УДК 621.793:629.4.077-597

УЗЛЫ ТРЕНИЯ ТОРМОЗНЫХ СИСТЕМ МОБИЛЬНЫХ МАШИН С ИЗНОСОСТОЙКИМИ ОКСИДОКЕРАМИЧЕСКИМИ ПОКРЫТИЯМИ

А.И. КОМАРОВ, В.И. КОМАРОВА, В.Л. БАСИНЮК (Институт механики и надежности машин НАН Беларуси, Минск), В.Н. ШОСТАК (ОАО «МОТОВЕЛО», Минск)

Разработано новое техническое решение упрочнения деталей фрикционных пар тормозных систем, заключающееся в формировании на рабочей поверхности деталей оксидокерамического покрытия, чередующегося в виде регулярного рисунка с материалом основы (алюминиевым сплавом). Это позволило исключить из конструкции ступицы колеса мотоцикла чугунный тормозной барабан при одновременном увеличении износостойкости в 5 и более раз, обеспечить стабильность тормозных характеристик.

Введение. Тормозные устройства мобильных машин являются одним из основных узлов, обеспечивающих надежность и безопасность транспортных средств. К числу наиболее перспективных путей их совершенствования и повышения служебных свойств, в первую очередь износостойкости, можно отнести создание фрикционных сопряжений из алюминиевых сплавов с использованием оксидокерамических покрытий, полученных методом микродугового оксидирования (МДО) [1, 2]. Применение оксидокерамики позволяет существенно упростить конструкцию фрикционных пар трения и повысить технологичность их изготовления. Так, использование оксидокерамики в качестве материала, контактирующего с накладками тормозных колодок, позволяет исключить из конструкции серийно выпускаемых ступиц колес мотоцикла чугунный тормозной барабан и тем самым обеспечить снижение веса узла. Как показал анализ результатов исследований, фрикционные пары с оксидокерамическими элементами тормозных систем, впервые созданные ИНДМАШ НАН Беларуси и ОАО «МОТОВЕЛО», характеризуются высокими износостойкими, прочностными и другими служебными свойствами [1, 2]. Однако при использовании деталей тормозных систем с оксидокерамикой при некоторых режимах эксплуатации транспортных средств возникает проблема обеспечения соответствующих требованиям Правил ЕЭК ООН № 78-02 характеристик торможения. Это, в основном, обусловлено «засаливанием» поверхности оксидокерамического покрытия продуктами износа ответной детали - тормозной колодки.

Как показали последующие исследования, одним из способов решения этой проблемы является создание определенной с груктуры и топографии поверхности упрочненных слоев деталей фрикционных пар.

Целью данной работы являлось исследование влияния структуры и топографии упрочненного микродуговым оксидированием поверхностного слоя деталей фрикционных сопряжений на их триботехнические и тормозные характеристики.

Методы исследований и испытаний. Оксидокерамические покрытия формировали на рабочей поверхности ступиц барабанного тормоза мотоцикла «Минск», изготовленных из широко используемого в литейном производстве алюминиевого сплава АК5М2. Микродуговую обработку образцов и деталей выполняли на анодно-катодной установке гю методике, изложенной в [1].

Структуру и состав МДО-покрытий исследовали методами рентгеноструктурного и металлографического анализов. Рентгенографические исследования осуществляли на дифрактометре ДРОН-3М в CuK_{α} -излучении в режиме сканирования с шагом $0,1^{\circ}$. С целью обеспечения высокой чувствительности осуществляли монохроматизацию вторичного пучка, при этом в качестве кристалла монохроматора использовали пиролитический графит. Металлографические исследования образцов с оксидокерамическим покрытием проводили на микроскопе ПЛАНАР MICRO 200. Измерение микротвердости покрытий выполняли на поперечных шлифах на приборе ПМТ-3 при нагрузках на индентор 0,49 H, 0,98H, 1,96 H. На этом же приборе определяли толщину покрытия.

Для оценки тормозных характеристик исследовали тормозной момент колеса мотоцикла M_{T} , который определяли по результатам стендовых испытаний по формуле

$$M_{\rm T} = (M - M_{\rm X})n$$

где M, $M_{\rm X}$ — моменты при торможении и при прокручивании колеса вхолостую соответственно; n — передаточное число стенда, равное 9. Величины M, $M_{\rm X}$ замеряли моментомером.

Результаты и их обсуждение. При формировании МДО-покрытий на деталях тормозных систем мобильных машин учитывались особенности их эксплуатации, включая то, что сформированный на поверхности ступицы оксидокерамический слой может изнашиваться не только при непосредственном

взаимодействии с колодкой, но подвергаться воздействию абразивных частиц, попадающих из окружающей среды. Такие частицы могут проламывать отдельные участки упрочненного слоя, вызывая его повышенный износ. Для предотвращения подобных эффектов и обеспечения стабильной работы фрикционной пары «оксидокерамика - колодка» в этих условиях были проведены соответствующие исследования, обеспечившие получение высоких служебных свойств оксидокерамики, сформированной на сплаве АК5М2.

Сплав АК5М2 в исходном литом состоянии имеет гетерогенную структуру, состоящую из а-твердого раствора, интерметаллидных фаз и эвтектики, которая, в свою очередь, содержит твердый раствор и кремний. На рис. 1 представлена микроструктура сплава АК5М2 и покрытия, сформированного на нем. Подобная исходная структура сплава оказывает существенное влияние на особенности образования покрытия, его структуру, состав и свойства [3].

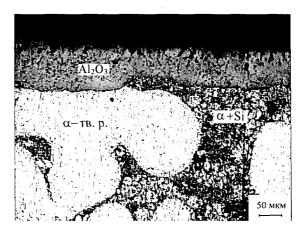


Рис. 1. Микроструктура сплава АК5М2 с оксидокерамическим покрытием

Одна из особенностей микродуговой обработки сплава AK5M2 проявляется в различии состава покрытия, сформированного в областях твердого раствора и эвтектики. В областях твердого раствора покрытие состоит в основном из высокотемпературной модификации α -Al₂O₃, в зонах эвтектики – из γ -Al₂O₃, различающихся, как известно, по прочностным и другим физико-механическим свойствам. Вследствие этого покрытие формируется в виде композита с чередующимися различно упрочненными областями [3].

Степень упрочнения и объемная доля таких областей в значительной мере зависит от соотношения структурных составляющих сплава, а также режимов и условий микродугового оксидирования. Таким образом, управляя исходной структурой гетерогенных сплавов и режимами МДО, можно в широких пределах изменять прочностные и другие физико-механические свойства покрытия. Основываясь на этих подходах, проведено систематическое изучение твердости покрытия, полученного на сплаве АК5М2. В таблице в качестве примера приведено распределение микротвердости по глубине h покрытия, которое является наиболее рациональным для фрикционных пар тормозных систем. Из таблицы видно, что твердость покрытия достаточно высока и достигает 16,5... 17,0 ГПа. Протяженность покрытия с такими значениями твердости составляет не менее 50 % от его толщины. Твердость поверхностных слоев несколько ниже и находится в интервале значений 10,6... 14,5 ГПа. Благодаря такому распределению твердости, внутренние слои образуют твердую подложку, препятствующую разрушению покрытия при локализованном воздействии абразивных частиц, попадающих в зону фрикционного контакта.

Микротвердость различных слоев МДО-покрытия, измеренная от границы раздела

h, мкм	20	40	60	80	100	120	160
Микротвердость, ГПа	17,0	17,0	17,0	16,5	14,5	12,5	10,6

Как показали результаты рентгенофазового анализа, сформированное на фрикционных парах покрытие состоит из оксидов алюминия α -, γ -модификаций, при этом поверхностные слои представлены в основном оксидом γ -Al₂O₃, внутренние – α -Al₂O₃.

Коэффициент трения оксидокерамики с таким составом, согласно результатам проведенных триботехнических испытаний, находится в интервале значений 0,42...0,46, что отвечает требованиям ТУ для тормозных систем транспортных средств.

На рис. 2 приведены результаты испытания износостойкости серийных ступиц колес мотоцикла и ступиц с оксидокерамикой в виде сплошного кольца на поверхности, контактирующей с тормозными накладками. Из приведенных результатов следует, что износ чугунного барабана серийных ступиц примерно в 5 раз превышает износ ступицы с оксидокерамикой. В то же время, износ ответной детали в обоих случаях имеет близкое значение. Таким образом, полученные данные показывают, что детали фрикционных пар с оксидокерамическими элементами обладают высокой износостойкостью, значительно превышающей износостойкость серийных изделий.

Эффективность работы фрикционного сопряжения тормозных узлов с оксидокерамикой можно значительно повысить, обеспечивая рациональную макроструктуру и топографию ее поверхности. В этом направлении нами предложено формирование упрочненного слоя на поверхности ступицы в виде регулярно чередующихся оксидокерамических и не упрочненных участков материала основы (регулярного рисунка) [4].

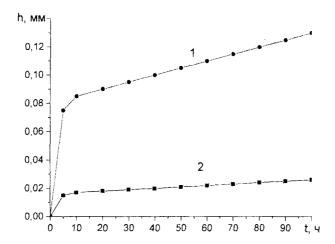


Рис. 2. Зависимость износа ступиц от продолжительности испытаний: 1- серийная ступица; 2-с оксидокерамическим покрытием

На рис. З представлены результаты оценки тормозного момента колес мотоцикла, оснащенных вышеуказанными ступицами и серийными. Анализ приведенных результатов показывает, что максимальные значения тормозного момента для серийных ступиц и ступиц с оксидокерамикой достигаются при одних и тех же усилиях, составляющих 110 Н для переднего колеса и 240 Н для заднего. При усилиях ниже указанных тормозной момент в случае ступиц с оксидокерамикой в виде регулярного рисунка во всем исследованном диапазоне усилий имеет более высокие значения по сравнению с серийным тормозом. Это непосредственно свидетельствует о более высокой эффективности торможения в случае ступиц с оксидокерамикой, что может быть связано со следующим.

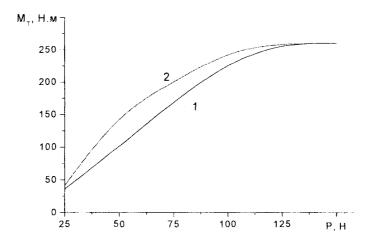


Рис. 3. Зависимость тормозного момента переднего колеса мотоцикла от усилия на рычаге тормоза: 1 - серийная ступица; 2 - с оксидокерамическим покрытием

Макроструктура упрочненной поверхности с регулярным рисунком на поверхности ступиц, в отличие от упрочненного слоя в виде сплошного оксидокерамического кольца [1,2], неоднородна и содержит, как уже отмечалось, участки оксидокерамики и неупрочненного материала основы. Вследствие высокой теплопроводности алюминия такая макроструктура обеспечивает улучшенный по сравнению с ке-

рамикой отвод тепла из зоны фрикционного контакта с ответной деталью, обеспечивая тем самым снижение эффекта засаливания и, как следствие, повышение эффективности торможения во всем диапазоне требуемых режимов испытаний. Кроме того, в случае упрочненного слоя с регулярным рисунком оксидокерамики снижение эффекта засаливания может быть связано также с другим составом продуктов износа и природой переходного слоя в зоне фрикционного контакта с накладками тормозных колодок. Результаты исследования показали, что соотношение объемных долей (по площади) оксидокерамики и материала основы, а также форма рисунка оказывают влияние на тормозные характеристики.

Выводы. Разработаны и исследованы новые технические решения тормозных систем мобильных машин, основанные на использовании чередующихся оксидокерамических и не упрочненных участков, позволившие исключить из конструкции ступицы из алюминиевого литейного сплава чугунный барабан, обеспечить эффективность торможения при одновременном увеличении ресурса тормозного узла в 5 и более раз.

Исследовано влияние гетерогенной структуры исходного сплава на состав и свойства оксидокерамического покрытия, на основе анализа результатов которых определено наиболее рациональное, с позиций прочности и износостойкости фрикционных пар, распределение твердости по глубине покрытия.

ЛИТЕРАТУРА

- 1. Пат. № 222 (2000) РБ. Тормозное устройство.
- 2. Новые композитные пары трения / В.И. Комарова, В.Л. Басинюк, А.И. Комаров, Н.Э. Сенокосов // Наука производству. 1999. № 6. С. 52 53.
- 3. Комаров А.И. Особенности формирования покрытий на алюминиевых сплавах с гетерогенной структурой методом микродугового оксидирования // Материалы, технологии, инструменты. 2003, Т. 8, № 1.-С. 97-101.
- 4. Положительное решение от 27.09.2001 г. по заявке № 20010237 РБ. Тормозное устройство.