MATEMATUKA

УДК 512.542

О КОНЕЧНЫХ ГРУППАХ С КОПРОСТЫМ АВТОМОРФИЗМОМ, ИНДЕКС СТАБИЛИЗАТОРА КОТОРОГО ЕСТЬ ЧИСЛО ВИДА $p^{\alpha}q^{\beta}$

доктор физ.- мат. наук, профессор Э.М. ПАЛЬЧИК, С.Ю. БАШУН

Исследуется строение конечной группы X, допускающей автоморфизм у простого порядка r, (/X/,r)=I, причем $|X:C_X(y)|=p^{\alpha}q^{\beta}$. Доказывается, что $C=C_X(y)$, где $\Pi=\{p,q\}$.

1. Введение

Используются стандартные обозначения и терминология теории конечных групп, которые можно найти в [1-5]. Наиболее часто встречающиеся понятия будут приведены ниже.

Если X – конечная Π -группа, A – ее Π -группа автоморфизмов, то говорят, что A действует копростым образом на X, а $1 \neq y \in A$ называют копростым автоморфизмом группы X. $C = C_X(y)$ иногда называют стабилизатором автоморфизма y в группе X.

В [6] показано, что если y' = 1, где r – простое число и $|X:C| = p^a$, то $X = C \cdot O_p(X)$.

Целью настоящей работы является доказательство того, что если $|X:C| = p^{\alpha} \cdot q^{\beta}$, где p и q – различные простые делители порядка группы X, $\alpha \neq 0$, $\beta \neq 0$, то $X = C \cdot O_{\Pi}(X)$, где $\Pi = \{p, q\}$.

2. Обозначения и терминология

p – простое число.

|X| – число различных элементов множества X.

 S_p -подгруппа — силовская p-подгруппа.

|X:Y| – индекс подгруппы Y в группе X, т.е. |X|/|Y|.

 $|X|_p$ – порядок S_p -подгруппы X_p группы X.

 Π – множество простых чисел.

 Π' – дополнительное к Π множество простых чисел.

 $\Pi(B)$ – множество простых делителей числа |B|.

Если $\Pi(B) \subseteq \Pi$, то B называют Π -группой.

 $O_{p}(X) \ (O_{\Pi}(X))$ – наибольшая нормальная *p*-подгруппа (Π -подгруппа) группы X.

$$T^x = x^{-1}Tx.$$

 $N_{K}(T)$, $C_{K}(T)$ — соответственно нормализатор и централизатор множества T в подгруппе K из X (если K = X, то значок внизу условимся не писать).

Aut(B) – группа всех автоморфизмов группы B.

Out(B) – группа всех внешних автоморфизмов группы B.

Секцией группы называют фактор-группу ее некоторой подгруппы.

К-свободной группой называют группу, у которой нет секций, изоморфных группе К.

 $T \triangleleft X(T \triangleleft \triangleleft X)$ означает, что T есть нормальная (субнормальная) подгруппа в X.

K-группа — это группа, у которой простые неабелевы композиционные факторы являются известными простыми группами (из множеств $Chev \cup Spor \cup \{An/n \ge 5\}$).

3. Некоторые сведения о группах лиевского типа

Пусть K = GF(q) — конечное поле Галуа, состоящее из $q = p^n$ элементов, где p — простое число, n — натуральное число.

Пусть L_C — конечномерная простая алгебра Ли над полем C комплексных чисел; L_K — соответствующая L_C простая алгебра Ли над K.

Известно, что любая конечномерная простая алгебра Ли над C характеризуется диаграммой Дын-кина (связным графом с I вершинами) одного из видов:

$$A_1, l \ge 1; B_1, l \ge 2; C_1, l \ge 3; D_1, l \ge 4; C_2; F_4; E_6; E_7; E_8,$$
 (3.1)

где значок внизу означает число вершин в диаграмме Дынкина.

В соответствии с этим простые алгебры Ли подразделяются на 9 типов. Соответственно имеется 9 семейств комплексных простых групп Ли, являющихся группами автоморфизмов этих простых алгебр Ли L_C (Картан).

Конечные аналоги этих групп (автоморфизмов L_K) построил Шевалле [7]:

$$A_{l}(q); B_{l}(q); C_{l}(q); D_{l}(q); G_{2}(q); F_{4}(q); E_{6}(q); E_{7}(q); E_{8}(q).$$
 (3.2)

Их называют группами Шевалле нормального типа.

Позже Стейнбергом [8], Сузуки [9] и Ри [10, 11] построили так называемые скрученные типы конечных групп лиевского типа (${}^{\kappa}X_{l}(q)$):

$${}^{2}A_{l}(q), l \ge 2; {}^{2}D_{l}(q), l \ge 4; {}^{2}E_{6}(q); {}^{3}D_{4}(q);$$

$${}^{2}B_{2}(q), q = 2^{2m+1}; {}^{2}G_{2}(q), q = 3^{2m+1}; {}^{2}F_{4}(q), q = 2^{2m+1},$$

$$(3.3)$$

где k=2 или 3 и означает порядок симметрии соответствующей диаграммы Дынкина. Если k=1, то $X_1(q)$ – типа (3.2).

Группы Шевалле (3.2) вместе с вариациями Стейнберга, Сузуки-Ри (3.3) образуют множество конечных групп лиевского типа (или множество конечных групп Шевалле, обозначаемое символом $Chev = \bigcirc Chev(p)$, где p — характеристика поля K).

Группа X называется квазипростой, если X = X' и X/Z(X) — простая неабелева группа. Тогда говорят также, что X есть накрывающая группа для группы изоморфной X/Z(X). Каждая простая неабелева группа X обладает «универсальной» накрывающей группой X такой, что любая накрывающая для X есть

гомоморфный образ X. Тогда Z(X) называют мультипликатором Шура группы X[2], теорема 3.2]. Под группой Шевалле мы будем понимать как группу с единичным центром (присоединенные

версии), так и любую фактор-группу «универсальной» версии по центральной подгруппе.

Если $X \in Chev(p)$, то группа X / Z(X) за исключением 8 случаев [2, теорема 2.13] является простой неабелевой группой.

4. Используемые результаты

- 4.1. ТЕОРЕМА [5, теорема 7.1.2]. Пусть $X \in Chev(p)$, X простая группа, допускающая такую группу автоморфизмов, что (|A|, |X|) = 1. Тогда A сопряжена с некоторой подгруппой всех автоморфизмов основного поля, над которым определена группа X (то есть можно считать, что A состоит из полевых автоморфизмов группы X).
- 4.2. ЛЕММА [13, теорема 9-1]. Пусть $X \in Chev(p)$, X простая группа; y полевой автоморфизм группы $X; y^r = 1; r$ простое число; $(|X|, r) = 1; C = C_X(y)$. Пусть $X \cong^K X_l(p^n)$. Тогда $C_o = O^p(C) \cong^k X_l(p^{n/r})$, изоморфна подгруппе из $Inndiag(C_o)$.
- 4.3. ЛЕММА [5, теорема 2.5.12]. Пусть $X \in Chev(p)$; $q = p^n, X$ простая группа. Тогда группа O = Outdiag(X) нетривиальна в следующих случаях:

$$O \cong Z_{(l+1,q-1)}, \text{ если } X \in A_l(q);$$

$$O \cong Z_{(l+1,q+1)}, \text{ если } X \in {}^2A_l(q);$$

$$O \cong Z_{(2,q-1)}, \text{ если } X \in \left\{B_l(q); C_l(q); {}^2D_l(q), l = 2m; F_7(q)\right\};$$

$$O \cong E_{(2,q-1)}^2, \text{ если } X \in \left\{D_l(q), l = 2m\right\};$$

$$O \cong Z_{(4,q^l-1)}, \text{ если } X \in \left\{D_l(q), l = 2m+1\right\};$$

$$O \cong Z_{(4,q^l+1)}, \text{ если } X \in \left\{{}^2D_l(q), l = 2m+1\right\};$$

$$O \cong Z_{(3,q-1)}, \text{ если } X \in \left\{E_6(q)\right\};$$

$$O \cong Z_{(3,q+1)}, \text{ если } X \in \left\{E_6(q)\right\}.$$

- 4.4. ТЕОРЕМА [12, 14]. Пусть p простое число и $n \ge 2$. Тогда существует простое число z, такое, что z делит $(p^n 1)$, но z не делит $(p^m 1)$ для $1 \le m < n$, исключая возможности:
 - (1) p = 2, n = 6; или
 - (2) $p = 2^q 1$ простое число Мерсенна (в частности, q простое число) и n = 2.
- 4.5. ТЕОРЕМА [12]. Пусть p и q два простых числа; m и n натуральные числа, $m \ge 1$, $n \ge 1$. Предположим, что $p^m = q^n + 1$. Тогда имеет место одна из возможностей:
 - (1) q = 2, p = 3, n = 3, m = 2;
 - (2) q = 2, m = 1, n степень числа 2, $p = q^n + 1$ простое число Ферма;
 - (3) $p = 2, n = 1, q = p^m 1$ простое число Мерсенна (в частности, m простое число).
- 4.6. ТЕОРЕМА [13, теорема 9-2]. Пусть $X \in Chev(p)$; y полевой автоморфизм простого порядка r группы X. Если p и r нечетные числа, то $|X:C_X(y)|$ нечетное число.

5. Предварительные леммы

- 5.1. СОГЛАШЕНИЕ. Запись $(X, y, C, r, p^a s^b) \in 5.1$. всюду ниже означает, что X конечная группа, допускающая копростой автоморфизм y простого порядка r, $C = C_X(y)$ и $|X:C| = p^a s^b$, где p и s различные простые числа, делящие число |X|), $a \ne 0$, $b \ne 0$.
- 5.2. ЛЕММА. Пусть p и r простые числа; l, m, n целые числа. Предположим, что m есть делитель числа $(l+1, p^{n/r}-1)$. Тогда $(p^{kn}-1)/(p^{kn/r}-1)$ не делит m для любого целого числа $k \ge 1$ и r > 2.

Доказательство. Предположим противное, то есть, что $(p^{kn}-1)/(p^{kn/r}-1)$ делит m. Но тогда

$$(p^{kn}-1)/(p^{kn/r}-1) \leq p^{n/r}-1 \text{. Пусть } p^{kn/r}=x \text{. Тогда } \frac{x^r-1}{x-1}=x^{r-1}+x^{r-2}+\ldots+x+1=p^{\frac{kn}{r}(r-1)}+p^{\frac{kn}{r}(r-2)}+\ldots+p^{\frac{kn}{r}+1} \leq p^{n/r}-1 \text{. Это неравенство невозможно. Лемма доказана.}$$

5.3. ЛЕММА. Пусть p, r, l, m, n такие же числа, как и в условии леммы 5.2, и r < n. Предположим, что m есть делитель числа $(l+1, p^{n/r}+1)$. Тогда $(p^{kn}\pm 1)/(p^{kn/r}\pm 1)$ не делит m для любого целого числа $k \ge 1$ и r > 2.

этот случай из рассмотрения. Во втором случае $(x^r-1)(x-1)=x^{r-1}+x^{r-2}+...+x+1=p^{\frac{kn}{r}}+...+x+1=p^{\frac{kn}{r}}+1$ это, очевидно, невозможно. Лемма доказана.

5.4. ЛЕММА. Пусть $(X, y, C, r, p^a s^b) \in 5.1; q = p^n$, где p – простое число; $X \in Chev(p); X$ – простая группа. Тогда $X \notin A_I(q)$.

Доказательство. Предположим противное, то есть, что $X \in A_l(q)$. Тогда известно [2, с. 145], что $|X| = \frac{1}{(l+1, p^n-1)} \cdot p^{nl(l+1)/2} \left(p^{2n}-1\right) \left(p^{3n}-1\right) \dots \left(p^{(l+1)n}-1\right).$

Из лемм 4.2 и 4.3 следует, что $|C| = |O^{p'}(C)| \cdot m$, где m — делитель числа $|OutdiagA_l(p^{n/r})| = (l+1, p^{n/r} - 1)$. Из условия леммы и r > 3 следует, что $p^{nl(l+1)/2} > p^{nl(l+1)/2r}$. Поэтому из $O^{p'}(C) \cong A_l(p^{n/r})$ и условия леммы имеем:

$$\frac{1 \cdot (l+1, p^{n/r} - 1)}{(l+1, p^n - 1) \cdot m} \cdot \frac{(p^{2n} - 1)(p^{3n} - 1) \dots (p^{(l+1)n} - 1)}{(p^{2n/r} - 1)(p^{3n/r} - 1) \dots (p^{(l+1)n/r} - 1)} = s^b.$$
 (5.1)

Пусть $(l+1, p^{n/r}-1) = d, (l+1, p^n-1) = d \cdot b$. Тогда

$$(b,d) = 1 = (b, p^{n/r} - 1),$$
 (5.2)

ибо в противном случае $(l+1, p^{n/r}-1) \succ d$. Тогда (5.1) можно переписать в виде:

$$\frac{1}{b} \cdot \frac{(p^{2n}-1)}{(p^{2n/r}-1)} \cdots \frac{(p^{(l+1)n}-1)}{(p^{(l+1)n/r}-1)} = m \cdot s^b.$$
 (5.3)

По теореме 4.4 существует такой простой делитель t числа $p^{(l+1)n}-1$, который не делит p^i-1 для i<(l+1)n, либо (l+1)n=2 или 6. Ввиду выражения для |C| r делит n. Так как по условию (|X|,r)=1, то $r\neq 2,3$. Поэтому $(l+1)\cdot n\not\in\{2,6\}$.

Рассмотрим выражение

$$\frac{p^{2n}-1}{b\cdot (p^{2n/r}-1)} = \frac{(p^n+1)(p^n-1)}{b\cdot (p^{n/r}+1)(p^{n/r}-1)}.$$
 (5.4)

Так как r – простое (нечетное) число, то $(p^n+1)/(p^{n/r}+1)$ – целое число. Тогда ввиду (5.2) также $\frac{p^n-1}{b\cdot (p^{n/r}-1)}$ – целое число. На это число разделим обе части равенства (5.3.) получаем:

$$\frac{(p^{3n}-1)...(p^{(l+1)n}-1)}{(p^{3n/r}-1)...(p^{(l+1)n/r}-1)} = m_l \cdot s^a,$$
(5.5)

где m_1 есть делитель m, а $a \le b$.

Из леммы 5.2 следует, что s делит любой множитель в числителе левой части равенства (5.5). Поэтому, если (l+1)n > 3n, то $t \ne S$. Но тогда t делит m_1 , m_1 делит m_2 , m_3 делит $p^{n/r} - 1$ и получаем противоречие с теоремой 4.4.

Пусть теперь $3n \ge (l+1)n$, $l+1 \le 3$, $l \le 2$.

Если l = 2, то (5.5) принимает вид:

$$\frac{p^{3n}-1}{p^{3n/r}-1} = m_1 \cdot s^a \,. \tag{5.6}$$

Тогда $(l+1, p^n-1) = (3, p^n-1) \in \{1,3\}, (3, p^{n/r}-1) \in \{1,3\}.$

Рассмотрим три представляющиеся возможности:

(1)
$$(3, p^{n/r} - 1) = 1, (3, p^n - 1) = 1$$
;

(2)
$$(3, p^{n/r} - 1) = 1, (3, p^n - 1) = 3$$
;

(3)
$$(3, p^{n/r} - 1) = 3, (3, p^n - 1) = 3$$
.

Если имеет место возможность (1), то (5.1) принимает вид:

$$\frac{(p^{2n}-1)(p^{3n}-1)}{(p^{2n/r}-1)(p^{3n/r}-1)} = s^b.$$
(5.7)

Тогда s делит и $p^{3n}-1$ и $p^{2n}-1$. Это невозможно по теореме 4.4, если $3n \notin \{2,6\}$. Но выше было показано, что $3n \notin \{2,6\}$.

Если имеет место возможность (2), то (5.1) принимает вид:

$$\frac{(p^{2n}-1)(p^{3n}-1)}{3(p^{2n/r}-1)(p^{3n}-1)} = s^b, \quad \frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{3n}-1}{p^{3n}-1} = 3 \cdot s^b.$$
 (5.8)

Так как $3n \notin \{2,6\}$, то по теореме 4.4 существует простой делитель t, который делит $p^{3n}-1$, но не делит p^i-1 для $i \prec 3n$. Ясно, что t=s или 3. Если t=s, то $\frac{p^{2n}-1}{p^{2n}/r-1}=3$.

Из
$$\frac{(p^n-1)}{(p^{n/r}-1)} \cdot \frac{(p^n+1)}{(p^{n/r}+1)} = 3$$
 следует, что при $r \neq 1$ это невозможно. Если $t = 3$, то $\frac{p^{2n}-1}{p^{2n/r}-1} = s^c$,

 $c \le b$. Тогда s делит $p^n - 1$ и $p^n + 1$. Поэтому s = 2. Но тогда p > 2. Ввиду r > 2 имеем противоречие с теоремой 4.6.

Если имеет место возможность (3), то (5.1) принимает вид:

$$\frac{3}{3 \cdot m} \cdot \frac{(p^{2n} - 1)(p^{3n} - 1)}{(p^{2n/r} - 1)(p^{3n/r} - 1)} = s^b, \text{ где } m = 1 \text{ или } 3.$$
 (5.9)

Если m = 1, то (5.9) совпадает с (5.7). Если m = 3, то (5.9) совпадает с (5.8). Эти случаи исключены.

Пусть теперь l=1. Тогда $(l+1,p^{n/r}-1)\in\{1,2\}$, $(l+1,p^n-1)\in\{1,2\}$, а (5.1) принимает вид (5.4) с $b\in\{1,2\}$. (Это следует из (5.1) при рассмотрении трех возможных случаев: (1) $(l+1,p^{n/r}-1)=1$, $(l+1,p^n-1)=1$; (2) $(l+1,p^{n/r}-1)=1$, $(l+1,p^n-1)=2$; (3) $(l+1,p^{n/r}-1)=2$, $(l+1,p^n-1)=2$, (

Рассмотрим случай, когда в (5.4) b=1. Тогда $\frac{(p^n+1)(p^n-1)}{(p^{n/r}+1)(p^{n/r}-1)}=s^b$. Тогда s делит p^n+1 и

 $p^{n}-1$. Поэтому s=2, p>2 и имеем противоречие с теоремой 4.6.

Пусть теперь b = 2 в (5.4). Тогда

$$\frac{(p^n+1)(p^n-1)}{(p^{n/r}+1)(p^{n/r}-1)} = 2 \cdot s^b.$$
 (5.10)

Если s делит $p^n + 1$ и $p^n - 1$, то опять s = 2, p > 2 и имеем противоречие с теоремой 4.6.

Поэтому пусть s делит только p^n+1 . Тогда $\frac{p^n-1}{p^{n/r}-1}=2, p^n-1=2p^{n/r}-2$. Тогда

 $p^n-2p^{n/r}=-1$, откуда $p^n<2p^{n/r}$, $p^{n-\frac{n}{r}}<2$, $p^{\frac{nr-n}{r}}=p^{\frac{n(r-1)}{r}}<2$. Это невозможно при r>3 и r, делящем n .

Пусть теперь s делит только p^n-1 . Тогда $\frac{p^n+1}{p^{n/r}+1}=2, p^n+1=2p^{n/r}+2, p^n-2p^{n/r}=1$,

 $p^{n/r}(p^{n-r}-2)=1$. Откуда $p^{n/r}-2<1,\;p^{n/r}<3$. Это невозможно при $p>1,\,r>3,$ делящем n. Лемма доказана.

5.5. ЛЕММА. Пусть $(X, y, C, r, p^a s^b) \in 5.1, q = p^n$, где p – простое число, X – простая группа. Тогда $X \notin {}^2A_l(q)$.

Доказательство. Предположим, что $X \in {}^2A_l(q)$.

Тогда [2, с. 145],
$$|X| = \frac{1}{(l+1,p^n+1)} \cdot p^{\frac{nl(l+1)}{2}} (p^{2n}-1)(p^{3n}+1)...(p^{(l+1)n}-(-1)^{l+1}).$$

Из лемм 4.2 и 4.3 тогда следует, что $|C| = |O^{p'}(C)| \cdot m$, где m есть делитель числа $|Outdiag(^2A_l(p^{n/r}))| = (l+1, p^{n/r}+1), O^{p'}(C) \cong ^2A_l(p^{n/r})$. Так как 6 делит |X|, то r > 3, и r делит n. Так как

силовская p-подгруппа из $O^{p'}(C)$ имеет порядок p $\frac{nl(l+1)}{2r} < p$ $\frac{nl(l+1)}{2}$, то из условия леммы получаем, что

$$\frac{l+1, p^{n/r}+1}{m(l+1, p^n+1)} \cdot \frac{(p^{2n}-1)}{(p^{2n/r}-1)} \cdot \frac{(p^{3n}+1)}{(p^{3n/r}+1)} \cdots \frac{(p^{(l+1)n}-(-1)^{l+1})}{(p^{(l+1)n/r}-(-1)^{l+1})} = s^b.$$
 (5.11)

Пусть $(l+1, p^{n/r}+1) = d, (l+1, p^n+1) = db, (b, p^{n/r}+1) = (b, d) = 1$. Поэтому (5.11) можно переписать в виде:

$$\frac{1}{b} \cdot \frac{(p^{2n}-1)}{(p^{2n/r}-1)} \cdot \frac{(p^{3n}+1)}{(p^{3n/r}+1)} \cdots \frac{(p^{(l+1)n}-(-1)^{l+1})}{(p^{(l+1)n/r}-(-1)^{l+1})} = m \cdot s^b.$$
 (5.12)

Число $\frac{p^{2n}-1}{b\cdot (p^{n/r}-1)} = \frac{(p^n-1)(p^n+1)}{b\cdot (p^{n/r}-1)(p^{n/r}+1)}$ является целым числом ввиду (b,d)=1 и r>3. По-

этому, после сокращения обеих частей (5.12) на это число, получаем:

$$\frac{(p^{3n}+1)}{(p^{3n/r}+1)} \cdot \frac{(p^{4n}-1)}{(p^{4n/r}-1)} \dots \frac{(p^{(l+1)n}-(-1)^{l+1})}{(p^{(l+1)n/r}-(-1)^{l+1})} = m_1 \cdot s^a, a \le b.$$
 (5.13)

В силу леммы 5.3 $a \neq 0$, так как $l \geq 2$. Из лемм 5.2 и 5.3 следует, что s делит любой множитель в числителе левой части выражения (5.13).

Предположим, что $l \ge 5$. Тогда в числителе левой части (5.13) имеются множители $p^{4n}-1$ и $p^{6n}-1$. По теореме 4.4 существует такой простой делитель t числа $p^{6n}-1$, который не делит p^i-1 для i < 6n, либо $6n \in \{2,6\}$. Но, если $6n \in \{2,6\}$, то n=3 или 1, что невозможно для полевого автоморфизма p^i порядка p^i или p^i ввиду p^i ввиду p^i за Поэтому p^i существует и по предыдущему замечанию, что p^i делит и p^i за тогда из (5.13) следует, что p^i делит p^i делит p^i за тогда как p^i есть целое число, делящее p^i за и $p^$

Пусть теперь l < 5 (l = 2, 3, 4). Если l = 4, то l + 1 = 5 и $(5, p^{n/r} + 1) \in \{5,1\}, (5, p^n + 1) \in \{5,1\}$.

Пусть сначала $(5, p^{n/r} + 1) = 5$. Тогда и $(5, p^n + 1) = 5$, m = 5 или 1. Если m = 5, то (5.11) принимает вид:

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{3n}+1}{p^{3n/r}+1} \cdot \frac{p^{4n}-1}{p^{4n/r}-1} \cdot \frac{p^{5n}+1}{p^{5n/r}+1} = 5 \cdot s^b.$$
 (5.14)

По теореме 4.4 существует простой делитель t, который делит $p^{4n}-1$, но не делит p^i-1 для i < 4n, так как $4n \notin (5.6)$. Так как 5 делит p^n+1 , то 5 делит $p^{2n}-1$. Поэтому $t \ne 5$. Значит, t = s. Но тогда $\frac{p^{2n}-1}{p^{2n/r}-1} = 5$, s делит $p^{5n}+1$ и $p^{3n}+1$. Значит, t делит их разность $p^{5n}-p^{3n}=p^{3n}(p^{2n}-1)$, что противоречит теореме 4.4.

Если m = 1, то (5.11) принимает вид:

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{3n}+1}{p^{3n/r}+1} \cdot \frac{p^{4n}-1}{p^{4n/r}-1} \cdot \frac{p^{5n}+1}{p^{5n/r}+1} = s^b.$$
 (5.15)

(5.15) невозможно по теореме 4.4.

Пусть теперь $(5, p^{n/r} + 1) = 1$, $(5, p^n + 1) = 5$, m = 1. Тогда (5.11) принимает вид (5.14), что исключено выше. Если же $(5, p^{n/r} + 1) = 1$, $(5, p^n + 1) = 1$, m = 1, то (5.11) принимает вид (5.15) и это также исключено выше.

Если l = 3, то l + 1 = 4 и $(4, p^{n/r} + 1) \in \{1, 2, 4\}$, $(4, p^n + 1) \in \{1, 2, 4\}$, $m \in \{1, 2, 4\}$.

Пусть сначала $(4, p^{n/r} + 1) = 4$. Тогда $(4, p^n + 1) = 4$, $m \in \{1, 2, 4\}$.

Если m = 1, то (5.11) принимает вид:

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{3n}+1}{p^{3n/r}+1} \cdot \frac{p^{4n}-1}{p^{4n/r}-1} = s^b.$$
 (5.16)

Но по теореме 4.4, ввиду $4n \notin \{2, 6\}$ это невозможно.

Если $m \in \{2, 4\}$, то (5.11) принимает вид:

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{3n}+1}{p^{3n/r}+1} \cdot \frac{p^{4n}-1}{p^{4n/r}-1} = m \cdot s^b, \quad m \in \{2, 4\}.$$
 (5.17)

По теореме 4.4 ввиду $4n \notin \{2,6\}$ существует такой простой делитель t числа $p^{4n}-1$, который не делит p^i-1 , i<4n. Из (5.17) следует, что $t\in \{2,s\}$. Так как $(4,p^n+1)=4$, то $p^{2n}-1$ делится на 4. Значит, t=s. Но тогда $(p^{2n}-1)/(p^{2n/r}-1)\in \{2,4\}$. Откуда $p^{2n}-1=2p^{2n/r}-2$ или $p^{2n}-1=2p^{2n/r}-2$ или $p^{2n}-1=4p^{2n/r}-4$. Тогда $p^{2n}-2p^{2n/r}=-1$ или $p^{2n}-4p^{2n/r}=-3$. Откуда $p^{2n/r}(p^{2n/r}-2)=-1$ или $p^{2n/r}(p^{2n/r}-2)=-1$ или $p^{2n/r}(p^{2n/r}-2)=-3$. Это невозможно, так как r делит n и r>3.

Пусть далее $(4, p^{n/r} + 1) = 2$, $(4, p^n + 1) = 2$ или 4, m = 1 или 2.

Если $(4, p^{n/r} + 1) = 2$, $(4, p^n + 1) = 2$, то (5.11) принимает вид:

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{3n}+1}{p^{3n/r}+1} \cdot \frac{p^{4n}-1}{p^{4n/r}-1} = m \cdot s^b, \ m \in \{1, 2\}.$$
 (5.18)

Если в (5.18) m=1, то имеем противоречие с теоремой 4.4 ввиду $4n \notin \{2,6\}$ и леммы 5.3.

Поэтому пусть в (5.18) m=2. Так как (4, p^n+1) = 2, то 2 делит $p^{2n}-1=(p^n+1)(p^n-1)$. По теореме 4.4 существует простой делитель t, который делит $p^{4n}-1$, но не делит p^i-1 для i<4n. Поэтому из (5.18) следует, что t=s, $\frac{p^{2n}-1}{p^{2n/r}-1}=2$. Этот случай исключен из рассмотрения в рассуждениях после (5.17).

Если $(4, p^{n/r} + 1) = 2$, $(4, p^n + 1) = 4$, то (5.11) принимает вид:

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{3n}+1}{p^{3n/r}+1} \cdot \frac{p^{4n}-1}{p^{4n/r}-1} = m \cdot 2 \cdot s^b, \ m \in \{1, 2\}.$$
 (5.19)

Если в (5.19) m=1, то (5.19) совпадает с (5.18) при m=2 и этот случай исключен выше.

Поэтому пусть в (5.19) m=2. Тогда (5.19) совпадает с (5.17) с m=4 и этот случай также исключен из рассмотрения выше.

Пусть теперь $(4, p^{n/r} + 1) = 1$. Тогда и m = 1. $(4, p^n + 1) \in \{1, 2, 4\}$.

Тогда (5.11) принимает вид (5.16), если $(4, p^n + 1) = 1$, вид (5.17) с m = 2, если $(4, p^n + 1) = 2$ и вид (5.17) с m = 4, если $(4, p^n + 1) = 4$. Все эти возможности исключены из рассмотрения выше. Этим лемма полностью доказана.

5.6. ЛЕММА. Пусть $(X, y, C, r, s^b \cdot p^a) \in 5.1, q = p^n, p$ – простое число, X – простая неабелева группа. Тогда $X \notin B_I(q)$.

Доказательство. Предположим, что $X \in B_l(q)$. Тогда [2, с. 145]:

$$|X| = \frac{1}{(2, p^n - 1)} \cdot (p^n)^{l^2} \cdot (p^{2n} - 1)(p^{4n} - 1) \dots (p^{2nl} - 1), l \ge 2.$$

Из лемм 4.2 и 4.3 тогда следует, что $|C| = |O^{p'}(C)| \cdot m$, где m есть делитель числа $(2, p^{n/r} - 1)$,

$$|C| = \frac{m}{(2, p^{n/r} - 1)} \cdot (p^{n/r})^{2} (p^{2n/r} - 1)(p^{4n/r} - 1) \dots (p^{2nl/r} - 1).$$

Так как (|X|, r)) = 1, то r > 3, поэтому $p^{nl^2} > p^{nl^2/r}$. Поэтому

$$|X:C| = \frac{(2,p^{n/r}-1)}{m \cdot (2,p^n-1)} \cdot \frac{(p^{2n}-1)}{(p^{2n/r}-1)} \cdot \dots \frac{(p^{2nl}-1)}{(p^{2nl/r}-1)} = s^b.$$
 (5.20)

Тогда

$$\frac{(p^{2n}-1)}{(p^{2n/r}-1)} \cdot \frac{(p^{4n}-1)}{(p^{4n/r}-1)} \cdot \frac{(p^{2nl}-1)}{(p^{2nl/r}-1)} = m \cdot s^b, \text{ где m} = 1 \text{ или 2}.$$
 (5.21)

Так как $l \ge 2$, то в левой части (5.21) имеется, по крайней мере, 2 множителя. По теореме 4.4 существует такой простой делитель t числа $p^{2nl}-1$, который не делит p^i-1 для i < 2nl, либо $2nl \in \{2, 6\}$. Так как r > 3 и r делит n ввиду выражения для |C|, то $2nl \notin \{2, 6\}$. Поэтому t не делит $p^{2n}-1$. Если t = s, то из (5.21) следует, что $\frac{p^{2n}-1}{p^{2n/r}-1} = 2$ ($\frac{p^{2n}-1}{p^{2n/r}-1} \ne 1$). Это, очевидно, невозможно.

Если $t \neq s$, то t = 2 ввиду (5.21). Но тогда $\frac{p^{2nl}-1}{p^{2nl/r}-1} = 2$, что также невозможно. Лемма доказана.

5.7. ЛЕММА. Пусть $(X, y, C, r, s^b \cdot p^a) \in 5.1, q = p^n, p$ — простое число, X — простая группа. Тогда $X \notin^{2^n} B_2(q)$.

Доказательство. Предположим, что $X \in {}^2B_2(q)$, p = 2. Тогда по теореме 9-1 из [13] имеем:

$$|X| = p^{2n}(p^n - 1)(p^{2n} + 1), |C| = |O^{p'}(C)| = p^{2n/r}(p^{n/r} - 1)(p^{2n/r} + 1), r > 2.$$

Поэтому

$$\frac{2^{n}-1}{2^{n/r}-1} \cdot \frac{2^{2n}+1}{2^{2n/r}+1} = s^{b}. \tag{5.22}$$

Тогда s делит $2^n - 1$ и $2^{2n} + 1$. Поэтому s делит их сумму $2^{2n} + 2^n = 2^n (2^n + 1)$. Тогда s делит $2^n + 1$ и $(2^n + 1) + (2^n - 1) = 2^{n+1}$, что противоречит тому, что s > 2. Лемма доказана.

5.8. ЛЕММА. Пусть $(X, y, C, r, s^b \cdot p^a) \in$ 5.1. Тогда $X \notin C_l(q)$, $l \ge 3$, $q = p^n$.

Доказательство. Известно [2, с. 145], что

$$|X| = \frac{1}{(2, p^{n} - 1)} \cdot p^{nl^{2}} \cdot (p^{2n} - 1)(p^{4n} - 1) \dots (p^{2nl} - 1).$$

Поэтому лемма доказывается, как и лемма 5.6. Лемма доказана.

5.9. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1, q = p^n$, где p – простое число, $X \in Chev(p)$, X – простая группа. Тогда $X \notin D_l(q)$, $l \ge 4$.

Доказательство. Известно [2, с. 145], что если $X \in D_l(q)$, то

$$|X| = \frac{1}{(4, p^{nl} - 1)} \cdot p^{nl(l-1)} (p^{nl} - 1)(p^{2n} - 1)(p^{4n} - 1) \dots (p^{2n(l-1)} - 1).$$

По лемме 4.2 тогда $|C| = |O^{p'}(C)| \cdot m$, где m есть делитель числа $(4, p^{nl/r} - 1)$ ввиду леммы 4.3. Таким образом, $m \in \{1, 2, 4\}$. Ввиду r > 3 $p^{nl(l-1)} > p^{nl(l-1)/r}$. Поэтому условие леммы дает нам, что |X:C| есть число вида:

$$\frac{(4, p^{nl/r} - 1)}{m \cdot (4, p^{nl} - 1)} \cdot \frac{p^{nl} - 1}{p^{nl/r} - 1} \cdot \frac{p^{2n} - 1}{p^{2n/r} - 1} \dots \frac{p^{2n(l-1)} - 1}{p^{2n(l-1)/r} - 1} = s^b.$$
 (5.23)

Пусть сначала $(4, p^{nl/r} - 1) = 4$. Тогда и $(4, p^{nl} - 1) = 4$, $m \in \{1, 2, 4\}$. Тогда (5.23) можно переписать в виде

$$\frac{p^{nl}-1}{p^{nl/r}-1} \cdot \frac{p^{2n}-1}{p^{2n/r}-1} \cdots \frac{p^{2n(l-1)}-1}{p^{2n(l-1)/r}-1} = m \cdot s^b, \ m \in \{1, 2, 4\}.$$
 (5.24)

Если m=1, то имеем противоречие с теоремой 4.4 и леммой 5.2, так как $2n(l-1) \notin \{2,6\}$ ввиду того, что r>3 делит n (так как < y> есть подгруппа циклической группы порядка n). Пусть теперь $m\in \{2,4\}$. Так как m делит $p^{nl/r}-1$, то m делит и $p^{nl}-1$. По теореме 4.4 существует простой делитель t, который делит $p^{2n(l-1)}-1$, но не делит p^i-1 для i<2n(l-1). Так как nl<2n(l-1), то из (5.24) следует, что t=s. Из $l-1\geq 3$ следует, что в левой части (5.24) не менее четырех сомножителей. Поэтому из (5.24) следует, что s делит, по крайней мере, два из них (ввиду m=2 или 2·2). Опять имеем противоречие с теоремой 4.4.

Пусть теперь $(4, p^{nl/r} - 1) = 2$. Тогда $(4, p^{nl} - 1) \in \{2, 4\}, m \in \{1, 2\}$. Если $(4, p^{nl} - 1) = 2, m = 1$, то имеем случай (5.24) с m = 1, который исключен. Если m = 2, то имеем случай (5.24) с m = 2, который также исключается. Если $(4, p^{nl} - 1) = 4$, то при m = 1 имеем случай (5.24) с m = 2, который исключен. Если m = 2, то имеем случай (5.24) с m = 4, который также исключается, как и выше.

Пусть теперь $(4, p^{nl/r}) = 1$, $(4, p^{nl} - 1) \in \{1, 2, 4\}$, m = 1. Ясно, что тогда из (5.23) следует аналог (5.24), что исключено. Лемма доказана.

5.10. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1$. Тогда $X \notin {}^2D_l(q)$, где $q = p^n$, $l \ge 4$, p — простое число.

Доказательство. Если $X \in {}^{2}D_{l}(q)$, то [2, с. 145]:

$$|X| = \frac{1}{(4, p^{nl} + 1)} \cdot p^{nl(l-1)} \cdot (p^{nl} + 1)(p^{2n} - 1)(p^{4n} - 1)...(p^{2n(l-1)} - 1).$$

Из лемм 4.2 и 4.3 тогда следует, что $|C| = |O^{p'}(C)| \cdot m$, где m есть делитель числа $(2, p^n - 1)$ или $(4, p^{nl} + 1)$. Поэтому $m \in \{1, 2, 4\}$.

Из условия леммы следует, что X:C есть число вида:

$$\frac{(4,p^{nl/r}+1)}{m\cdot(4,p^{nl}+1)}\cdot\frac{p^{nl(l-1)}}{p^{nl(l-1)/r}}\cdot\frac{p^{2n}-1}{p^{2n/r}-1}\cdot\frac{p^{4n}-1}{p^{4n/r}-1}\cdots\frac{p^{2n(l-1)}-1}{p^{2n(l-1)/r}-1}\cdot\frac{p^{nl}+1}{p^{nl/r}+1}=p^a\cdot s^b. \tag{5.25}$$

Из r > 3 следует, что $\frac{p^{nl(l-1)}}{p^{nl(l-1)/r}} = p^a$. Поэтому (5.25) можно переписать в виде:

$$\frac{(4, p^{nl/r} + 1)}{(4, p^{nl} + 1)} \cdot \frac{p^{nl} + 1}{p^{nl/r} + 1} \cdot \frac{p^{2n} - 1}{p^{2n/r} - 1} \cdot \frac{p^{4n} - 1}{p^{4n/r} - 1} \cdot \frac{p^{2n(l-1)} - 1}{p^{2n(l-1)/r} - 1} = m \cdot s^b, m \in \{1, 2, 4\}.$$
 (5.26)

Ясно, что $\frac{(4, p^{nl} + 1)}{(4, p^{nl/r} + 1)} \in \{1, 2, 4\}$. Поэтому (5.26) можно переписать в виде:

$$\frac{p^{nl}+1}{p^{nl/r}+1} \cdot \frac{p^{2n}-1}{p^{2n/r}-1} \cdots \frac{p^{2n(l-1)}-1}{p^{2n(l-1)/r}-1} = 2^c \cdot s^b, c \le 4.$$
 (5.27)

Ясно, что $2n(l-1) \notin \{2,6\}$ ввиду $l-1 \ge 3$ и того, что r>3 делит n. Поэтому из теоремы 4.4 следует, что существует простой делитель t числа $p^{2n(l-1)}-1$, который не делит p^i-1 для i<2n(l-1).

Если
$$t=s$$
, то s не делит $p^{2n(l-2)}-1$ и тогда $\frac{p^{2n(l-2)}-1}{p^{2n(l-2)/r}-1}=2^e$, $\frac{p^{2n(l-2)}-1}{p^{2n(l-2)/r}-1}=2^f$,

$$\frac{p^{2n(l-3)}-1}{p^{2n(l-3)/r}-1}=2^k, e+f+k \le c \le 4.$$

В частности, p > 2. Тогда и $\frac{p^{nl}+1}{p^{nl/r}+1} = 2^h \neq 1$. Поэтому $e+f+k+h \leq c \leq 4$ и h=1 . Тогда

$$p^{nl} + 1 = 2p^{nl/r} + 2$$
, $p^{nl} - 2p^{nl/r} = 1$, $p^{nl/r}(p^{nl-\frac{nl}{r}} - 2) = 1$.

Это невозможное равенство ввиду $nl > \frac{nl}{r}$ и r > 3. Лемма доказана.

5.11. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1$, $q = p^n$, p – простое число. Тогда $X \notin G_2(q)$. Доказательство. Если $X \in G_2(q)$, то [2, с. 145]:

$$|X| = p^{6n}(p^{2n} - 1)(p^{6n} - 1), |C| = |O^{p'}(C)| = p^{6n/r}(p^{2n/r} - 1)(p^{6n/r} - 1)$$

по теореме 9-1 (1) (с) в [13].

По условию (ввиду r > 3):

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{6n}-1}{p^{6n/r}-1} = s^b.$$
 (5.28)

Так как r > 3 делит n, то $6n \notin \{2, 6\}$. По теореме 4.4 существует простой делитель t, который делит $p^{6n} - 1$ и не делит $p^i - 1$ для i < 6n. Из (5.28) следует, что $t \neq s$. Но тогда t делит |C|. Противоречие с выбором t по теореме 4.4 доказывает лемму.

5.12. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1, q = p^n, p$ — простое число. Тогда $X \notin {}^2G_2(q)$. Доказательство. p = 3. Известно [2, c. 145], что

$$|X| = p^{3n}(p^n - 1)(p^{3n} + 1), |C| = |O^{p'}(C)| = p^{3n/r}(p^{n/r} - 1)(p^{3n/r} + 1)$$

по теореме 9-1 из [13].

По условию

$$\frac{p^n - 1}{p^{n/r} - 1} \cdot \frac{p^{3n} + 1}{p^{3n/r} + 1} = s^b. \tag{5.29}$$

Из (5.29) следует, что s делит p^n-1 и $p^{3n}+1$. Поэтому s делит $p^{3n}+p^n=p^n(p^{2n}+1)$, то есть s делит $p^{2n}+1$. Тогда s делит $(p^{2n}+1)+(p^n-1)=p^n(p^n+1)$, то есть s делит p^n+1 . Тогда s делит $(p^n+1)-(p^n-1)=2$, то есть s=2. Но p=3>2 и по теореме 9-2 (5) из [13] s>2. Это противоречие по-казывает, что $X\not\in^2 G_2(q)$ и лемма доказана.

5.13. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1, q = p^n$, где p – простое число. Тогда $X \notin \{F_4(q)\}$. Доказательство. Если $X \in \{F_4(q)\}$, то известно [2, с. 145], что

$$|X| = p^{24n}(p^{2n} - 1)(p^{6n} - 1)(p^{8n} - 1)(p^{12n} - 1),$$

$$|C| = |O^{p'}(C)| = p^{24n/r}(p^{2n/r} - 1)(p^{6n/r} - 1)(p^{8n/r} - 1)(p^{12n/r} - 1)$$

по теореме (9-1) в [13] и $|X:C| = p^a \cdot s^b$ влечет

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{6n}-1}{p^{6n/r}-1} \cdot \frac{p^{8n}-1}{p^{8n/r}-1} \cdot \frac{p^{12n}-1}{p^{12n/r}-1} = s^b.$$
 (5.30)

 $12n \notin \{2, 6\}$. Поэтому по теореме 4.4 существует простой делитель t, который делит $p^{12n} - 1$, но не делит $p^i - 1$, i < 12n. Из (5.29) следует, что $t \neq s$. Но тогда t делит |C|, что опять противоречит выбору t по теореме 4.4. Лемма доказана.

5.14. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1, q = p^n, p$ – простое число. Тогда $X \notin {}^2F_4(q)$. Доказательство. Если $X \in {}^2F_4(q)$, то известно [2, c. 145], что p = 2,

$$|X| = p^{12n}(p^n - 1)(p^{3n} + 1)(p^{4n} - 1)(p^{6n} + 1),$$

$$|C| = |O^{p'}(C)| = p^{12n/r}(p^{n/r} - 1)(p^{3n/r} + 1)(p^{4n/r} - 1)(p^{6n/r} + 1)$$

по теореме 9-1 в [13] и из условия следует, что

$$\frac{p^{n}-1}{p^{n/r}-1} \cdot \frac{p^{3n}+1}{p^{3n/r}+1} \cdot \frac{p^{4n}-1}{p^{4n/r}-1} \cdot \frac{p^{6n}+1}{p^{6n/r}+1} = s^{b}.$$
 (5.31)

Но тогда из (5.30) следует, что s делит $p^n-1,p^{3n}+1$ и $p^{4n}-1$. Поэтому s делит $p^{4n}+p^{3n}=p^{3n}(p^n+1)$. Тогда s делит $(p^n+1)-(p^n-1)=2$. То есть s=2. Это невозможно, так как p=2. Лемма доказана.

5.15. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1, p$ — простое число. Тогда $X \notin \{E_6(q)\}$. Доказательство. Если $X \in \{E_6(q)\}$, то известно [2, с. 145], что

$$|X| = \frac{1}{(3, p^n - 1)} p^{36n} (p^{2n} - 1)(p^{5n} - 1)(p^{6n} - 1)(p^{8n} - 1)(p^{9n} - 1)(p^{12n} - 1),$$

и по теореме 9-1 в [13]:

$$|C| = |O^{p'}(C)| \cdot m = \frac{m}{(3, p^{n/r} - 1)} \cdot p^{36n/r} (p^{2n/r} - 1)(p^{5n/r} - 1)(p^{6n/r} - 1)(p^{8n/r} - 1)(p^{9n/r} - 1)(p^{12n/r} - 1)$$
 где m делит $(3, p^{n/r} - 1)$, т.е. $m = 1$ или $3, r > 3$.

По условию

$$\frac{(3,p^{n/r})}{m \cdot (3,p^n-1)} \cdot \frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{5n}-1}{p^{5n/r}-1} \cdot \frac{p^{6n}-1}{p^{6n/r}-1} \cdot \frac{p^{8n}-1}{p^{8n/r}-1} \cdot \frac{p^{9n}-1}{p^{9n/r}-1} \cdot \frac{p^{12n}-1}{p^{12n/r}-1} = s^b. \tag{5.32}$$

Из теоремы 4.4 следует, что существует простой делитель t числа $p^{12n}-1$ такой, что t не делит p^i-1 для i<12n (12 $n\not\in\{2,6\}$). Из (5.31) следует, что $t\neq s$ (s и t не делят числа $\frac{(3,p^{n/r}-1)}{m(3,p^n-1)}$, которые могут принимать только значения 1 и $\frac{1}{3}$). Но тогда t должно делить |C|, что ввиду r>3 противоречит теореме 4.4. Лемма доказана.

5.16. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1, p$ — простое число, $q = p^n$. Тогда $X \notin {^2E_6(q)}$. Доказательство. Если $X \in {^2E_6(q)}$, то известно [2, с. 145; 13, теорема 9-1, леммы 4.2, 4.3], что

$$|X:C| = \frac{(3, p^{n/r} + 1)}{m \cdot (3, p^n + 1)} \cdot \frac{p^{36n}}{p^{36n/r}} \cdot \frac{p^{2n} - 1}{p^{2n/r} - 1} \cdot \frac{p^{5n} + 1}{p^{5n/r} + 1} \cdot \frac{p^{6n} - 1}{p^{6n/r} - 1} \cdot \frac{p^{6n/r} - 1}{p^{6n/r} - 1} \cdot \frac{p^{9n} + 1}{p^{9n/r} - 1} \cdot \frac{p^{12n} - 1}{p^{12n/r} - 1} = p^a \cdot s^b,$$
(5.33)

где m делит $(3, p^{n/r} + 1)$. Очевидно $\frac{p^{36n}}{p^{36n/r}} = p^a$. Ясно, что $\frac{(3, p^{n/r} + 1)}{m \cdot (3, p^n + 1)} \in \{1, 1/3\}$. Поэтому $s \neq 3$ в (5.33) ввиду теоремы 4.4 и $12n \notin \{2, 6\}$. Поэтому s делит все множители числителя левой части (5.33)

вида $p^i \pm 1$. Поэтому s делит $(p^{9n}+1)+(p^{8n}-1)=p^{8n}(p^n+1)$ и $\frac{p^{2n}-1}{p^{2n/r}-1}=\frac{(p^n-1)(p^n+1)}{(p^{n/r}-1)(p^{n/r}+1)}$.

В частности, s делит $\frac{p^n-1}{p^{n/r}-1}$ и p^n-1 . Но тогда s делит $p^n+1+p^n-1=2p^n$, то есть s=2. Ввиду

 $s \neq p \mid X : C \mid$ должно быть нечетным числом по теореме 4.6. Поэтому $s \neq 2$. Противоречие доказывает лемму.

5.17. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1, p$ — простое число, $q = p^n$. Тогда $X \notin \{E_7(q)\}$. Доказательство. Если $X \in \{E_7(q)\}$, то из лемм 4.1, 4.2 и [2, с. 145] следует, что

$$|X| = \frac{1}{(2, p^{n} - 1)} p^{63n} (p^{2n} - 1)(p^{6n} - 1)(p^{8n} - 1)(p^{10n} - 1)(p^{12n} - 1)(p^{14n} - 1)(p^{18n} - 1),$$

$$\begin{split} |C| = |O^{p'}(C)| \cdot m &= \frac{m}{(2, p^{n/r} - 1)} p^{63n/r} (p^{2n/r} - 1)(p^{6n/r} - 1)(p^{8n/r} - 1)(p^{10n/r} - 1)(p^{12n/r} - 1) \times \\ &\times (p^{14n/r} - 1)(p^{18n/r} - 1), \end{split}$$

где m делит $(2, p^{n/r} - 1)$. По условию

$$\frac{(2, p^{n/r} - 1)}{m \cdot (2, p^n - 1)} \cdot \frac{p^{2n} - 1}{p^{2n/r} - 1} \cdot \frac{p^{6n} - 1}{p^{6n/r} - 1} \cdot \frac{p^{8n} - 1}{p^{8n/r} - 1} \cdot \frac{p^{10n} - 1}{p^{10n/r} - 1} \cdot \frac{p^{12n} - 1}{p^{12n/r} - 1} \times \frac{p^{14n} - 1}{p^{14n/r} - 1} \cdot \frac{p^{18n} - 1}{p^{18n/r} - 1} = s^b.$$
(5.34)

Числа $\frac{m}{(2,p^{n/r}-1)}$ и $\frac{(2,p^{n/r})}{m\cdot(2,p^n-1)}$ принимают значения 1 или 1/2. Поэтому t не делит эти числа,

где t — простой делитель числа $p^{18n}-1$, который не делит p^i-1 для i<18n, который существует по теореме 4.4 ввиду $18n \notin \{2,6\}$. Но тогда из (5.34) следует, что $t \neq s$. Значит t делит |C|, что опять противоречит выбору t по теореме 4.4 ввиду r>3. Лемма доказана.

5.18. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1$, p – простое число, $q = p^n$. Тогда $X \notin \{E_8(q)\}$. Доказательство. Если $X \in \{E_8(q)\}$, то r > 3 и $|X:C| = p^b \cdot s^a$ дает нам [2, с. 145,

леммы 4.2, 4.3]), что

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{8n}-1}{p^{8n/r}-1} \cdot \frac{p^{12n}-1}{p^{12n/r}-1} \cdot \frac{p^{14n}-1}{p^{14n/r}-1} \cdot \frac{p^{18n}-1}{p^{18n/r}-1} \times \frac{p^{20n}-1}{p^{20n/r}-1} \cdot \frac{p^{24n}-1}{p^{24n/r}-1} \cdot \frac{p^{30n}-1}{p^{30n/r}-1} = s^{b}.$$
(5.35)

Из (5.35) следует, что $t \neq s$, где t – простой делитель числа p^{30n} – 1, который не делит p^i – 1 для i < 30n (ввиду теоремы 4.4). Но тогда t делит |C|, что опять противоречит теореме 4.4. Лемма доказана.

5.19. ЛЕММА. Пусть $(X, y, C, r, p^a \cdot s^b) \in 5.1, p$ — простое число, $q = p^n$. Тогда $X \notin {}^3D_4(q)$.

Доказательство. Предположим противное, то есть, что $X \cong {}^3D_4(q)$. Тогда известно [2, с. 145; 13, теорема 9-1], что

$$|X| = p^{12n} (p^{2n} - 1)(p^{8n} + p^{4n} + 1)(p^{6n} - 1),$$

$$|C| = |O^{p'}(C)| = p^{12n/r} (p^{2n/r} - 1)(p^{8n/r} + p^{4n/r} + 1)(p^{6n/r} - 1)$$

и по условию леммы ввиду r > 3 имеем:

$$\frac{p^{2n}-1}{p^{2n/r}-1} \cdot \frac{p^{8n}+p^{4n}+1}{p^{8n/r}p^{4n/r}+1} \cdot \frac{p^{6n}-1}{p^{6n/r}-1} = s^b.$$
 (5.36)

Ясно, что $6n \notin \{2, 6\}$, так как r > 3 делит n. По теореме 4.4 существует простой делитель t, который делит $p^{6n} - 1$, но не делит $p^i - 1$ для i < 6n. Но из (5.36) следует, что s делит $p^{2n} - 1$. Противоречие, доказывающее, что $X \notin {}^{3}D_{4}(q)$. Лемма доказана.

5.20. ТЕОРЕМА [15, теорема 9.1.11; 16, леммы 2.2, 2.3; 17, следствия 0.3, 0.4, 0.5; 18, лемма 2.12]. Пусть A есть Π' -группа автоморфизмов Π -группы X, обладающей свойством $B_{\mathbf{G}}$ (в смысле Φ . Холла), $B = C_X(A)$. Тогда:

- (1) по крайней мере, одна S_{σ} -подгруппа из XA-инвариантна;
- (2) любые две A-инвариантные S_{σ} -подгруппы из X сопряжены элементами из B;
- (3) любая A-инвариантная σ -подгруппа из X содержится в A-инвариантной S_{σ} -подгруппе из X;

- (4) если $K \triangleleft X$ и K есть A-инвариантная подгруппа, то $C_{X/K}(A) = C_X(A)K/K$;
- (5) если $H \subseteq B$, то $N_X(H) = C_X(H)(N_X(H) \cap B)$;
- (6) если $y \in A$, $y^P = 1$ и H есть y-инвариантная нормальная в X подгруппа, K y-инвариантная подгруппа в X и X = HK, то $C_X(y) = C_H(y)C_K(y)$;
- (7) если H есть A-инвариантная подгруппа из X, то $N_X(H)$ и $C_X(H)$ являются A-инвариантными подгруппами.

6. Основной результат

6.1. ТЕОРЕМА. Пусть X – конечная K-группа; y – ее копростой автоморфизм простого порядка r; $C = C_X(y)$. Если $|X:C| = p^\alpha \cdot q^\beta$, где p и q – различные простые числа; $\alpha \neq 0 \neq \beta$; $\Pi = \{p, q\}$, то $X = C \cdot O_\Pi(X)$.

Доказательство. Предположим, что X – простая неабелева группа. Так как X есть K-группа, то $X \in Chev \cup Spor \cup \{An/n \ge 5\}$ [2, c. 145 – 146].

Из теорем 4.239 и 4.240 в [2] следует, что, возможно $X \in Chev$. Из лемм 5.4 – 5.19 следует, что $X \notin Chev$. Поэтому пусть $1 \neq N \triangleleft X$ и $N \subset X$. Пусть $Y = X\lambda < y >$, M – минимальная нормальная подгруппа группы Y, лежащая в X. Тогда M есть прямое произведение изоморфных простых групп.

Рассмотрим отдельно два случая.

I. M — элементарная абелева группа. Тогда $|M| = s^k$, где s — простое число, k — целое число. Группа $\overline{X} = X/M$ удовлетворяет условию теоремы по теореме 5.20 (4). (Если $|\overline{X}:\overline{C}| = p^a$ или $|\overline{X}:\overline{C}| = q^b$, то $\overline{X} = \overline{C} \cdot O_{\overline{H}}(\overline{X})$, где $\overline{H} = \{p\}$ или $\overline{H} = \{q\}$ по [6]). По индуктивному заключению $\overline{X} = \overline{C} \cdot O_{\overline{H}}(\overline{X})$. Если $s \in \overline{H}$, то все доказано. Если $s \notin \overline{H}$, то прообраз K группы $O_{\overline{H}}(\overline{X})$ содержит M. Ясно, что K — разрешимая группа, так как $|K/M| = p^\alpha \cdot q^\beta$. Если K < X, то из $K \lhd Y$ следует, что $C \cap K$ имеет в K \overline{H} -индекс и применение индукции к K дает нам, что $K = (C \cap K) \cdot O_{\overline{H}}(K)$. Из $O_{\overline{H}}(K) \leq O_{\overline{H}}(X)$ тогда следует, что $X = C \cdot K = C \cdot O_{\overline{H}}(X)$ и все доказано.

Поэтому пусть K = X. Но тогда M есть силовская S-подгруппа в X. Из $s \notin \Pi$ следует, что C = M. Тогда по следствию из [19], $X = K = C \cdot F(K) = C \cdot F(X)$. В частности, из рассмотренного случая вытекает, что мы можем считать, что

$$BX$$
 нет разрешимых нормальных у-инвариантных подгрупп. (6.1)

II. M — прямое произведение простых неабелевых групп. Если $M \subset X$, то ясно, что M удовлетворяет условию теоремы $(M:C\cap M|\in \Pi)$. Применение индукции дает нам, что $M=(C\cap M)\cdot O_\Pi(M)$. Из разрешимости $O_\Pi(M)$ и $M \triangleleft Y$ следует, что в X имеется и минимальная нормальная s-подгруппа для некоторого простого числа S. Это противоречит (6.1). Поэтому рассмотрим возможность, когда $O_\Pi(M)=1$, то есть $M=C\cap M$, $M\leq C$. По теореме 5.20 (4) группа $\widetilde{X}=X/M$ удовлетворяет условию теоремы. Поэтому применение индукции дает нам, что $\overline{X}=\overline{C}\cdot O_\Pi(\overline{X})$. Из условия теоремы следует, что $O_\Pi(\overline{X})\neq 1$. Пусть L — прообраз группы $O_\Pi(\overline{X})$ в X. Тогда L/M — группа порядка $p^a\cdot q^b$, $a\neq 0\neq b$.

Если M=C, то \overline{X} — нильпотентная группа по известной теореме Д. Томпсона [2, теорема 4.115]. В этом случае в \overline{X} есть характеристическая p-подгруппа $R \neq M$, $R \subset X$, $C \subset R$. Если $M \subset C$, то $O_{\prod}(\overline{X}) \subset \overline{X}$. Итак, в любом случае в X имеется собственная y-инвариантная подгруппа $R \neq C$. По индуктивному заключению $R = (R \cap C) \cdot O_{\prod}(R)$ и $O_{\prod}(R) \neq 1$. Из $R \triangleleft Y$ следует, что и $O_{\prod}(R) \triangleleft Y$, и мы обять имеем противоречие с (6.1).

Итак, пусть M=X. Но тогда при $X=L_1X\times\ldots\times L_{k,}$ k>1, $C\cong L_1$ [4, предложение 3.27 (vii)]. Это невозможно по условию теоремы. Значит, $X\cong L_1$. Но это противоречит тому, что X – не простая группа. Этим теорема доказана.

ЛИТЕРАТУРА

- 1. Huppert B. Endliche Gruppen, I. // Berlin, Heidelberg, New York: Springer Verlag. 1967. 793 p.
- 2. Горенстейн Д. Конечные простые группы. Введение в их классификацию. М.: Мир, 1985. 352 с.
- 3. Gorenstein D., Lyons R., Solomon R. The classification of the finite simple groups // Math. Surveys and monogr. 1994. V. 40. № 1. Providence, RJ; AMS. 165 p.
- 4. Gorenstein D., Lyons R., Solomon R. The classification of the finite simple groups // Math. Surveys and monogr. 1994. V. 40. № 2. Providence, RJ; AMS. 218 p.
- 5. Gorenstein D., Lyons R., Solomon R. The classification of the finite simple groups // Math. Surveys and monogr. 1994. V. 40. № 3. Providence, RJ; AMS. 419 p.
- 6. Логинов В.И. Замечание о конечных группах, допускающих копростые автоморфизмы // Вестник МГУ. Сер. І. Мат., мех. − 1980. № 6. С. 58 61.
- 7. C. Chevalley. Sur certains groupes simples, Tohoku Math. 1955. V. 7. № 1 2. P. 14 66.
- 8. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 1959. V. 9. № 3. P. 875 891.
- M. Suzuki, A new type of simple groups of finite order, Proc. Nat. Acad. Sci. USA. 1960. V. 46. № 2. P. 868 870.
- 10. R. Ree, A family of simple groups associated with the simple Lie algebra of type (F_4) , Amer. J. Math. 1961. V. 83. No 3. P. 401 420.
- 11. R. Ree, A family of simple groups associated with the simple Lie algebra of type (G_2) , Amer. J. Math. 1961. V. 83. No. 3. P. 432 462.
- 12. Zsigmondy K. Zur theorie der Potenzrests // Monatsh. Math. Phys. 1892. V. 3. № 2. P. 265 284.
- 13. Gorenstein D., Lyons R. The local structure of finite groups of characterictic 2 type // Memoirs AMS. 1983. № 276. P. 1 731.
- 14. Luneburg H. Ein infacher Beweis für den Satz von Zsigmondy über primitive Primteibr von $A^n 1$, Sprinder Lecture Notes in Mathematics. -1981. N 9893. P.219 222.
- 15. Huppert B., Blackburn N. Finite groups, II. Berlin: Springer Verlag, 1982. 531 p.
- 16. Rickman B. Groups which admit a fixed-point-free automorphism of order p^2 // I. Algebra. 1959. V. 53. No 1. P. 77 171.
- 17. Гаген Т.М. Некоторые вопросы теории конечных групп // В кн.: К теории конечных групп. М.: Мир. 1979. С. 13 97.
- 18. Глауберман Дж. О разрешимых сигнализаторных функторах на конечных группах // В кн.: К теории конечных групп. М.: Мир, 1979. С. 112 143.
- 19. Пальчик Э.М., Шмидт А.М. О конечных группах, допускающих копростой автоморфизм // Весці НАНБ. Сер. фіз.-мат. н., 2001. № 4. С. 15 18.