ГЕОДЕЗИЯ

УДК 528. 23

АЛГОРИТМИЧЕСКАЯ ОСНОВА АВТОМАТИЗАЦИИ ВЫБОРА НАИЛУЧШИХ ГЕОДЕЗИЧЕСКИХ ПРОЕКЦИЙ

доктор техн. наук, профессор В.П. ПОДШИВАЛОВ, А.В. МАТКИН

Приводится порядок формирования алгоритма управления формой изоколы композиционных геодезических проекций, обеспечивающего выполнение требований теоремы Чебышева — Граве о наилучших конформных проекциях, когда при изображении на плоскости области земного эллипсоида искажения геометрических элементов минимальны.

В работах [1, 2] изложена общая теория описания и алгоритм вычислений в определенном классе конформных отображений поверхности эллипсоида вращения и плоскости. Данный класс, с одной стороны, включает в себя как частные взаимосвязанные случаи все наиболее распространенные и известные в мире геодезические проекции: Гаусса — Крюгера, UTM, Ламберта, Руссиля и другие, с другой стороны — новые проекции, которые могут являться основой для формирования координатной среды автоматизированных геоинформационных технологий, поскольку они обладают возможностями удовлетворять критерию о наилучших проекциях, определяемому теоремой Чебышева — Граве (критерий Чебышева — Граве). Суть данного критерия заключается в том, что искажения эллипсоидальных элементов при их отображении на плоскости будут наименьшими в том случае, когда форма изоколы (линии равных искажений) по своей форме будет близка к форме границы изображаемой области.

В работах [1, 2] предлагаются несколько путей формирования геодезических проекций, отвечающих критерию Чебышева – Граве, вместе с тем в работе [3] показываются широкие возможности формирования таких проекций на основе композиции только конической и цилиндрической проекций. В работах [4, 5] приведены результаты практической реализации этого, когда наилучшая проекция формируется в автоматическом режиме на ЭВМ. Здесь также рассмотрены вопросы автоматизации в тех случаях, когда композиционные коэффициенты неотрицательны. В работе [6] предлагается система плоских прямоугольных координат для линейных объектов большой протяженности и произвольной ориентации на местности, которая получена на основе композиционных проекций, когда композиционные коэффициенты могут принимать отрицательные значения, а изоколы могут принимать форму сопряженных гипербол и их асимптот. Естественно, в решении задачи автоматизированного выбора и практического применения в геоинформационных технологиях необходимо располагать всеми возможностями, заложенными в общей теории и алгоритме вычислений. Задача поиска общего подхода к формированию наилучших проекций упрощается, так как в работах доказано, что в данном случае внутри данного класса проекций необходимо и достаточно оптимизировать только изоколу линейных искажений, связанную с уравнением частного масштаба длин. Рассмотрим решение данной задачи.

Формула для вычислений частного масштаба длин в любой проекции, определенного общей теорией класса, имеет вид [1, 2]:

$$m = \frac{1}{r \cdot \sqrt{k_1^{\prime 2} + k_2^{\prime 2}}},\tag{1}$$

где r – радиус кривизны параллели эллипсоида;

 k_1^2 , k_2^2 – алгоритмические представления уравнений Коши – Римана в частных производных, определяющих конформные отображения.

В работах [1, 2] алгоритмы вычислений этих величин даны с точностью, необходимой и достаточной для решения научных и практических задач с учетом современных требований. Наша задача заключается в том, чтобы получить уравнение изоколы, следуемое из (1). Для этого нет необходимости в этом уравнении учитывать все члены разложений, достаточно учесть только то, что определяет вид проекции. Такой подход позволяет существенно упростить как вывод уравнений, так и их практическую реализацию на ЭВМ в автоматическом режиме.

Поскольку в общем алгоритме вычислений характеристические уравнения проекций определенного класса имеют общие первые два члена разложений, отличие начинается только с третьего члена. Вы-

ражаем правую часть (1) с удержанием только первых трех членов разложений, малыми членами более высокого порядка в этом случае можно пренебречь.

Для радиуса кривизны параллели на произвольной широте q имеем выражение в виде разложения в степенной ряд, если известно его значение на некоторой фиксированной широте q_0

$$r = r_0 + \left(\frac{dr}{dq}\right)_0 \Delta q + \left(\frac{d^2r}{dq^2}\right)_0 \frac{\Delta q^2}{2} + \left(\frac{d^3r}{dq^3}\right)_0 \frac{\Delta q^3}{6} + \dots$$
 (2)

Здесь имеем обозначения и значения производных согласно [2, уравнение (2.1)]:

$$\Delta q = P_1; \quad r_0 = \frac{c_1}{m_0}; \quad \left(\frac{dr}{dq}\right)_0 = \left(\frac{d^2x}{dq^2}\right)_0 = 2 \cdot \frac{c_2}{m_0}; \quad \left(\frac{d^2r}{dq^2}\right)_0 = 3 \cdot \frac{c_3}{m_0}.$$

С учетом этого уравнение (2) запишем в виде

$$r = \frac{1}{m_0} \cdot \left(c_1^o + 2 \cdot c_2^o \cdot \Delta q + \frac{3}{2} c_3^o \Delta q^2 + \dots \right). \tag{3}$$

Здесь следует иметь в виду, что коэффициенты c_1^o, c_2^o, c_3^o — из цилиндрической проекции (2.4) [2] при $m_0 = 1$, поэтому здесь и в дальнейшем обозначаем их с индексом (o).

В выражении (3) для радиуса кривизны параллели перейдем от приращений изометрической широты Δq к плоским прямоугольным координатам x и y, что удобнее для практики. Для этого воспользуемся общими для всех видов проекций уравнениями связи (2.24) [2], где коэффициенты обращенного степенного ряда $c'_1, c'_2, c'_3...$ для различных видов проекций имеют общие выражения. На основании этого можем записать с принятой выше точностью:

$$\Delta q = c'_1 \cdot x + c'_2 \cdot (x^2 - y^2); \ \Delta q^2 = c'_1^2 \cdot x^2.$$

Тогда выражение (3) после несложных преобразований принимает вид:

$$r = \frac{c_1}{m_o} \cdot \left[1 + \frac{2 \cdot c_2}{c_1^2} \cdot x + \left(\frac{3}{2} \cdot \frac{c_3^o}{c_1^3} - 2 \cdot \frac{c_2^2}{c_1^4} \right) \cdot x^2 + 2 \cdot \frac{c_2^2}{c_1^4} \cdot y^2 + \dots \right]. \tag{4}$$

В этом выражении для коэффициентов c_j до (j=2), когда они одинаковы во всех видах проекций, индексы (o) можно опустить, так как они одинаковы во всех проекциях.

Далее переходим к разложению в степенной ряд выражения $\sqrt{k'_1^2 + k'_2^2}$, имея в виду, что с принятой ранее точностью можно записать:

$$k'_{1}^{2} = (2 \cdot c'_{2} \cdot y + 3 \cdot c'_{3} \cdot 2 \cdot x \cdot y + \cdots)^{2} = 4 \cdot c'_{2}^{2} \cdot y^{2};$$

$$k'_{2}^{2} = c'_{1}^{2} + 4c'_{1}c'_{2}x + 64c'_{3}c'_{1}(x^{2} - y^{2}) + 4c'_{2}^{2}x^{2};$$

$$(k'_{1}^{2} + k'_{1}^{2}) = c'_{1}^{2} + 4 \cdot c'_{1} \cdot c'_{2} \cdot x + 4 \cdot c'_{2}^{2}(x^{2} + y^{2}) + 6 \cdot c'_{3} \cdot c'_{1} \cdot (x^{2} - y^{2}) + \cdots.$$

Здесь перейдем от коэффициентов c'_j к коэффициентам c_j по известным формулам [2]:

$$\left(k_1^2 + k_1^2\right) = \frac{1}{c_1^2} \cdot \left[1 - 4 \cdot \frac{c_2}{c_1^2} \cdot x + 4 \frac{c_2^2}{c_1^4} \cdot \left(x^2 + y^2\right) + 6 \cdot \frac{1}{c_1^4} \cdot \left(2 \cdot c_2^2 - c_1 \cdot c_3\right) \cdot \left(x^2 - y^2\right)\right]. \tag{5}$$

Далее имеем с принятой ранее точностью для величин, стоящих в правой части уравнения (1):

$$(r)^{(-1)} = \frac{m_o}{c_1} \cdot \left[1 - 2 \cdot \frac{c_2}{c_1^2} \cdot x + \left(6 \cdot \frac{c_2^2}{c_1^4} - 3 \cdot \frac{c_3^o}{c_1^3} \right) \cdot x^2 - 2 \cdot \frac{c_2^2}{c_1^4} \cdot y^2 \right];$$
 (6)

$$\left(k_1^{\prime 2} + k_1^{\prime 2}\right)^{-1/2} = c_1 \cdot \left[1 + 2 \cdot \frac{c_2}{c_1^2} \cdot x - \left(2 \cdot \frac{c_2^2}{c_1^4} - 3 \cdot \frac{1}{c_1^4}\right) \cdot x^2 + \left(4 \cdot \frac{c_2^2}{c_1^4} - 3 \cdot \frac{c_3}{c_1^3}\right) \cdot y^2\right]. \tag{7}$$

Затем, выполнив несложные преобразования, получаем искомое уравнение для частного масштаба длин определенного класса проекций, которое является уравнением изоколы в случае, когда задается постоянное (требуемое из решения задачи, наперед заданное и пр.) значение этого масштаба. В этом случае мы можем получить изоколу как геометрическое место точек, в которых значение масштаба постоянно (m = const):

$$m = m_o \cdot \left[1 + \left(3 \cdot \frac{c_3}{c_1^3} - 3 \cdot \frac{c_3^o}{c_1^3} \right) \cdot x^2 + \left(2 \cdot \frac{c_2^2}{c_1^4} - 3 \cdot \frac{c_3}{c_1^3} \right) \cdot y^2 \right].$$
 (8)

Как уже отмечалось раньше, конкретный вид проекции из класса, описанного общей теорией и алгоритмом [1, 2], определяется только коэффициентами c_3 .

Для того чтобы убедиться в этом, проверим работу формулы (8) на примере известных геодезических проекций, для которых частные случаи формулы (8) хорошо известны [7]: поперечно-цилиндрическая проекция Гаусса — Крюгера, применяемая в настоящее время у нас в стране и России (при $m_0 = 1$), или универсальная поперечно-цилиндрическая проекция Меркатора UTM (при $m_0 < 1$), рекомендованная для создания топографических карт в США. Получаем уравнение масштаба при значениях коэффициентов (2.4) из работы [2]:

$$m = m_o \cdot \left[1 + \frac{y^2 \cdot V_o^4}{2m_o^2 \cdot c^2} \right],$$

где можно ввести обозначение для среднего радиуса кривизны эллипсоида в данной точке

$$R = \sqrt{MN} = \sqrt{\frac{c}{v^3} \frac{c}{V}} = \frac{c}{v^2},$$

тогда имеем широко известное выражение для вычисления частного масштаба длин в этих проекциях [7]:

$$m = m_o \cdot \left[1 + \frac{y^2}{2 R_o^2 \cdot m_o^2} \right].$$

Аналогично получаем для конической проекции Ламберта, применяющейся в США, ряде европейских стран и на Ближнем Востоке. При $m_0 = 1$ эта формула также приведена в работе [7]:

$$m = m_o \cdot \left[1 + \frac{x^2}{2 m_o^2 \cdot R_o^2} \right].$$

Для азимутальной проекции, частным случаем которой является квазистереографическая проекция Руссиля при $m_0 = 1$, получаем также известную формулу масштаба [7]:

$$m = m_o \cdot \left[1 + \frac{x^2 + y^2}{4 R_o^2 m_o^2} \right].$$

Как следует из работ [1-3], формирование композиционных геодезических проекций можно производить путем формирования только коэффициентов конической и цилиндрической проекций. При этом композиционная проекция сохраняет все основные свойства участвующих в композиции проекций: конформность, перспективность, симметричность относительно осевого меридиана. Более того, предложенный принцип композиций сохраняет равенство первых двух коэффициентов в характеристических уравнениях композиционных проекций, как это имеет место в отдельных проекциях, участвующих в композиции.

Пусть коэффициенты композиционной проекции вычислены по коэффициентам цилиндрической и конической проекций согласно формуле [3]:

$$c_j^k = k_1 c_j^{\kappa o \mu u q} + k_2 c_j^q ,$$

при этом будем иметь, согласно общему алгоритму, одинаковые во всех проекциях коэффициенты: $c_1^{\kappa o n u q} = c_1^{q} = c_1^{\kappa o m} = c_1$, $c_2^{\kappa o n u q} = c_2^{q} = c_2^{\kappa o m} = c_2$ и коэффициенты, присущие конкретной проекции:

$$c_3^k = k_1 c_3^{\kappa o \mu u q} + k_2 c_3^q.$$

Учитывая это в (8), получим после несложных тождественных преобразований выражение для вычисления частного масштаба длин в композиционной проекции:

$$m = m_o \cdot \left[1 + \frac{1}{2m_o^2 \cdot R_o^2} \cdot \left(k_{\kappa o \mu u u} x^2 + k_u y^2 \right) \right]. \tag{9}$$

Данная формула также обобщает все ранее приведенные проекции, потому что композиционные коэффициенты k_{u} и $k_{\kappa o \mu u u}$ должны удовлетворять соотношению

$$k_u + k_{\kappa o \mu u u} = 1,$$

а значения одного из этих коэффициентов могут быть произвольны — как положительные, равные нулю, так и отрицательные. Если, например, $k_{\rm q}=0$, то будет иметь место чисто коническая проекция, изоколы будут представлены парами прямых линий, параллельных и симметричных оси ординат, при $k_{\rm конич}=0$ — цилиндрическая проекция, изоколы — пары прямых линий, параллельных и симметричных оси абсцисс, при $k_{\rm q}=k_{\rm конич}$ — азимутальная проекция, изоколы представляют собой окружности радиуса R.

$$R=2m_0R_0\sqrt{m-m_0}\ .$$

В случае, когда $m_0 = 1$, окружность обращается в точку, расположенную в центре координатной системы, как это имеет место в проекции Руссиля.

В том случае, когда композиционные коэффициенты не равны между собой, но положительны, из уравнения (9) видно, что изоколы представляют собой эллипсы с полуосями соответственно

$$a = m_0 R_0 \sqrt{(2(m-m_0)/\kappa_u)}, b = m_0 R_0 \sqrt{(2(m-m_0)/\kappa_{KOH})}.$$

Несложно получить формулу для вычисления эксцентриситета e эллипса равных искажений в таких проекциях:

$$e^2 = (a^2 - b^2)/a^2 = (\kappa_{\kappa} - \kappa_{\mu\nu\rho})/\kappa_{\mu\nu\rho}$$

Данные формулы показывают, что эллипсы могут быть произвольно сжаты вдоль оси абсцисс либо вдоль оси ординат, а также вырождаться в соответствующие прямые линии.

Если речь идет о случае, когда один из композиционных коэффициентов имеет отрицательное значение, то формула (9) также работает, только в этом случае она представляет уравнение двух пар сопряженных гипербол, имеющих общие асимптоты с уравнением

$$y = \pm \sqrt{Ik_{\text{\tiny xonw}}} / k_{\text{\tiny y}} I x \,. \tag{10}$$

Под корнем квадратным следует брать абсолютные значения композиционных коэффициентов.

Для того, чтобы уравнение (9) положить в основу алгоритма автоматизированного выбора на ЭВМ проекции, удовлетворяющей критерию Чебышева — Граве, поступаем следующим образом:

- имея координаты контурных точек изображаемой территории, ищем уравнение изоколы, соответствующие точки которой имеют минимальное отклонение от контурных точек (минимум квадратов, модулей и т.д.);
- в случае, когда отображаемый объект линейной формы и большой протяженности, по координатам начальной, конечной и промежуточных точек подбирается прямая линия с минимальными уклонениями от этих точек, уравнение прямой, как известно, имеет вид y = kx, где значение тангенса k имеет выражение из (10);
- в случае более сложной формы границ изображаемой области, нужной формы изоколу подбираем, моделируя значение m_0 .

Таким образом, получено общее уравнение (9), представляющее собой при различных, но постоянных значениях частного масштаба длин, уравнение изокол или линий постоянных линейных искажений в проекциях класса, определенного общей теорией. Это уравнение описывает различные виды линий, из которых можно выбрать наиболее подходящую к контуру изображаемой области, следовательно, оно может быть положено в основу алгоритмического обеспечения автоматизации на ЭВМ процесса изыскания геодезической проекции, отвечающей критерию Чебышева — Граве и наилучшим образом отвечающей требованиям конкретной задачи при отображении на плоскости сфероидических областей произвольных размеров и произвольной формы.

ЛИТЕРАТУРА

- 1. Подшивалов В.П. Координатная среда для геоинформационных систем // Геодезия и картография. 1997. № 6. С. 51 55.
- 2. Подшивалов В.П. Теоретические основы формирования координатной среды для геоинформационных систем. Новополоцк: ПГУ, 1998. 125 с.
- 3. Подшивалов В.П. Композиционные геодезические проекции // Геодезия и картография. 2000. № 8. С. 39 43.
- 4. Маткин А.В. Разработка оптимальных геодезических проекций применительно к заданным условиям. Рукопись деп. ОНТИ ЦНИИГАИК №696-ГД 00 Деп., БУ ВИНИТИ «Депонированные научные работы». 2000. № 3(337). С. 36.
- 5. Маткин А.В. Региональные системы координат на основе композиционных геодезических проекций // Геодезия, картография и кадастры: Тр. междунар. науч.-техн. конф. Новополоцк: ПГУ, 2000. С. 121 124.
- 6. Подшивалов В.П., Маковский С.В. Система плоских прямоугольных координат для линейных объектов // Изв. вузов. Геодезия и аэрофотосъемка. 2000. № 4. С. 12 18.
- 7. Морозов В.П. Курс сфероидической геодезии. М.: Недра, 1979. 296 с.