Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ПОЛОЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(Полоцкий государственный университет)

УДК 67.09.43 Рег. № НИОКТР 20191247	
	УТВЕРЖДАЮ Проректор по научной работе Ю.П. Голубев
	<u>«»2019</u> г.
ОТ	ЧЕТ
О НАУЧНО-ИССЛЕДО	ВАТЕЛЬСКОЙ РАБОТЕ
«ЭФФЕКТИВНЫЕ ТЕПЛОИЗ	ОЛЯЦИОННЫЕ МАТЕРИАЛЫ
ВОЛОКНИСТОЙ СТРУКТУРЫ ИЗ	З ОТХОДОВ РАСТЕНИЕВОДСТВА»
(заключ	ительный)
Руководитель НИР	
канд. техн. наук, доцент	А.А. Бакатович

СПИСОК ИСПОЛНИТЕЛЕЙ

Научный руководитель	
канд. тех. наук, доцент	А.А. Бакатович
Младший научный сотрудник	
ОСНИ, аспирант	С.А. Романовский
	(ответственный исполнител
	введение, основной раздел,
	заключение)
Нормоконтролер	Л.В. Ишенко

РЕФЕРАТ

Отчет 83 с., 37 рис., 16 табл., 55 ист., 3 прил.

ЛЬНЯНЫЕ ОЧЕСЫ И ВОЛОКНА, ЖИДКОЕ СТЕКЛО, ИЗВЕСТЬ, ГИПС, ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ, ПЛИТА, СРЕДНЯЯ ПЛОТНОСТЬ, КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ

<u>Объект исследований:</u> теплоизоляционные плиты волокнистой структуры.

<u>Цель работы:</u> разработка экологически безопасных теплоизоляционных материалов с высокими теплофизическими показателями на основе отходов растениеводства.

Методы исследования: аналитический и экспериментальный.

<u>Результаты</u> работы: разработаны составы эффективных теплоизоляционных плит, получены новые экспериментальные данные по физико-механическим характеристикам. Теплоизоляционные материалы обеспечивают уменьшение теплопроводности на 10–20% по сравнению с существующими аналогами.

Степень внедрения: результаты использованы при подготовке учебном кандидатской диссертации, также В процессе кафедры «Строительное учреждения образования «Полоцкий производство» Разработаны государственный университет». технические опытную партию ТУ ВҮ 300220696-062-2019 «Плиты теплоизоляционные из льняных очесов».

<u>Область применения:</u> городское и сельское строительство, включая утепление чердачных перекрытий любых типов зданий, стенового ограждения с вентилируемой системой и заполнение наружных стеновых проемов в каркасных домах.

Экономическая эффективность: использование теплоизоляционных плит из очесов льна приведет к уменьшению себестоимости и материалоёмкости ограждающих конструкций в сравнении с существующими аналогами на основе растительного сырья по причине более низкого

коэффициента теплопроводности разработанных утеплителей, а также снижению расходов на использование энергоносителей в процессе эксплуатации.

<u>Прогнозы предложения о развитии объекта исследования:</u> научнопроизводственная кооперация или сотрудничество на основе лицензионного соглашения.

ВВЕДЕНИЕ6
1 Анализ производства теплоизоляционных материалов на основе
растительного сырья
1.1 Применение синтетических волокон в производстве
теплоизоляционных материалов7
1.2 Утеплители на основе неорганических волокон9
1.3 Опыт применения растительного сырья для изготовления
теплоизоляционных материалов
1.3.1 Заполнители из природного волокна для утеплителей12
1.3.2 Утеплители, содержащие волокнистые заполнители, полученные
из сельскохозяйственных культур15
2 Характеристика использованных материалов
2.1 Исходные материалы18
2.2 Методики исследований19
2.3 Физико-механические свойства теплоизоляционных плит21
3 Тепло- и гидрофизические свойства утеплителей волокнистой
структуры
3.1 Исследование сорбционной влажности теплоизоляционных
материалов
3.2 Влияние показателя влажности на коэффициент теплопроводности
теплоизоляционных плит
3.3 Исследование теплоемкости теплоизоляционных материалов42
3.4 Изучение паропроницаемости теплоизоляционных плит45
3.5 Определение теплофизических параметров теплоизоляционных
материалов волокнистой структуры в климатической камере47
3.6 Исследование теплофизических характеристик утеплителей на
чердачном перекрытии в условиях эксплуатации51
4 Теплотехнические и эксплуатационные характеристики
теплоизоляционных плит из очесов льна60
ЗАКЛЮЧЕНИЕ65
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ69
ПРИЛОЖЕНИЯ75

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Давыденко, Н.В. Теплоизоляционные плиты на основе отходов растениеводства и неорганического вяжущего: автореф. дисс. ... канд. техн. наук: 05.23.05 / Н.В. Давыденко. Новополоцк, 2016. 1 28 с.
- 2. Солдатов, Д. А. Теплоизоляционные материалы на основе растительного сырья и органоминеральных поризованных связующих : автореф. дис. ...канд. техн. наук : 05.23.05 / Д. А. Солдатов ; Казанская гос. архитектурностроительная академия. Казань, 2000. 18 с.
- 3. Лукутцова, Н. П. Получение экологически безопасных строительных материалов из природного и техногенного сырья: автореф. дисс. ...д-ра техн. наук: 05.23.05 / Н. П. Лукутцова; Брянская гос. инженерно-технологическая академия. Белгород, 2005. 42 с.
- 4. Плиты теплоизоляционные из синтетических волокон. Технические условия: СТБ 1161 99. Введ. 31.05.1999. Минск: Госстандарт, 1999. 10 с.
- 5. Мухамеджанова, Г. К. Состояние и перспективы развития производства и потребления в России нетканых теплоизоляционных строительных материалов/ Г. К. Мухамеджанов, О. Г. Мухамеджанова // Кровельные и изоляционные материалы. ISSN 1813-789X. 2013. № 5. С. 16–18.
- 6. Маты нетканые теплоизоляционные шелтор экострой. Технические условия ТУ 5768-001-18130826-2011. Введ. 11.01.2011. Потольск 2011. 16 с.
- 7. Бизюков, С. А. Теплоизоляция на основе полиэфирных волокон «КипТек» / С. А. Бизюков // Строительные материалы. 2008. № 6. С. 28—29.
- 8. Политерм: [Электронный ресурс] / сайт «Политерм межвенцовый утеплитель» Режим доступа: http://politerm-nn.ru / Дата доступа: 07.11.2019 г.
- 9. Бердюгин, И.А. Теплоизоляционные материалы в строительстве. Каменная вата или стекловолокно: сравнительный анализ / И.А. Бердюгин // Инженерно-строительный журнал. − 2010. № 1. – С. 26–31.

- 10. Бобров, Ю.Л. Теплоизоляционные материалы и конструкции / Ю.Л. Бобров, Е.Г. Овчаренко, Б.М. Шойхет, Е.Ю. Петухова // Учебник для средних профессионально-технических учебных заведений. М.: ИНФРА-М, 2003. 59 с.
- 11. Попова, В.В. Материалы для теплоизоляционных и гидроизоляционных работ / В.В. Попова // Учебник для средних ПТУ. 3-е изд., перераб. и доп. Москва: Высшая школа, 1988. 26 с.
- 12. Зарубина, Л.П. Теплоизоляция зданий и сооружений. Материалы и технологии / Л.П. Зарубина // 2-е изд. СПб: БХВ-Петербург, 2012. 37 с.
- 13. Ильичев, А. Ф. Выбор вариантов утепления монолитных железобетонных и кирпичных стен / А.Ф. Ильичев, Т.Н. Куценко, М.В. Аксененко // Вестник донбасской национальной академии строительства и архитектура. ISSN 1814-3296. -2010. -№ 3. C. 80–83.
- 14. PAROC ® AirTM уникальная система вентиляционной кровли // Кровельные и изоляционные материалы. 2015. № 1. С. 13—15.
- 15. Продукты Рагос для теплоизоляции фасадов // Кровельные и изоляционные материалы. -2013. -№ 5. C. 8-9.
- 16. Izovol: преимущества применения в строительстве // Стройпрофиль.
 2008. № 6 (68). С. 116–117.
- 17. Цуркина, С.К. Эффективные теплоизоляционные материалы / С.К. Цуркина, В.А. Феоктистов // Статья в сборнике трудов VII международного форума «Образование, наука, производства», г. Белгород, 20-22 октября 2015 г. / «Белгородский государственный технологический университет им. В.Г. Шухова», 2015. С. 863–868.
- 18. Izovol: выбор в пользу качества // Строительные материалы. Оборудование. Технологии XXI века. 2010. № 7. С. 14–15.
- 19. Емельянович, И Строительные материалы нового поколения / И. Емельянович // Наука и инновации. 2010. № 11 (93). С. 22–24.
- 20. Гребнева, О.В Развитие современных технологий производства и применения теплоизоляционных материалов компанией URSA Россия / О.В. Гребнева // Строительные материалы. 2004. № 1. С. 16–17.

- 21. Теплоизоляционные изделия URSA GLASSWOOL / Строительные материалы. -2005. -№ 5. С. 38–39.
- 22. Игохина, Е.О. Сравнительный анализ самых популярных утеплителей в строительстве / Е.О. Игохина // Экология и строительство. 2016. № 1. С. 7–11.
- 23. Лошкарев, Д.А. Теплоизоляция фасадов зданий при капитальном ремонте / Д.А. Лошкарев, М.О. Ботин // Сборник трудов научнопрактической конференции студентов и магистрантов «Социально-экономические проблемы совершенствования управленческой деятельностью: теория и опыт. г. Новосибирск, 12 мая 2017 г. / «Новосибирский государственный аграрный университет», 2017. С. 99–100.
- 24. Костиков, Е.А. Сравнительный анализ утеплителей на рынке Хабаровского края в строительстве / Е.А. Костиков, О.Е. Сысоев // Материалы 47-й научно-технической конференции студентов и аспирантов «Научно-техническое творчество аспирантов и студентов». Комсомольск-на-Амуре, 10-21 апреля 2017 г. / «Комсомольск-на-Амуре государственный технический университет», 2017. С. 570–573.
- 25. Ермолина, А.В. Получение теплоизоляционного плитного материала на основе древесного волокна / А.В. Ермолина, П.В. Миронов, А.В. Бывшев // Актуальная проблема лесного комплекса. 2010. № 25. С. 186—189;
- 26. Теплоизоляционный материал. RU 2149148 / В. И. Берюков, В.В. Данилов, Н.М. Пашков Опубл. 20.05.2000.
- 27. Журавлева, Л.Н. Мягкие древесно-волокнистые плиты теплоизоляционный материал / Л.Н. Журавлева, А.Н. Журавлева // Вестник КрасГАУ. 2010. № 11. С. 181—184.
- 28. Стрикун, В.В. Получение теплоизоляционного материала из древесного волокна на основе биоклея / В.В. Стрикун, М.А. Баяндин, А.В. Намятов, В.Н. Ермолин // Актуальные проблемы лесного хозяйства. − 2017. − № 48. − С. 86−87.

- 29. Лучинкин, С.Г. Получение теплоизоляционных материалов на основе вторичного целлюлозного волокна / С.Г. Лучинин, В.А. Кожухов, Ю.Д. Алашкевич // ИВУЗ. Лесной журнал. 2017. № 6. С. 151–155.
- 30. Ермолина, А.В. Получение и свойства теплоизоляционного материала на основе вторичной волокнистой массы / А.В. Ермолина, П.В. Миронов // ИВУЗ. Лесной журнал. 2011. № 4. С. 109–114.
- 31. Горегляд, С. Ю. Экологически чистые материалы для строительства / С. Ю. Горегляд // Строительные материалы. 1996. № 4. С. 5–6.
- 32. Новый экологически чистый теплоизоляционный материал эковата // Строительные материалы. 1995. № 1. С. 21;
- 33. Bialosau, A. Materiais compositos para isolamento termico de materiasprimas naturais e aglutinantes minerais / A. Bakatovich, F. Gaspar // Livro de Resumos 3º Congresso Luso – Brasileiro de Materiais de construcao sustentaveis. Coimbra, Portugal. – 2018. PP. 16 – 27.
- 34. Бакатович, А.А. Микроструктура как основной критерий, определяющий использование мха сфагнума в качестве заполнителя для эффективного плитного теплоизоляционного материала / А.А. Бакатович // Вестн. Полоц. гос. ун-та. Сер. F, Строительство. Прикладные науки. $2017. \mathbb{N}_{2}$ 8. С. 42—46.
- 35. ООО «АКОТЕРМ ФЛАКС» [Электронный ресурс] / сайт компании ОАО «Акотерм Флакс» Режим доступа: http://akoterm-flaks.deal.by / Дата доступа: 30.03.2019 г.
- 36. Советников, Д.О. <u>Оптимальная</u> толщина утеплителя наружной стены для создания энергоэффективного и экологичного здания в условиях Санкт-Петербурга / Д.О. Советников, Д.О. Семашкина, Д.В. Баранова // Строительство уникальных зданий и сооружений. ISSN 2304-6295. 2016. № 12 (51). С. 7–19.
- 37. Обзор Экотеплина [Электронный ресурс] / сайт «TutKnow.ru» Режим доступа: http://tutknow.ru/building/uteplenie/6610-obzor-ekoteplina.html/ Дата доступа: 30.03.2019 г.

- 38. Rozyev, M, (2019) Thermal insulation material, using waste cotton production as a placeholder / M. Rozyev, A. Bakatovich // XI Junior Researchers, Conference. European & national dimension in research. Architecture and civil engineering. Polotsk state University. Novopolotsk, PSU, 2019. − № 11. − P. 64–66.
- 39. Бакатович, А.А. Теплоизоляционный материал на заполнителе из отходов переработки хлопокового волокна / А.А. Бакатович, М. А. Розыев // Вестн. Полоц. гос. ун-та. Сер. F, Строительство. Прикладные науки. 2019. $N \ge 8$. С. 29—33.
- 40. Богатова, Т.В. Преимущества и особенности безопасных природных утплителей / Т.В. Богатова, А.И. Двойцына // Инженерные сети и сооружения. ISSN 2074-188X. -2016. -№ 3-4 (24-25). C. 14-19.
- 41. Якунина, Е.А. Современные теплоизоляционные материалы, как одна из тенденций экологического строительства / Е.А. Якунина // Синергия наук. 2018. № 24. С. 625–634.
- 42. Hassan, S. Comparison study of thermal insulation characteristics from oil palm fibre / S. Hassan, A. Tesfamichael, M. Mohd Nor // MATEC Web of Conferences. ICPER 2014 4th International Conference on Production, Energy and Reliability. 2014. Volume 13. P. 5.
- 43. Romanovskiy, S., Insulating material on the basis of bark fibre of the olive palm tree / S. Romanovskiy, A. Bakatovich // European and National Dimension in Research: IX Junior Researchers, Conference, Novopolotsk, April 26–27, 2017: in 3 p. // Polotsk stage University. Novopolotsk, PSU, 2017. P. 3. P. 104–107.
- 44. Романовский, С.А. Применение микроскопического анализа для оценки перспективы использования очесов волокна льна в производстве теплоизоляционного материала / С.А. Романовский, А.А. Бакатович // Вестн. Полоц. гос. ун-та. Сер. F, Строительство. Прикладные науки. 2017. № 8. С. 14—18.
- 45. Стекло натриевое жидкое. Технические условия: ГОСТ 13078-81. Введ. 01.01.1982. М. :Стандартинформ. 2005. 14 с.

- 46. Известь строительная. Часть 1. Определения, требования и критерии соответствия: СТБ ЕН 459-1-2007. Введ. 30.01.2007. Минск.: Минстройархитектуры Республики Беларусь. 2007. 26 с.
- 47. Вяжущие гипсовые. Технические условия : ГОСТ 125–2018. Взамен ГОСТ 125–79 ; Введ. 01.05.2019. Москва. : Стандартинформ. 2018. 10 С.
- 48 Материалы и изделия строительные теплоизоляционные. Методы испытаний : ГОСТ 17177-94. Введ. 22.08.1995. Минск : Минстройархитектур. 1996. 56 с.
- 49. Материалы и изделия строительные. Методы определения теплопроводности при стационарном тепловом режиме: СТБ 1618-2006. Введ. 24.03.2006. Минск: Минстройархитектуры. 2006. 9 с.
- 50. Изделия строительные теплоизоляционные. Метод определения сорбционного увлажнения: СТБ EN 12088–2018. Взамен СТБ EN 12088-2008; Введ. 01.07.2017. Минск.: Минстройархитектуры Республики Беларусь. 2016. 12 с.
- 51. Давыденко, Н. В. Влияние показателя влажности на коэффициент теплопроводности соломенных и костросоломенных теплоизоляционных материалов / Н. В. Давыденко, А. А. Бакатович // Вестн. Полоц. гос. ун-та. Сер. F, Строительство. Прикладные науки. 2013. № 8. С. 73–78.
- 52. Изделия строительные теплоизоляционные. Метод определения паропроницаемости : СТБ EN 12086-2016. Взамен СТБ EN 12086-2007 ; Введ. 01.07.2017. РУП. Стройтехнорм. 2016. 20 с.
- 53. Материалы строительные. Методы испытаний на горючесть. ГОСТ 300244-94. Введен 01.01.1996. Стандартинформ, 1996. 17 с.
- 54. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения: ГОСТ 12.1.044-89. Введен 01.01.1991. Переиздание 04.2006. Изд-во стандартов, 1989. 99 с.
- 55. Строительная теплотехника с изм.: ТКП 45-2.04-43-2006 (02250). Взамен СНБ 2.04.01-97; Введ. 29.12.2006. Минск. : Минстройархитектуры, 2007. 35 с.