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This paper presented an efficient and reliable smoke detection algorithm on the video sequences. The key 

components developed in this algorithm are slowly moving blobs detection, classification of the blobs obtained 

and smoke regions tracking. We use preprocessing, slowly moving areas and pixels segmentation in a current 

input frame based on adaptive background subtraction algorithm, merge of the slowly moving areas and pixels 

into blobs at a stage slowly moving blobs detection. Calculation of Weber contrast is applied to classification 

and the primary direction of smoke propagation is considered. On a tracking step we trace texture and color 

smoke features using Cam Shift algorithm. The performed experiments have shown that our smoke detector 

quickly and reliable finds out a smoke on a complex dynamic scene. Experimental results are presented. 

 

Introduction  

Early fire detection is a key critical task for fire alarm systems. Traditional fire detectors require a 

position of sensor in very close proximity to fire or smoke and usually do not provide information about fire 

location, size. So they may be not reliable and cannot be applied into open spaces and larger areas. Due to the 

rapid developments in digital camera technology and video processing techniques there is a big trend to replace 

conventional fire detection techniques with computer vision based systems. Video surveillance systems and fire 

alarm systems combination in the uniform decision of the visual control of space allows reducing final cost of 

the equipment considerably. Smoke detection is rather for fire alarm systems when large and open areas are 

monitored, because the source of the fire and flames cannot always fall into the field of view. However, smoke 

of an uncontrolled fire can be easily observed by a camera even if the flames are not visible. This results in early 

detection of fire before it spreads around. 

For smoke detection on the video sequences use usually motion and color. Motion information provides a 

key as the precondition to locate the possible smoke regions. The algorithm of background subtraction is 

traditionally applied to movement definition in video sequence [1 – 4]. Common technique is using adaptive 

Gaussian Mixture Model to approximate the background modeling process [1; 2]. In [5] optical flow calculation is 

applied to detection of movement of a smoke. Lacks of the given approach are high sensitivity to noise and high 

computational cost. Algorithms based on color and dynamic characteristics of a smoke are applied for classification 

of the given moving blobs. In [6] the algorithm comparative evaluation of the histogram-based pixel level 

classification is considered. In this algorithm the training set of video sequences on which there is a smoke is 

applied to the analysis. However, methods based on preliminary training are dependence of quality of classification 

on a training set. It demands much of qualitative characteristics of processed video images. The area of decreased 

high frequency energy component is identified as smoke using wavelet transforms [1; 2]. However change of 

scene illumination сan be contours degradation reason. Therefore such approach requires additional estimations. 

Color information is also used for identifying smoke in video. Smoke color at different stages of ignition and 

depending on a burning material is distributed in a range from almost transparent white to saturated gray and 

black. In [1] decrease in value of chromatic components U and V of color space YUV is estimated.  

The smoke on video sequences is a typical example of dynamic textures [12]. Therefore for smoke 

detection in video methods of segmentation and recognition of dynamic structures can be used. The existing 

approaches to dynamic texture recognition are based on optical flow [13] and volume local binary patterns 

(VLBP) [14]. At calculation of an optical flow for performance in real time usually use a normal component 

of an optical flow. Therefore this approach is very sensitive to a noise. Other approaches to dynamic textures 

recognition this modeling of textures with volume local binary patterns (VLBP). VLBP are an extension of the 

Local Binary Pattern (LBP) operator widely used in ordinary texture analysis combining the motion and appearance. 

For support of stability and reliability of smoke detection algorithm it is necessary to trace the smoke area 

found on a current frame on following frames. Various tracking algorithms can be for this purpose applied [16]. 

However the most popular are Mean Shift [17] and Cam Shift [18] algorithms because of the simplicity and efficiency.  

In this paper we propose an effective algorithm for smoke detection on the color video sequences 

obtained from the stationary camera. Our algorithm consisted of three basic steps: slowly moving blobs 

detection, classification of the blobs obtained and tracking. We use preprocessing, slowly moving areas and 
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pixels segmentation in a current input frame based on adaptive background subtraction algorithm, merge of the 

slowly moving areas and pixels into blobs at a stage slowly moving blobs detection. Calculation of Weber 

contrast is applied to classification and the primary direction of smoke propagation is considered. On a tracking 

step we trace texture and color smoke features using Cam Shift algorithm. 

1. Slowly moving areas and pixels segmentation 

Slowly moving blobs detection consists of following basic steps: preprocessing; slowly moving areas and 

pixels segmentation in a current input frame based on adaptive background subtraction algorithm; merge of the 

slowly moving areas and pixels into blobs. 

1.1. Frame preprocessing 

The preprocessing block applies some methods of image processing which increase the performance of 

the proposed detection algorithm and reduce false alarms. Frame preprocessing block comprises three steps: 

grayscale transformation, histogram equalization and the discrete wavelet transform of the current input frame. 

Cameras and image sensors must usually deal not only with the contrast in a scene but also with the image 

sensors exposure to the resulting light in that scene. Histogram equalization is a most commonly used method 

for improvement of contrast image characteristics [7]. To resize the image and to remove high frequencies on 

horizontal, vertical and diagonal details the discrete wavelet transform to Haar basis is applied. Wavelet 

transform to Haar basis is simplest and fastest that [8] is important for systems of video processing. Figure 1 

shows results for this step of algorithm. 

 

  

a) b) 

Fig. 1. The current frame (a)  

and the discrete wavelet transform after grayscale transformation and histogram equalization (b) 

 

 1.2. Slowly moving areas and pixels segmentation 

In the course of the distribution the smoke is gradually blended to a background. The adaptive algorithm 

of background subtraction offered by us considers this characteristic of a smoke and is based on the ideas stated 

in works [2; 9]. A background image 1tB  at time instant 1t  is recursively estimated from the image frame tI  

and the background image tB  of the video [9]. Moving pixels are determined by subtracting the current frame 

from the background and threshold. Recursive threshold estimation is also described in [9]. In the course of the 

distribution the smoke is gradually blended to a background. Then the foreground Ft can be estimated as follows: 

( , ) ( , ) (1 ) ( , ),t t tI x y F x y B x y  

where  is a blending parameter between 0 and 1. 

As the area of a smoke from a frame to a frame grows slowly that the pixels belonging to a smoke, 

quickly did not fix in a background, value of adaptation parameter  should be close to 1. Experimentally us the 

established values for smoke detection are 0,95  and 0,2 1 . 

1.3. Connected component analysis 

On next step of algorithm for clearing of noise and connection of moving blobs the connected 

components analysis is used [7]. This form of analysis takes in a noisy input foreground. Morphological 

operations are applied to reduce the noise: 

1) morphological opening to shrink areas of small noise: 

( ( ) ) ,S B S B B  

where S – image; B – structuring element 3 × 3; 
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2) morphological closing to rebuild the area of surviving components that was lost in opening: 

• ( )( ) ,S B S B B  

where B – structuring element 3 × 3. 

Then search of all contours is carried out. Next it tosses the contours that are too small and approxi-

mate the rest with polygons. The figure 2 shows the results of adaptive background subtraction and connected 

components analysis. 
 

  

a) b) 

  

c) d) 

Fig. 2. The low frequency area after Haar transform of the current frame (a) and background (b) for this area,  

the noisy foreground (c) is completely clean up (d) by the connected components analysis 
 

2. Moving blobs classification 

At the beginning, when the temperature of the smoke is low, it is expected that the smoke will show color 

from the range of white-bluish to white [1]. So we can apply Otsu thresholding [10] to smoke segmentation of a 

current frame. Then the blocks matching approach is applied for pixels with value 1 in an Otsu mask. Blocks 

matching approach for optical flow calculation assumes that the frame is divided into small regions called 

blocks. It considers a primary direction of smoke propagation. In [11] it is shown, that global direction of smoke 

is 0…45°. This statement allows to simplify procedure blocks matching detection and, hence, considerably to 

reduce number of calculations. Blocks are typically square and contain some number of pixels. These blocks are 

not overlap. In our realization frames in the size 320 × 240 pixels divided into blocks 2 × 2 pixels. Block 

matching algorithm attempt to divide both the previous and current frames into such blocks and then compute 

the motion of these blocks. Our implementation uses a search in three directions of the original block ,
prev
x yb   

(in the previous frame) and compares the candidate new blocks 1, 1
curr
x yb , , 1

curr
x yb  and 1, 1

curr
x yb  (in the current 

frame) with the original. This comparison is calculated as follows: 

, ,{ 1;0;1}
, , 1 , [2; ]

, ,

( , )
( , ) ,

( , )

prev curr
i j i jprev curr k

x y x k y x y N prev curr
i j i j

min I I
F b b

max I I
 

where ,
prev

i jI  is the intensity value of pixel on the previous frame, belonging to the block ,
prev
x yb , ,

curr
i jI  is the 

intensity value of pixel on the current frame, belonging to the block ,
curr
x yb , N  is count of blocks into which 

divided the previous and current frame.  
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The result of this step is a binary mask of moving on the current frame, where a value 1 corresponding the 

maximum value F. Figure 3 shows some examples for optical flow calculation. 
 

  

a) b) 

Fig. 3. Otsu threshold mask (a) and the current (b) frame with moving vectors 

 

From each blobs from previous steps we calculate Weber contrast wC  and percent  of blocks which 

have moved in primary direction of smoke: 

1

( , ) ( , )1
,

( , )

n
t t

w
ti

F x y B x y
C

n B x y
 

where ( , )tF x y  – value of pixel intensity ( , )x y  at time instant t , belonging to a blob; ( , )tB x y  – value of 

background pixel intensity ( , )x y  at time instant t under blob; n  – number of the pixels belonging to a blob. If the 

blob has successfully checked out that we classify it as a smoke. Experimentally established values 0,5wC  and 

20 %  allow distinguishing effectively a smoke from objects with similar behavior: a fog, shadows from 

slowly moving objects and patches of light. 

3. Smoke regions tracking 

On a tracking step we trace texture and color smoke features. For this we apply Cam Shift algorithm [18]. 

Smoke tracking is necessary to provide low level of false alarms and to reduce number not smoke detection. The 

Cam Shift algorithm uses continuously adaptive probability distributions. The essence of this tracker is region 

matching. The match criterion is similarity based on a color histogram. 

In our realization Cam Shift algorithm based on the Local Binary Pattern (LBP) texture measure [15]. 

The basic LBP operator is a non-parametric 3 × 3 kernel which summarizes the local special structure of an 

image. It was first introduced by Ojala et al. [15] who showed the high discriminative power of this operator for 

texture classification. Local Binary Pattern robustness to monotonic gray-scale transformation, such as varying 

the brightness, contrast and illumination. The problem of smoke regions tracking at known initial position 

resolves at next frames as follows: 

1) for smoke detection area is carried out LBP as follows. At a given pixel position ( , ),c cx y  LBP is 

defined as an ordered set of binary comparisons of pixel intensities between the center pixel and its eight 

surrounding pixels. The decimal form of the resulting 8-bit word (LBP code) can be expressed follows [15]: 

7

0

,( , ) ( )2n
c c n c

i

LBP x y s i i  

where corresponds to the gray value of the center pixel ( , )c cx y , in to the gray values of the 8 surrounding pixels ,ni  

and function s  is defined as [15]: 

1,   0;
( )

0,   0.

if x
s x

if x
 

For LBP of object (smoke region) the histogram which is considered as the standard for tracking is under 

construction. The figure 4, a shows the LBP for the current frame; 
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2) at frame change it is necessary having object position on the previous frame and new position of object 

is necessary to find the reference histogram. Algorithm Cam Shift which is carrying out this procedure consists 

of following steps: 

a) the search area in which smoke occurrence is supposed gets out. Initial position of search window 

which is defined by smoke position on the previous frame gets out; 

b) by back projection algorithm of histograms for search area the image of probability P (figure 4, b) is 

under construction. It is iterative following steps are carried out; 

c) in search window for image P the zeroth moment and first moments (the center of mass of the image 

pixel distribution) under following equations calculate: 

00 ( , ),

x y

M I x y  

10 ( , )

x y

M xI x y  

and 

01 ( , );

x y

M yI x y  

d) the found center of mass defines position of search window on the following iteration. The sizes of a 

window do not vary. Performance of steps 2.b and 2.c stops if distinctions in position of search window in the 

subsequently iterations are small; 

e) the search window extends a little, and in it for image P the second moments which define definitive 

position and the size of traced object, under following equations are calculate: 

2
20 ( , ),

x y

M x I x y  

2
02 ( , ).

x y

M y I x y  

  

a) b) 

Fig. 4. LBP (a) and the image of probability P (b) for the current frame 

 
At quick changes of object position, the tracking algorithm can lose object. However for the ignition 

centre quick change of a location is not characteristic. Increase of smoke area occurs slowly. Therefore Cam 

Shift algorithm well approaches for smoke trace on frame sequences. 
 

4. Results and discussion 

The developed algorithm has been tested in real environment with implementation at personal computer 

(Pentium(R) DualCore CPU T4300, 2,1 GHz, RAM 1,96 GB). Our program is implemented using Visual C++ 

and an open source computer vision library OpenCV. The proposed algorithm has been evaluated using data 

set publicly available at the web address http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips.html and 

http://www.openvisor.org. Test video sequences contain a smoke, moving people, moving transport, a complex 
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dynamic background, and also a number of video sequences are not contained by a smoke. Figure 5 shows some 

examples of smoke detection.  

 

  

a) b) 

 

Fig. 5. Smoke detection in real video sequences 

 

  

c) d) 

  

e) f) 

  

g) k) 

Fig. 5. Smoke detection in real video sequences 

 

For each video sequence we calculate True Rate (TR) and False Rate (FR) as follows: 
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100 %,
CTR

TR  
CS

 

100 %,
CFR

FR  
CNS

 

where CTR – count of true found frames; CS – count of frames with a smoke; CFR – count of false found frames 

and CNS – count of frames without a smoke. 

We have compared our approach and approach developed in Signal and image processing group from 

Bilkent University (http://signal.ee.bilkent.edu.tr). Results of smoke detection are presented in the Table where 

OAL and BAP are detection results for our algorithm and Bilkent approach respectively.  

 
Compare smoke detection algorithms 

 

Video seq. 

Fig. 5 

TR (%) FR (%) Present rate 

OAL BAP OAL BAP OAL BAP 

a 98 78 6 0 10/12 10/43 

b 60 SNF 0 SNF 20/112 SNF 

c 96 41 0 0 80/87 80/100 

d 66 48 12 8 30/117 204/117 

e 94 – 0 – 360/388 – 

f 80 – 17 – 463/469 – 

g 98 – 15 – 398/400 – 

k 77 – 2 – 500/657 – 

 

Present rate (the smoke was present with/ is found with) is number of frame where smoke was present in 

video and number of frame where smoke is found with algorithms. The designation SNF means that the smoke 

has not been found out by algorithm. Our algorithm has higher true of detection thanks to application of trace 

and allows to find out a smoke at earlier stage. If at the moment of occurrence on a scene the smoke moves 

slowly and is strongly rarefied (sequences b, d, k), it gradually includes in a background. Therefore in this case, 

we cannot directly find out a smoke and detection time is increasing (fig. 6, a). Also our algorithm cannot be 

used for wildfire detection (fig. 6, b) because the smoke area is small and a part of the smoke information is lost 

at a post processing stage. 

 

  

a) b) 

Fig. 6. Examples not detection 

 

Results of researches show, that the algorithm provides early smoke detection on a complex scene. 

Smoke detection is achieved in real time. The processing time per frame is about 31 ms. for frames with sizes of 

320 by 240 pixels. It has low false alarm rate. The algorithm has small positive factor in cases when the smoke 

strongly dissipates and at long distribution to one direction joins in a background. However for problems of the 

early prevention of a fire more important is early alarm and low false alarm rate. Therefore our algorithm can be 

used in video surveillance systems for early detection of a fire. 

5. Conclusion 

We have presented in this paper an algorithm for smoke detection in video sequences. Our algorithm 

consisted of three basic steps: slowly moving blobs detection, classification of the blobs obtained and tracking. 
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We use preprocessing, slowly moving areas and pixels segmentation in a current input frame based on adaptive 

background subtraction algorithm, merge of the slowly moving areas and pixels into blobs at a stage slowly 

moving blobs detection. Calculation of Weber contrast is applied to classification and the primary direction of 

smoke propagation is considered. On a tracking step we trace texture and color smoke features using Cam Shift 

algorithm. The efficiency of our approach is illustrated and confirmed by our experimental videos. 
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