 7 шт.); 10 – стальная пластина (150×150×40 мм); 11 – стальные опоры

Рисунок 4. – Схема приложения нагрузки при статических испытаниях балок серий БІ-БVI (a) (начало)

2021

б

Рисунок 4. – Схема приложения нагрузки при статических испытаниях балок серий БVII–БVIII (б) (окончание)

Арматура. Армирование опытных балок было выполнено стержнями GFRP Ø10 (Maperod G и AKC 10), CFRP Ø10 (Maperod C) и стальной арматурой Ø12 (S500). Характеристики арматуры представлены в таблице 2.

Класс арматуры	Диаметр Ø, мм	Предел текучести, <i>f</i> _{yk} , МПа	Временное сопротивление, <i>f</i> _y , МПа	Модуль упругости <i>E</i> _s ×10 ³ , МПа	Относительное удлинение при разрыве, %
Maperod G	10	-	760	40,8	2
Maperod C	10	-	2000	155	1,5
AKC 10	10*	-	1244	32	2,7
5500	12	652	749	200	_
3300	12**	678	778	200	_

Таблица 2. – Характеристики арматуры

Примечание. * – данная арматура использовалась в балках серий БV, БVI-12СПЦ, БVII-13СС16,5 и БVIII-15СПЦ; ** – данная арматура использовалась в балках серий БIV, БVI-11СтПЦ, БVII-14СтС16,5 и БVIII-16СтПЦ.

Бетон. Подбор номинального состава (таблица 3) был принят с учетом достижения самонапряжения, кроме состава серий VI и VIII.

T (2	TT V	_	-
Гаолина	1 —	Номинальный	COCTAR C	етона
таолица	<i>J</i> .	110mmuumbinbin	cocrub c	ver onu

		Расход материалов на 1 м ³ смеси в сухом состоянии, кг										
№ серии	цемент	расширяющая добавка Denka	песок	щебень	вода, л	Стахемент 2010						
Ι	510	90	600	960	240	-						
II	410	50	805	990	175	7,0						
III	410	60	800	990	185	7,8						
IV, V, VII	515	85*	740	880	201	7,5						
VI, VIII	360	_	900	1060	148	5,4						

Примечание. * - в качестве расширяющейся добавки использовали CSA 20.

Для достижения самонапряжения бетона использовали расширяющиеся добавки Denka CSA 20 (балки серий I–III) и CSA 20 (балки серий IV, V и VII). Бетонную смесь приготавливали в бетономешалке принудительного действия с последующей укладкой в стальную опалубку и уплотнением глубинным вибратором.

Основные характеристики напрягающего бетона к моменту статических испытаний приведены в таблице 4.

		Механи	ческие хара к моменту и	ктеристики іспытаний	Характеристики расширения			
Серия	Обозначение балок	fcm,cube,	fcm, prizma,	fcm, cyl,	<i>Е_{ст}</i> , Гпа	к моменту	статических испытаний	
		MIIa	MIIa	Мпа		ε <i>ce,f</i> , %	$f_{CE,k}, M\Pi a$	
т	БІ-1СД18	—	51,1	—	31.7	1.12	1,8	
1	БІ-2СД18	_	55,1	—	51,7	1,12	1,1	
п	БІІ-ЗСД12	77.1	765	561	42.2			
11	БІІ-4УД12	//,1	70,5	50,1	45,5	_	-	
ш	БШ-5СтД15	86,2	82,4	67,1	16.2	0,05	0,45	
111	БШ-6СтД15	86,2	82,4	67,1	40,5		0,50	
TV.	БІV-7СтС16,5	29,3	47,8	-	20.8	0.64	2,70	
11	БІV-8СтС16,5	17,4	43,5	-	29,8	0,04	2,90	
V	БV-9СС16,5	58,1	52,0	34,5	32,7	0.45	1,80	
v	БV-10СС16,5	54,6	54,4	32,3	34,7	0,45	1,65	
VI	БVІ-11СтПЦ	561	47.1	26.1	40.5			
V1	БVІ-12СПЦ	50,1	47,1	50,1	40,5	_	-	
VII	БVІІ-13СС16,5	29,2	50,2	21,9	31,2	0.42	1,90	
VII	БVII-14СтС16,5	33,9	53,8	31,2	32,6	0,42	1,95	
VIII	БVІІІ-15СПЦ	27.1	20.7	25.0	22.1			
VIII	БVІІІ-16СтПЦ	37,1	30,7	23,0	52,1	_	_	

T (0				~			
$1a0\pi u = 4$	- Основные ха	пактери	тики напі	оягающего	бетона к	моменту	статических	испытании
таолица п		apani opin	erman	om aromero	oerona k	momenty	erarm reening	nembrienni

Примечание. $f_{cm,cube}$, — средняя кубиковая прочность бетона при сжатии в возрасте 28 суток; $f_{cm, prizma}$, — средняя призменная прочность бетона при сжатии (призмы $100 \times 100 \times 400$ мм, твердевшие в условиях упругого ограничения); $f_{cm, cyl}$, — средняя цилиндрическая прочность бетона при сжатии (цилиндры Ø150 и h = 300 мм, твердевшие без осевого упругого ограничения); $f_{CE,k}$ — средняя величина самонапряжения контрольных образцов-призм $100 \times 100 \times 400$ мм, твердевших в условиях упругого ограничения); $f_{CE,k}$ — средняя величина самонапряжения контрольных образцов-призм $100 \times 100 \times 400$ мм, твердевших в условиях упругого ограничения, эквивалентного жесткости продольного армирования в количестве 1%; $\varepsilon_{CE,f}$ — относительная деформация свободного расширения, которая была установлена на свободных образцах-цилиндрах напрягающего бетона (цилиндры Ø150 и h = 300 мм).

Результаты испытаний. Исходя из величины зафиксированных связанных деформаций к моменту статического испытания были определены величины самонапряжения бетона, которые представлены в таблице 5.

-				
Conug	Оборнание балок	Величина самонапряжения бе-	гона к моменту статическ	сих испытаний σ <i>се</i> , МПа
Серия	Обозначение балок	Пролет балки	Консоль	Приопорная зона Б
т	БІ-1СД18	0,62	0,79	—
1	БІ-2СД18	0,78	0,89	_
п	БІІ-ЗСД12	0,03	-0,01	_
11	БІІ-4УД12	0,05	0,13	_
ш	БШ-5СтД15	-0,01	0,10	_
	БШ-6СтД15	0,09	0,23	_
137	БІV-7СтС16,5	1,80	1,53	_
IV	БІV-8СтС16,5	1,83	1,98	_
V	БV-9СС16,5	0,47	0,55	—
v	БV-10СС16,5	0,45	0,50	_
VI	БVІ-11СтПЦ	_	_	_
V I	БVІ-12СПЦ	_	_	_
VII	БVІІ-13СС16,5	0,36	0,35	0,32
VII	БVII-14СтС16,5	0,81	0,70	1,33
VIII	БУШ-15СПЦ	_	-	-
VIII	БVІІІ-16СтПЦ	—	_	-

Таблица 5. – Величины самонапряжения бетона к моменту статических испытаний, зафиксированные в ходе экспериментальных исследований на несимметрично армированных по высоте сечения и длине балках

Зафиксированные в ходе статических испытаний усилия, соответствующие образованию трещин, и предельные усилия при действии равномерно распределенной нагрузки и сосредоточенных сил в пролете балки представлены в таблицах 6 и 7 соответственно.

45

Серия	Обозначение балок	P_{cr} , кН	<i>qcr</i> , кН/м	P_u , кН	q_u , к H/M	Характер разрушения
Т	БІ-1СД18 (без нагружении консоли)	-	29,6	-	87,3	По наклонному сечению
1	БІ-2СД18	10,4	34,7	22,5	75,0	По наклонному сечению в пролете
Π	БІІ-3СД12	10,4	34,7	24,5	81,7	По наклонному сечению в консоли
	БІІ-4УД12	8,4	28,0	24,5	81,7	_//_
ш	БШ-5СтД15	12,4	41,4	34,6	115,3	По нормальной трещине на опоре Б
111	БШ-6СтД15	14,5	48,2	36,6	122,1	По наклонному сечению в пролете
13.7	БІV-7СтС16,5	12,4	41,4	34,6	115,3	_//_
IV	БІV-8СтС16,5	12,4	41,4	37,9	126,3	_//_
	БУ-9СС16,5	6,4	21,3	20,2	67,5	_//_
V	БV-10СС16,5	6,4	21,3	18,5	61,6	По наклонному сечению в консоли
VI	БVІ-11СтПЦ	8,4	28,0	26,5	88,5	По наклонному сечению в пролете
	БVІ-12СПЦ	6,4	21,3	18,2	60,6	

Таблица 6. – Результаты статических испытаний при действии равномерно распределенной нагрузки в пролете балки

Примечание. P_{cr} – сосредоточенная сила на консоли, соответствующая образованию трещин; q_{cr} – равномерно распределенная нагрузка, приложенная в пролете балки, соответствующая образованию трещин; P_u – сосредоточенная сила на консоли, соответствующая разрушению; q_u – равномерно распределенная нагрузка, приложенная в пролете балки, соответствующая разрушению; q_u – равномерно распределенная нагрузка, приложенная в пролете балки, соответствующая разрушению; q_u – равномерно распределенная нагрузка, приложенная в пролете балки, соответствующая разрушению;

T C 7 D	0	U		2
	OTOTIMOORINY MODI ITOIMI	THUI TOUOTDUU	COOPATIOTO HAILILLIV	OUT D TROTATA DOTUL
-1 a O H a H a - 1 E S V H E I A I E E S V H E I A I E E S V H E I A I E E S V H E I A I E E S V H E I A I E E E S V H E I A I E E E S V H E I A I E E E S V H E I A I E E E S V H E E E S V H E E E S V H E E E S V H E E E E E S V H E E E E S V H E E E E S V H E E E E S V H E E E E S	статических испытании			
$1 \mathbf{\alpha} 0 0 1 1 \mathbf{\alpha} 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0$			сосредсто теппьи	
,		1 ''	1 / 1	1

Серия	Обозначение балок	P_{cr} , кН	Ptot,cr, кН	P_u , кН	P _{tot,u} , кН	Характер разрушения
	5VII-13CC16 5	6.5	32.9	21.9	110.6	По наклонному сечению
VII	DVII-150010,5	0,5	52,7	21,7	110,0	в консоли
	EVII 14CTC16 5	14.6	73.5	34.8	175.2	По наклонному сечению
	BVII-14C1C10,5	14,0	75,5	54,0	175,2	в пролете
VIII	БVІІІ-15СПЦ	4,5	22,8	14,6	73,4	_//_
VIII	БVІІІ-16СтПЦ	4,5	22,7	24,9	125,5	_//_

Примечание. P_{cr} – сосредоточенная сила на консоли, соответствующая образованию трещин; $P_{tot,cr}$ – сосредоточенная сила, приложенная в пролете балки, соответствующая образованию трещин; P_u – сосредоточенная сила на консоли, соответствующая разрушению; $P_{tot,u}$ – сосредоточенная сила, приложенная в пролете балки, соответствующая разрушению.

Первые трещины нормального отрыва образовались во всех сериях балок в пролете при нагрузке равной 0,33–0,48 q_u (в балках, нагруженных равномерно распределенной нагрузкой в пролете) и 0,2–0,42 $P_{tot,u}$ (в балках, нагруженных сосредоточенными силами в пролете). Стоит отметить, что в балках серии II (БІІ-ЗСД12 и БІІ-4УД12) первые трещины образовывались одновременно в пролете и на консоли. Трещины распределялись по длине пролета приблизительно с равным шагом и в момент образования по высоте сечения достигали 10–20% (БІІ-4УД12, балки серий ІІІ–V, БVІ-11СТПЦ и серий VІІ–VІІІ). В балках БІ-2СД18, БІІ-3СД12, БVІ-12СПЦ первые трещины в пролете развились по высоте сечения на 50–85%.

В консольной части балок со стальным армированием (балки серий III, IV, БVI-11СтПЦ, БVII-14СтС16,5 и БVIII-16СтПЦ) трещины достигали приблизительно 10–67% высоты сечения, а в балках с FRP армированием (балки серий I, II, V, БVI-12СПЦ, БVII-13СС16,5 и БVIII-15СПЦ) – до 60–83% высоты сечения.

По мере увеличения нагрузки трещины развивались по высоте сечения, достигая 90% высоты сечения опытной балки. Во всех опытных балках наклонные трещины в момент образования достигали около 80% высоты сечения (кроме балок со стальным армированием). Также стоит отметить, что по мере развития по высоте сечения наклонные трещины, образовавшиеся из нормальных, изменяли свой угол наклона к продольной оси балки. Это характерно для трещин, образующихся в зоне совместного действия изгибающего момента и перерезывающей силы.

Разрушение всех опытных балок (кроме серии IV) происходило по наклонной трещине, которая пересекала всю высоту сечения балки, что, в свою очередь, противоречит утверждениям, представленным в работах N.A. Dassow [4], A. Caldentey Perez [5], F. Cavagnis [6], B.A. Podgorniak-Stanik [7], о том, что при испытаниях жестких балок (при l/d<10) при равномерно распределенной нагрузке разрушение происходит при раздавливании сжатого бетона над вершиной наклонной трещины.

Ключевым различием между типом армирования балок (независимо от вида нагружения) является то, что в балках с традиционным армированием (балки серий III, IV и БVI-11СтПЦ) образуется большее количество трещин и без увеличения ширины раскрытия (до 0,15 мм), чем в балках с FRP армированием, где ширина раскрытия трещин может достигать до 2,5 мм.

Наклонные трещины в балках с традиционным армированием, нагруженных равномерно распределенной нагрузкой в пролете, образуются на расстоянии $\approx 0,5d$ от опоры, которая соединяется с наклонной трещиной, образованной на расстоянии $\approx d$, на уровне $\approx 0,5h$ высоты сечения балки. Наклонные трещины в балках с FRP армированием образуются на расстоянии $\approx d$. Однако в балках, нагруженных сосредоточенными силами, картина образования критической наклонной трещины в пролете не зависит от типа армирования и схожа с балками, армированными традиционным способом, при действии равномерно распределенной нагрузки в пролете, которая описана ранее.

Одной из отличительных особенностей влияния вида нагружения на сопротивление срезу является то, что в балках, нагруженных сосредоточенными силами, после образования наклонной трещины формируется продольная трещина вдоль растянутой арматуры по направлению к опоре, что приводит к снижению нагельного эффекта (одной из составляющих сопротивления срезу элемента). Это явление наиболее отразимо в элементах, армированных FRP стержнями.

В балках (БІІ-3СД12, БІІ-4УД12 и БV-10СС16,5), которые были нагружены равномерно распределенной нагрузкой в пролете и разрушились по консоли, расстояние образования критической наклонной трещины от опоры Б варьируется в диапазоне $\approx 1,7d-2,0d$. В то время, как в балке БVІІ-13СС16,5, которая была нагружена сосредоточенными силами в пролете, критическая наклонная трещина образовалась в консоли на расстоянии $\approx 1,2d$ от опоры Б.

Стоит отметить, что в балках серии IV критическая наклонная трещина образовалась вблизи опоры Б (рисунок 5). При этом, перед моментом разрушения наклонные трещины (трещины № 20 (БIV-7СтС16,5) и №№ 14, 20 (БIV-8СтС16,5)) раскрылись на ширину до 2,5 мм на уровне центра тяжести сечения. Это связано с тем, что в данных балках было высокое значение самонапряжения бетона.

а – балка БІ-1СД18; б – балка БІ-2СД18; в – балка БІІ-3СД12

Рисунок 5. – Картина трещинообразования и разрушения опытных балок (начало)

г – балка БІІ-4УД12; д – балка БІІІ-5СтД15; е – балка БІІІ-6СтД15; ж – балка БІV-7СтС16,5; и – балка БІV-8СтС16,5

Рисунок 5. – Картина трещинообразования и разрушения опытных балок (продолжение)

к – балка БV-9СС16,5; л – балка БV-10СС16,5; м – балка БVI-11СтПЦ; н – балка БVI-12СПЦ; о – БVII-13СС16,5

Рисунок 5. – Картина трещинообразования и разрушения опытных балок (продолжение)

n – БVІІ-14СтС16,5; p – балка БVІІІ-15СПЦ; с – балка БVІІІ-16СтПЦ

В балках со стальным армированием на напрягающем бетоне (серии III–IV, БVII-14СтС16,5) и на обычном бетоне (БVI-11СтПЦ и БVIII-16СтПЦ) существенным различием при статических испытаниях (независимо от вида нагружения) является высота сжатой зоны. Так, при увеличении величины самонапряжения бетона в балках высота сжатой зоны существенно возрастает (см. рисунок 5). Также величина самонапряжения бетона в балках с традиционным армированием увеличивает трещиностойкость и несущую способность по сравнению с обычным бетоном. (см. таблицы 6, 7). Однако данный эффект только в незначительной мере наблюдается и в балках, армированных GFRP стержнями (балки серий I, V, БІІ-3СД12, БVІ-12СПЦ, БVІІ-13СС16,5 и БVІІІ-15СПЦ) (см. рисунок 5 и таблицы 6, 7).

Различием между балками, армированными стальными стержнями и FRP стержнями (независимо от вида нагружения), заключается в том, что в балке с традиционным армированием в ходе статических испытаний были зафиксированы меньшие прогибы и относительные деформации на уровне продольного армирования (рисунки 6, 7).

Самонапряжение бетона способствует созданию начального напряженно-деформированного состояния, которое, в свою очередь, оказывает влияние на поведение балки при статических испытаниях. Данное заключение выражается в том, что в балках с различным уровнем самонапряжения бетона (независимо от вида нагружения) разрушение может произойти в консоли по наклонной трещине (БІІ-ЗСД12, БІІ-4УД12, БV-10СС16,5 и БVІІ-13СС16,5), что не наблюдалось при испытаниях балок на обычном бетоне (БVІ-11СтПЦ, БVІ-12СПЦ, БVІІІ-15СПЦ и БVІІІ-16СтПЦ).

Рисунок 5. – Картина трещинообразования и разрушения опытных балок (окончание)

Рисунок 6. - Зависимость «момент - относительные деформации» (начало)

Рисунок 6. - Зависимость «момент - относительные деформации» (окончание)

в

ð

ж

Рисунок 7. - Зависимость «момент - прогиб» (начало)

7

а, мм

6

Рисунок 7. – Зависимость «момент – прогиб» (окончание)

Результаты статических испытаний носят устойчивый повторяющийся характер. Это заключение относится к положению сечений, в которых образуются наклонные трещины и траектории их развития (рисунки 8, 9). Стоит отметить, что во всех опытных балках, независимо от схемы их нагружения, ширина раскрытия наклонных трещин на уровне центра тяжести сечения была больше, чем на уровне продольной арматуры. Это связано с распределением касательных напряжений по высоте сечения, которые больше на уровне центра тяжести.

В балках серии IV при статических испытаниях были зафиксированы наклонные трещины, которые образовались на уровне центра тяжести сечения (см. рисунок 5), что характерно для преднапряженных конструкций. Данное явление связано с тем, что в балках серии IV было достаточно высокое значение самонапряжения бетона. Как утверждалось выше, при равномерно распределенном нагружении балок, армированных стальными и FRP стержнями, наблюдали отличия в образовании и траектории развития наклонных трещин. В балках, армированных FRP стержнями (серии I, II, V и балка БVI-12СПЦ), все наклонные трещины имеют угол наклона равным $\theta \approx 65^{\circ}$ (см. рисунок 8). В балках со стальным армированием (серии III, IV и балка БVI-11СтПЦ) образовывались наклонные трещины с углом наклона $\theta \approx 40^{\circ}$ (см. рисунок 8), которые соединялись с трещинами, образоваными на расстоянии $\approx d$ от опоры, и угол наклона составлял $\theta \approx 65^{\circ}$.

В пролете балки, нагруженной сосредоточенными силами, угол наклона критической трещины составил $\theta \approx 40^{\circ}$, а затем эта трещина соединялась с трещиной, образованной на расстоянии $\approx d$ от опоры, угол наклона которой составил $\theta \approx 65^{\circ}$ (см. рисунок 9). Стоит отметить, что траектория развития критической наклонной трещины в пролете балки, нагруженной сосредоточенными силами, не зависит от типа армирования. Однако на консоли балки, армированной FRP стержнями, при таком же виде нагружения образуется трещина с углом наклона $\theta \approx 65^{\circ}$.

Рисунок 8. – Траектории развития наклонных трещин при статических испытаниях балок (равномерно распределенное нагружение)

Рисунок 9. – Траектории развития наклонных трещин при статических испытаниях балок (нагружение сосредоточенными силами)

В таблице 8 представлены характеристики, описывающие место образования критической наклонной трещины и траекторию ее развития вдоль продольной оси балки.

Серия	Обозначение балок	№ крит. накл. трещины	<i>l</i> ₀ , мм	$l_{\rm пр}$, мм	$\frac{M}{V \cdot d}$	<i>Wk</i> , MM	$ heta^{\circ}$
	БІ-1СД18	1	410	370	2.22	2.5	65
I	(без нагружении консоли)	-	110	570	_,	2,0	
	БІ-2СД18	6	250	370	1,16	1,2	65
п	БІІ-3СД12	8	530	530	1,37	-	65
11	БІІ-4УД12	14	445	445	1,70	0,7	66
III	БШ-6СтД15	25	435	540	0,56	—	40
IV	БІУ-7СтС16,5	26	290	290	0,04	-	41
1 V	БІV-8СтС16,5	26	285	285	0,04	0,05	39
V	БУ-9СС16,5	15	210	330	0,93	0,9	64
v	БV-10СС16,5	15	370	370	1,96	0,6	54
VI	БVІ-11СтПЦ	20	140	420	0,56	1,7	42
V I	БVІ-12СПЦ	9	570	275	1,28	1,0	61
VII	БVII-13СС16,5	17	325	325	2,13	2,5	59
v 11	БVІІ-14СтС16,5	18	130	330	0,48	2,0	43
VIII	БVІІІ-15СПЦ	9	140	320	0,52	3,0	51
V 111	БVІІІ-16СтПЦ	21	150	310	0,56	1,0	45

Таблица 8. – Данные, описывающие критические наклонные трещины

Примечание. θ° – угол наклона критической трещины; l_0 – расстояние от опоры до точки образования критической наклонной трещины. В балках серий I, VIII, БV-9СС16,5, БVI-11СтПЦ и БVII-14СтС16,5 – это расстояние от опоры A, в балках серий II, БV-10СС16,5 и БVII-13СС16,5 – от опоры Б (в консоли), в балке серии IV, БIII-6СтД15 и БVII-12СПЦ – от опоры Б (в пролете). l_{np} – величина развития критической трещины вдоль продольной оси балки; $M/V \cdot d$ – соотношение в точке образования критической трещины; w_k – максимальная ширина раскрытия критической наклонной трещины. Знак «–» указывает на то, что ширина раскрытия трещины не фиксировалась, так как было мгновенное разрушение во время выдержки под нагрузкой.

Заключение. В настоящей статье представлены результаты экспериментальных исследований сопротивления срезу самонапряженных бетонных балок, армированных стальными и FRP стержнями. Проанализировав результаты испытаний балок при действии равномерно распределенной нагрузки, а также исследовав влияние самонапряжения бетона и типа армирования на трещинообразование, можно сделать следующие предварительные выводы:

 самонапряжение бетона влияет на трещиностойкость и несущую способность, в большей степени в балках, армированных стальными стержнями, а также уменьшает величину прогибов и относительных деформаций на уровне продольной арматуры (увеличивает жесткость);

– вид нагружения оказывает влияние на траекторию развития наклонной трещины. В балках, нагруженных сосредоточенными силами в пролете и независимо от типа армирования, траектория развития наклонной трещины будет одинаковая. В балках, нагруженных равномерно распределенной нагрузкой, тип армирования уже будет оказывать влияние на траекторию развития наклонной трещины. Также одной из отличительных особенностей влияния вида нагружения на сопротивление срезу является то, что в балках, нагруженных сосредоточенными силами, после образования наклонной трещины формируется продольная трещина вдоль растянутой арматуры по направлению к опоре;

 тип армирования оказал влияние на количество трещин, ширину их раскрытия, место образования и траекторию развития критической наклонной трещины, а также величины прогибов и относительных деформаций на уровне продольного армирования балок при статических испытаниях;

– в балочных элементах, независимо от типа армирования, величина самонапряжения бетона (или отсутствие эффекта самонапряжения) не оказала влияния на траекторию развития критической наклонной трещины;

– при испытаниях опытных балок (независимо от вида нагружения, типа армирования и наличия самонапряжения бетона) было зафиксировано, что ширина раскрытия критических наклонных трещин была больше на уровне центра тяжести сечения, чем на уровне продольного армирования;

– при испытаниях опытных балок, нагруженных равномерно распределенной нагрузкой, не наблюдалось раздавливание сжатого бетона над вершиной наклонной трещины.

ЛИТЕРАТУРА

- 1. Тур, В.В. Применение базальтопластиковой арматуры при изготовлении самонапряженных конструкций / В.В. Тур, О.С. Семенюк // Вестн. Брест. гос. техн. ун-та. Сер. Стр-во и архитектура. – 2013. – № 1. – С. 99–103.
- Tur, V. Self-stressed concrete members reinforced with FRP-bars / V. Tur, V. Semianiuk // Modern Materials, Installation and Construction Technologies : monograph / PSW in Biała Podlaska ; D. Barnat-Hunek (chief editor). – Biała Podlaska, 2013. – 165–178.

- Tur, V. Strains and self-stresses estimation in the expansive concrete members reinforced with GFRP bars / V. Tur, V. Semianiuk // Inżynieria bezpieczeństwa obiektów antropogenicznych. – 2016. – № 4. – P. 3–9.
- 4. Dassow, N.A. Effect of uniform load on the shear strength of slender beams without shear reinforcement : MSc thesis / N.A. Dassow. Austin, 2014. 117 p.
- Effect of Load Distribution and Variable Depth on Shear Resistance of Slender Beams without Stirrups / A.P. Caldentey [et al.] // ACI Structural Journal. – 2012. – № 109 (5). – 595–603.
- 6. Cavagnis, F. Shear in reinforced concrete without transverse reinforcement: from refined experimental measurements to mechanical models : PhD thesis / F. Cavagnis. Lausanne, 2017. 201 p.
- Podgorniak-Stanik, B. The Influence of Concrete Strength, Distribution of Longitudinal Reinforcement, Amount of Transverse Reinforcement and Member Size on Shear Strength of Reinforced Concrete Members : MSc thesis / B. Podgorniak-Stanik. – Toronto, 1998. – 711 p.

Поступила 16.11.2021

EXPERIMENTAL STUDIES OF THE RESISTANCE SHEAR OF SELF-STRESSED CONCRETE BEAMS UNDER DIFFERENT LOADING CONDITIONS

A. VARABEI, V. TUR

This paper presents the results of experimental studies of the shear resistance of self-stressed concrete beam elements reinforced with both FRP bars and the traditional method (steel reinforcement). Distinctive characteristics are revealed that affect the trajectory of shear cracks, their opening width, as well as the stress-strain state at various types of reinforcement (FRP and steel reinforcement), self-stress levels of concrete and loading conditions (under the action of a uniformly distributed load and point forces).

Keywords: resistance shear, beam elements, expansive concrete, FRP bars, uniformly distributed load, point forces, cracking, shear cracks.