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ROBUST STABILITY IN THE PROBLEM OF MOTION OF AN INVERTED PENDULUM
WITH A VIBRATING SUSPENSION POINT
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The work is devoted to the study of the robust stability of the motion of an inverted pendulum with a suspension
point oscillating according to a sinusoidal law. The case of perturbations of the amplitude of oscillations is considered,
an estimate is given for the magnitude of the perturbation at which the stability of motion is preserved.

Introduction. The motion of an inverted pendulum, the suspension point of which oscillates according to a sinusoidal
law along a straight line making a small angle a with the vertical, is described by the following equation:

g — aw?sin(wt) cosa aw? sin(wt) sin a
sing —
l l

where @ = @(t) is the angle of deviation of the pendulum from the lower vertical position of equilibrium, € is the
friction coefficient, [ is the length of the pendulum, g is the acceleration of gravity, w is the oscillation frequency of the
suspension point, and a is the amplitude of the suspension point oscillations.

It is well known that, in case of zero angle a = 0, at a sufficiently large oscillation frequency w > 1 and suffi-
ciently small amplitude of oscillations of the suspension point% « 1, the upper equilibrium position of the pendulum

" +ep' + cosp =0, (D

becomes stable. This result was predicted back in 1908 by the English mathematician Stephenson (see [1]) and was
first rigorously proved by Bogolyubov in 1942 (see [2]). Namely, he demonstrated that, if the above conditions on the
amplitude and frequency are satisfied and aw > ./ 2gl, the upper vertical position @ (t) = m is asymptotically stable.
The last condition means that the maximum oscillation velocity of the suspension point must exceed the velocity of a free
fall of a body from the height equal to the pendulum length. A clear demonstration of this phenomenon is provided
by the Kapitsa's installation [3].

At present, there are various approaches to the proof of the theorem on the stability of the upper equilibrium
position of the pendulum at zero angle a = 0 (see [4]), the classical proof is carried out using the averaging method
(5, 6]. In papers [7, 8, 9] the stability problem for an inverted pendulum in the case & = 0 is solved using a special
boundary value problem for the Lyapunov differential equation and the principle of contracting mappings (see, for
example, [10]). This approach is remarkable in that it allows not only to establish the very fact of motion stability, but
also to obtain the region of attraction of the solution and an estimate of the stabilization rate at t — oo. Developing
the [7, 9] approach and using the technique described in [11], it is also possible to obtain some results on robust
stability (that is, stability with respect to perturbations of the coefficients of the equation) in the problem of motion
of an inverted pendulum with a vibrating suspension point, which is the subject of this work.

Task formulation. Consider the movement of the pendulum in the case of a zero angle @ = 0. Then the equa-
tion (1) takes the following form

g — aw?sin(wt)

(pu + S(p’ + ] sin(p =0.
Shifting the angle by 7 (¢ = ¢ + ) and writing the result equation in the form of a system, we get
d @1\ _ (0 1\(® 0
&(%) B (() _g) <(p2) +lg - awl2 sin(wt) sing, | 2)

Here ¢, = ¢ and ¢, = ¢. Due to the angle shift, the study of the upper vertical equilibrium position of the
pendulum is reduced to the study of the zero solution of system (2).

Our goal is to study the robust stability of the system (2) with respect to the perturbation Aa of the amplitude
of the suspension point oscillations, i.e. we consider the following perturbed system

1 1 0
%(Z) - (8 _15) <Zz) + (g —(a+ Ac;)wz sin(wt) sin <p1>' 3)
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Preliminary information. Consider a linear homogeneous system of differential equations with periodic coefficients

Y _ Ay, t=0 4
dt - y' =% ( )
where A(t) is a continuous T-periodic matrix of size N X N.
In this paper, we rely on the criterion of the asymptotic stability of the zero solution for the system (4), formu-

lated in terms of the solvability of the following special boundary value problem for the Lyapunov differential equation

‘fi—lz + HA(t) + A(t)'H = —C(t), O0<t<T, (5
H(0) = H(T). (6)
According to this criterion (see [12]), if the zero solution of the system (4) is asymptotically stable, then for any
matrix C(t) continuous on [0, T] and such that
ct)y=Cc(t)*>0, te]o,T],
there exists a unique Hermitian positive definite solution H(t) of the boundary problem (5)-(6).

We will further assume that the zero solution of the system (4) is asymptotically stable. Let us denote

-1
T

1
a=(1-ew =[Sm0 | %
0
— -1
u(H) = max [IHON max [l (] (8)

In our work, in the study of robust stability in the problem of motion of an inverted pendulum, we will use the
following result from [11] reformulated in terms of the asymptotic stability of the zero solution:

Theorem 1. Let the zero solution of the system (4) with T-periodic coefficients be asymptotically stable. If a T-periodic
matrix A4 (t) satisfies the following condition

q = 278u(H) max 14, ()] < 1, ©)
then the zero solution of the system with perturbed coefficients

d

d—{ = (A +4,®)y, t=0

is also asymptotically stable.

Results. We begin the study of the robust stability of the system (2) with the study of the robust stability of its

linear approximation, i.e. we consider sin ¢, = ¢, and the corresponding system is the following

%(Z:) = (g - aa)(lg sin(wt) _1£> <Z:) = A()p. (10)

The corresponding perturbed system has the form

(0)- (- samotsmen ()

0 1 0 0 0 0
= | g — aw?sin(wt) ( 1) + Aaw? sin(wt) ( 1) =(AD +A4,®)g. (1)
l ~¢)J\po) T \m 0\,
The following result holds.

Theorem 2. Let% K1, w »1landaw > |/ 2gl, ie. the zero solution of the system (10) is asymptotically stable. If

l
lAa| < ———, (12)
dwA\/u(H)

where H(t) is Hermitian positive definite solution of the problem (5)-(6) with the matrix A(t) corresponding
to the system (10) and the values A and u(H) are defined by (7) and (8), respectively, then the zero solution of the
system (11) with the perturbed amplitude is also asymptotically stable.
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This theorem follows directly from the theorem 1 applied to the systems (10), (11) and namely the inequality (9).
For initial nonlinear system (2) similar result is true.

Theorem 3. Let% K1,w »landaw > / 2gl, ie. the zero solution of the system (10) is asymptotically stable. If

[ p—
4wl u(H)

where H(t) is Hermitian positive definite solution of the problem (5)-(6) with the matrix A(t) corresponding
to the system (10) and the values A and u(H) are defined by (7) and (8), respectively, then the zero solution of the
nonlinear system (3) with the perturbed amplitude is also asymptotically stable.

In the proof of this theorem we first show with the use of the results from [7] about asymptotic stability of zero
solutions for quasilinear systems with periodic coefficients, that from asymptotic stability of the zero solution of the linear
system (10) it follows that the zero solution of the nonlinear system (2) is also asymptotically stable. Thus, the statement
of the theorem 3 is indeed a result of robust stability (from the asymptotic stability of the zero solution of the nonlinear
system (2) follows the asymptotic stability of the zero solution of the perturbed nonlinear system (3) when the estimate
(12) on the value of Aa holds). And then, using again the results from [7], we prove the statement of the theorem 3.

Conclusion. The paper studies the question of the robust stability of the motion of an inverted pendulum, the
suspension point of which oscillates according to a sinusoidal law along a vertical line. Namely, the case of a perturbed
vibration amplitude is considered. An estimate is given for the magnitude of the perturbation of the amplitude at which
the stability of motion is preserved. The research uses the approaches from [7] and [11].

In the future, the question of robust stability with respect to other parameters of the pendulum motion (the oscillation
frequency of the suspension point w and the length of the pendulum 1) is raised, and the case of oscillations of the suspension
point along an inclined straight line (& > 0) should be studied. In addition, there stays the problem of finding a solution
to a special boundary value problem arising in the study of the Lyapunov differential equation (at least approximately).
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