УДК 531.781.2.087; 620.017.08

ИСПОЛЬЗОВАНИЕ ПРОДОЛЬНОГО И ПОПЕРЕЧНОГО ПЬЕЗОРЕЗИСТИВНЫХ ЭФФЕКТОВ ДЛЯ КОНСТРУИРОВАНИЯ ПРЕОБРАЗОВАТЕЛЕЙ НОРМАЛЬНЫХ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ

С.В. ЛЕСКОВЕЦ

Предложены новые варианты кристаллографических ориентаций твердотельных преобразователей для измерения механических напряжений внутри среды. Их конструктивные схемы реализованы на использовании продольного и поперечного пьезорезисторных эффектов. Для предложенных вариантов преобразователей рассчитаны значения коэффициентов пьезосопротивления.

Вопросам разработки датчиков для измерения механических напряжений внутри среды с использованием полупроводниковых преобразователей посвящены работы [1, 2]. В них приведены некоторые положения и по разработке датчиков нормальных механических напряжений. Однако в достаточной мере отсутствует полный анализ возможных технических решений преобразователей при использовании различных полупроводниковых материалов, относящихся к структурам алмаза, сфалерита и вюрцита.

Преобразователь датчика механических напряжений представляет собой пластину из полупроводникового материала с электроконтактами. Поверхность пластины имеет механический контакт со средой, и на нее воздействуют отдельные компоненты тензора механических напряжений.

Как известно, для разработки полупроводниковых преобразователей нормальных механических напряжений могут быть использованы продольный и поперечный пьезорезистивные эффекты Продольный пьезорезистивный эффект заключается в том, что если направление нормального механического напряжения σ_1 , совпадает с направлением электрического поля и тока, то относительное изменение со- ΛR

противления полупроводникового материала $\frac{\Delta R}{R_0}$ определяется по формуле

$$\frac{\Delta R_1}{\mathcal{R}_{01}} = \pi_{11}' \sigma_1. \tag{1}$$

Этот случай является частным от общего вида, описывающего изменения сопротивления полупроводникового материала при пропускании тока в продольном направлении и воздействии всех компонент тензора напряжений нормальных – $\sigma_{\kappa l}$ и касательных – $\tau_{\kappa l}$; π'_{μ} – пьезорезистивный коэффициент.

$$\frac{\Delta R_1}{R_{01}} = \pi_{11} \sigma_1 + \pi_{12} \sigma_2 + \pi_{13} \sigma_3 + \pi_{14} \tau_{23} + \pi_{15} \tau_{13} + \pi_{16} \tau_{12} \,. \tag{2}$$

Поперечный пьезорезистивный эффект наблюдается, если направление поля и тока перпендикулярны направлению напряжения:

$$\frac{\Delta R_2}{R_{02}} = \pi'_{21}\sigma_2 , \ \frac{\Delta R_3}{R_{03}} = \pi'_{31}\sigma_3.$$
(3)

Более общая форма этих выражений при поочередном пропускании тока, устанавливающая взаимосвязь между всеми компонентами тензора напряжений и изменением электропроводности, для направления 2 и 3 будет иметь следующий вид:

$$\frac{\Delta R_2}{R_{02}} = \pi_{21}\sigma_1 + \pi_{22}\sigma_2 + \pi_{23}\sigma_3 + \pi_{24}\tau_{23} + \pi_{25}\tau_{13} + \pi_{26}\tau_{12} ;$$

$$\frac{\Delta R_3}{R_{03}} = \pi_{31}\sigma_1 + \pi_{32}\sigma_2 + \pi_{33}\sigma_3 + \pi_{34}\tau_{23} + \pi_{35}\tau_{13} + \pi_{36}\tau_{12} .$$
(4)

Как следует из выражений (2) и (4), на полупроводниковый преобразователь, расположенный в сплошной среде, оказывают влияние все компоненты тензора напряжений. Конструкцию преобразователя для измерения нормальных механических напряжений необходимо выполнить таким образом, чтобы

изменение его сопротивления обусловливалось зависимостями (1) или (3). Для этого необходимо, чтобы полупроводниковый преобразователь имел нулевое значение коэффициентов пьезосопротивления при других напряжениях в выражениях (2) и (4) или исключалось влияние этих напряжений. Это обеспечивается определенной кристаллографической ориентацией преобразователя и конструктивными мерами.

Рассмотрим влияние некоторых кристаллографических направлений на значения коэффициентов пьезосопротивления при произвольных ориентациях полупроводникового преобразователя, осуществляемых последовательными поворотами начиная с главных кристаллографических осей.

Поворот в главных кристаллографических осях. Если твердотельный преобразователь датчика нормальных механических напряжений выполняется из полупроводникового материала, вырезанного с поворотом согласно рис. 1 [3] вдоль одной из осей в главных кристаллографических осях, то выражения (2) и (4) примут вид:

$$\frac{\Delta R_{1}}{\Delta R_{01}} = \pi'_{11}\sigma_{1} + \pi'_{12}\sigma_{2} + \pi'_{12}\sigma_{3} + \pi'_{16}\tau_{12};$$

$$\frac{\Delta R_{2}}{\Delta R_{02}} = \pi'_{21}\sigma_{1} + \pi'_{22}\sigma_{2} + \pi'_{12}\sigma_{3} + \pi'_{26}\tau_{12};$$

$$\frac{\Delta R_{3}}{\Delta R_{03}} = \pi_{11}\sigma_{3} + \pi_{12}\sigma_{2} + \pi_{12}\sigma_{1}.$$

$$z' = 3$$

$$y' = 2$$

$$y' = 2$$

$$y' = 2$$

$$y' = 2$$

Рис. 1. Схема поворота осей кристалла относительно главных кристаллографических направлений

Как следует из [3, 4], некоторые из этих коэффициентов равны друг другу: $\pi'_{11} = \pi'_{22}$; $\pi'_{12} = \pi'_{21}$; $\pi'_{16} = -\pi'_{26}$. Приведенные значения штриховых коэффициентов зависят от угла поворота.

1. Если угол φ = 0, то из системы уравнений (5) следует

 R_{03}

х

$$\frac{\Delta R_1}{R_{01}} = \pi_{11}\sigma_1 + \pi_{12}\sigma_2 + \pi_{12}\sigma_3 ;$$

$$\frac{\Delta R_2}{R_{02}} = \pi_{11}\sigma_2 + \pi_{12}\sigma_1 + \pi_{12}\sigma_3 ;$$

$$\frac{\Delta R_3}{R_{02}} = \pi_{11}\sigma_3 + \pi_{12}\sigma_1 + \pi_{12}\sigma_1 .$$
(6)

Если $\sigma_2 = \sigma_3$, что можно выполнить конструктивными мерами, защитив преобразователь зазорами по контуру, то получаем зависимости, аналогичные (1) и (3), у которых пьезорезистивные коэффициенты $\pi'_{11} = \pi_{11}$, $\pi'_{21} = \pi'_{31} = \pi_{12}$, $\pi'_{11} = \pi'_{22}$. Такие преобразователи будут изменять свое сопротивление только под действием нормального механического напряжения σ_1 . Значения пьезорезистивных коэффициентов, приведенные в табл. 1, показывают, что как с использованием продольного, так и поперечного эффекта их лучше всего выполнять на кремнии п-типа. В этом случае они будут иметь максимальные значения чувствительности. Другие полупроводниковые материалы практически не изменяют свое сопротивление, так как значения π_{11} и π_{12} для них малы.

2. При угле $\varphi = 45^{\circ}$ (направление [110]) $\pi'_{16} = -\pi'_{26} = 0$, а значения коэффициентов пьезосопротивления

 $\pi'_{11} = \pi_{11} - \frac{1}{2}\pi A$ и $\pi'_{21} = \pi_{12} - \frac{1}{2}\pi A$ и $\pi'_{31} = \pi_{12}$. В этом случае для кремния п-типа их значения уменьшаются по сравнению со значениями в главных кристаллографических осях, но становятся одного знака.

Таблица 1

№ n/n	Тип полупроводнико-	Удельное сопротивление $ ho$, Ом·см,	ротивление ρ , Ом.см, (при T = 293 K)					
	вого материала	или количество атомов примеси, см	π_{11}	π_{12}	π_{44}	π_A		
1	n-Si	0,001	-590	+290	-59	-821		
2	n-Si	0,003	-700	+360	-60	-1000		
3	· n-Si	11,7	-1022	+534	-136	-1420		
4	n-Si	10 ¹⁹ атомов- см ⁻³	-600	+300	60	-840		
5	p-Si	0,001	+30	-20	+640	-590		
6	p-Si	0,003.	+30	-10	+800	-700		
7	p-Si	7,8	+66	-11	+1381	-1304		
8	p-Si	10 ¹⁹ атомов-см ⁻³	+30	-20	+650	-600		
· 9	n-Ge	1,5	-23	-33	-1381	+1391		
10	n-Ge	5,7	-27	-39	-1368	+1380		
11	n-Ge	9,9	-47	-50	-1379	+1382		
12	n-Ge	16,6	-52	-55	-1387	+1399		
13	n-Ge	10 ¹⁹ атомов см ⁻³	-10	-20	-700	+710		
14	p-Ge	1,1	-37	+32	+967	-1036		
15	p-Ge	15,0	-106	+50	+986	-1142		
16	p-Ge	10 ¹⁹ атомов см ⁻³	-20	+2	+500	-522		
17	n-Ga As	0,021	-22	-38	-24	+40		
18	n-Ga As	0,005	-32	-54	-25	+47		
19	p-Ga As	0,004	-120	6	+460	-574		
20	p-PbTe	3	+24	+15	+215	-206		
21	p-PbTe	1-3	+35	+40	+185	-190		

Значение пьезорезистивных коэффициентов некоторых полупроводниковых материалов [3, 5]

Для других полупроводниковых материалов, с малыми значениями π_{11} и π_{12} и большими πA , значения π'_{11} и π'_{12} возрастают. Для p-Si, n-GaAs, p-PbTe, n-Ge, а для p-Si и p-GaAS $\pi'_{21} > \frac{1}{2} \pi A$.

Это достаточно высокие значения коэффициентов пьезосопротивления, что позволяет использовать полупроводниковые кристаллы из указанных материалов, вырезанные в направлении [110], для изготовления преобразователей нормальных механических напряжений. При этом можно использовать продольный и поперечный эффекты. Можно преобразователь выполнить и из кремния п-типа, используя высокие значения коэффициента пьезосопротивления π_{12} с расположением токовых контактов в направлении [001] и продольной ориентации [110]. На изменение сопротивления этих преобразователей не оказывают влияние касательные напряжения, так как $\pi'_{16} = -\pi'_{26} = 0$, и если $\sigma_2 = \sigma_3 = 0$, то изменение сопротивления преобразователей определяется зависимостями (1) и (3). Варианты их выполнения приведены на рис. 2, а – в, значения коэффициентов пьезосопротивления (чувствительности) при использовании разных материалов – в табл. 2 (столбцы а – в).

Рис. 2. Варианты топологии преобразователя нормальных механических напряжений на продольном и поперечном пьезорезистивном эффекте (вид сбоку)

Значения коэффициента пъезосопротивления 10 ⁻¹² Па ⁻¹ для кристаллографических направлений и вариантов преобо												еобразо	образователя									
Наименование	a 6		<u>іл кол</u>	B		I	<u>г</u> д		Į	e		ж		3		И		к		л		
материала	001	010	001	110	110	001	22 Ī	110	110	111	111	110	110	110	110	22 Ī	110	112	112	110	111	112
n-Si 0.001 Ом×см	-590	299	590	290	-179	290	-103	-75	-180	16	-43	16	-180	-120,5	-180	-75	-180	153	-180	153	-43	16
n-Si 0.003 Ом×см	-700	360	-700	-200	360	-107	-78	-200	13	-33	-200	-140	-200	-140	-200	78	-200	193	-200	193	-33	23
n-Si 11.7 Ом×см	-1022	534	-1022	534	-312	534	-181	-97	-312	61	-75	61	-312	-176	-312	-97	-312	297	312	297	-75	61
п-Si 10 ¹⁹ атом×см ⁻³	-600	300	-600	300	-120	300	-102	40	-120	1 ₈₀	-40	20	-120	-120	-120	-40	-120	160	-120	160	-40	20
p-Si 0.001 Ом×см	30	-20	30	-20	325	-20	380	-282	325	176	410	-176	325	-316	325	-282	325	-118	325	-118	410	-176
p-Si 0.003 Ом×см	30	-10	30	-10	405	19	480	-397	405	-243	536	-243	405	-390	405	-347	405	-137	405	-137	536	-243
р-Si 7.8 Ом×см	66	-11	66	-11	718	-11	839	-583	718	-424	935	-424	718	-663	718	-590	718	-228	718	-228	938	-424
р-Si 10 ¹⁹ атом×см ⁻³	30	-20	30	-20	330	-20	385	-287	350	-180	430	-180	350	-320	350	-287	350	-120	330	-120	430	-180
n-Ge 1.5 Ом×см	-23	-33	-23	-33	~719	-33	-847	-585	-719	-496	-950	-496	-718	662	-719	-586	-719	198	719	198	-950	496
n-Ge 5.7 Ом×см	-27	-39	-27	-39	-717	-39	-845	-574	-717	-499	-947	-499	-717	651	-717	-574	-717	191	717	191	-947	-499
n-Ge 9.9 Ом×см	47	-50	-47	-50	-738	-50	-865	-564	-738	-511	-968	-511	-738	641	-738	-564	-738	180	738	180	968	-511
n-Ge 16.6 Ом×см	-52	55	-52	-55	747	-55	-875	-573	-747	-518	-979	-518	-747	640	747	-573	-747	177	747	177	-979	-518
п-Ge10 ¹⁹ атом×см ⁻³	-10	-29	-19	-19	-315	-19	-431	-296	-315	-256	-483	-256	-315	335	-315	-296	-315	98	315	98	483	851
р-Ge 1.1 Ом×см	-37	32	-37	32	481	32	576	-428	481	-313	654	-313	481	-486	481	-428	481	-141	481	-141	654	-313
p-Ge 15.0 Ом×см	10,6	50	10,6	50	465	50	571	458	465	-331	655	-331	465	-521	465	-458	465	-140	465	-140	655	-331
р-Ge10 ¹⁹ атом×см ⁻³	-20	2	-20	2	241	2	289	-230	241	-172	328	-172	241	-234	241	-230	241	-85	241	-85	328	-172
n-GaAs 0.0021 Ом×см	-22	-38	-22	-38	-42	-38	-46	-20	-42	-25	-49	-25	-42	-18	-42	-20	-42	-31	42	-31	49	-25
n-GaAs 0.005 Ом×см	-32	-54	-32	54	-56	-54	-60	-33	-56	-38	-63	-38	-55	_47	-56	-33	-56	-33	-56	-46	-63	-38
р-GaAS 0.004 Ом×см	-120	-6	- 120	6	167	-6	220	-254	167	-179	262	-179	167	293	167	-254	167	-102	167	-102	262	-197
р-РbТе 3 Ом×см	24	15	24	15	127	15	146	-77	127	-54	161	-54	127		127	-77	127	-19	127	-19	161	-54
p-PbTe 1 – 3 Ом×см	35	40	35	40	130	40	147	44,4	130	-54	162	54	130	-55	130	-44	130	8	130	8	162	-23

Значения коэффициентов пьезосопротивления для вариантов топологии преобразователя нормальных механических напряжений по рис. 2

2003

Поворот в плоскости (110). Если элементарный кубический объем полупроводникового материала вырезать таким образом, чтобы направление 1 совпало с [110] (см. рис. 1) и поворачивать в плоскости (110) на угол θ , то уравнения изменения электропроводности при поочередном пропускании тока в трех взаимно перпендикулярных направлениях примут вид:

$$\frac{\Delta R_1}{R_{01}} = \pi'_{11}\sigma_1 + \pi'_{12}\sigma_2 + \pi'_{13}\sigma_3 + \pi'_{15}\tau_{13};$$

$$\frac{\Delta R_2}{R_{02}} = \pi'_{21}\sigma_1 + \pi'_{22}\sigma_2 + \pi'_{23}\sigma_3 + \pi'_{25}\tau_{13};$$

$$\frac{\Delta R_3}{R_{03}} = \pi'_{31}\sigma_1 + \pi'_{32}\sigma_2 + \pi'_{33}\sigma_3 + \pi'_{35}\tau_{13}.$$
(7)

В этих выражениях все пьезорезистивные коэффициенты, кроме $\pi'_{22} = \pi_{11} - \frac{1}{2}\pi A$, зависят от угла поворота θ .

Сдвиговой коэффициент π'_{25} имеет нулевые значения только при $\theta = 0 \pm \pi n$ и $\theta = \frac{\pi}{2} \pm \pi n$ или для кристаллографических направлений [001] и [100].

Анализ сдвигового коэффициента

$$\pi_{15} = \pi_A \left(\frac{3}{2}\cos^2\theta - 1\right)\sin 2\theta = \frac{1}{4}\pi_A (3\cos 2\theta - 1)\sin 2\theta$$

показывает, что его значения равны нулю при $\theta = \arccos \sqrt{\frac{2}{3}} + \pi n$;

$$\theta = \frac{1}{2}\arccos\frac{1}{3} \pm \pi n;$$

$$\theta = 0 \pm \pi n; \ \theta = \frac{\pi}{2} \pm \pi n \ .$$

Это соответствует кристаллографическим направлениям [001], [111], [110], [221], [112]. Такие направления соответствуют нулевым значениям и для сдвигового коэффициента π'_{35} . Это показывает, что преобразователь датчика нормальных механических напряжений может быть выполнен в указанных кристаллографических направлениях в соответствии с вариантами топологии рис. 2 ($\Gamma - \kappa$).

Анализ численных значений коэффициентов пьезосопротивления (см. табл. 2) для таких преобразователей, выполненных из различных полупроводниковых материалов, показывает:

 использование n-Si для указанных вариантов нецелесообразно ввиду низких значений коэффициентов чувствительности;

– для p-Si, n-Ge и p-Ge достаточно большие значения продольных коэффициентов обеспечиваются при выполнении преобразователя в направлениях [221], [110], [111], [112] (максимальные [111]), а поперечных по вариантам преобразователя (г – з) рис. 2;

 n-GaAs обладает равнозначными и близкими по величине значениями коэффициентов чувствительности для продольного и поперечного направлений;

– p-GaAs и p-PbTe имеют высокие значения коэффициентов для всех указанных продольных и поперечных направлений при некотором снижении поперечного коэффициента в вариантах рис. 2 (и, к).

Плоскость (III). Если преобразователь датчика нормальных напряжений выполнить в плоскости (III), то уравнения изменения его электропроводимости запишутся в виде

$$\frac{\Delta R_1}{R_{01}} = \pi'_{11}\sigma_1 + \pi'_{12}\sigma_2 + \pi'_{13}\sigma_3 + \pi'_{14}\tau_{23};$$

$$\frac{\Delta R_2}{R_{02}} = \pi'_{11}\sigma_2 + \pi'_{12}\sigma_1 + \pi'_{13}\sigma_3 + \pi'_{24}\tau_{13};$$

$$\frac{\Delta R_3}{R_{03}} = \pi'_{13}\sigma_1 + \pi'_{13}\sigma_2 + \pi'_{33}\sigma_3.$$
(8)

Анализ коэффициентов в выражении (8) показывает, что только сдвиговые коэффициенты π'_{14} и π'_{24} зависят от угла поворота β в плоскости (111). Их значение равно $0 = \pi'_{14}$, если sin $3\beta = 0$, где β – угол поворота, а для $\pi'_{24} = 0$, если соз $3\beta = 0$. Это соответствует кристаллографическим направлениям [110], [112].

При этом, как следует из табл. 2, по варианту (к) предпочтительным является использование преобразователя из p-Si, n-Ge, p-Ge с продольным направлением [112] при поперечном [110] с пропусканием тока через кристалл в продольном направлении. Такой вариант преобразователя возможен и на кремнии n-типа, однако чувствительность будет в два раза ниже. По варианту (л) преобразователь будет обладать высокой чувствительностью при выполнении его из p-Si, n-Ge, p-Ge, p-GaAs и пропускании тока в продольном и поперечном направлениях, а для n-GaAs – в продольном направлении.

Анализируя значения табл. 2 для разных полупроводниковых материалов и кристаллографических направлений, можно сделать следующие выводы:

 преобразователи нормальных механических напряжений, выполненные с использованием продольного пьезорезистивного эффекта, обладают большей чувствительностью по сравнению с преобразователями на поперечном пьезорезистивном эффекте, если они выполнены из кремния и германия;

 при использовании авсенида галдия -для ряда преобразователей отмечается большая чувствительность в поперечном направлении;

 наиболее целесообразной конструкцией преобразователя нормальных напряжений можно считать конструкцию на поперечном пьезорезистивном эффекте, так как в ней убраны контакты с зоны действия напряжений, что повышает его надежность и стабильность показаний.

ЛИТЕРАТУРА

- 1. Фомица Л.Н. Полупроводниковые преобразователи для измерения механических напряжений. Мн.: Вышэйш. шк., 1983. 123 с.
- Фомица Л.Н., Сумбатов Р.А. Измерение напряжений в железобетонных конструкциях. Киев: Будівельник, 1994. – 165 с.
- Терстон Р.Н. Применение полупроводниковых преобразователей для измерения деформаций, ускорений, смещений // Физическая акустика: Сб. ст. / Под ред. У. Мэзона. – Мир, 1967. – Т. 1. – Ч. Б. – С. 187 – 209.
- 4. Pfann W.G., Therston R.N. Semiconducting stress transducers utilizing the transverse and shear piezoresistance effects // Journal of Aplied Physics. - 1961. - Vol. 32, - № 10. - P. 2008 - 2019.
- 5. Гроте У. Полупроводниковые пьезорезистивные элементы при особом учете математического описания пьезорезистивного эффекта: Автореф. дис. ... д-ра инженера: Магдебург, 1976. – 24 с. (нем.)